blob: c4b9a76268dd68b8cd97efe18d902036ef60bbab [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_iir_lattice_q31.c
* Description: Q31 IIR Lattice filter processing function
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupFilters
*/
/**
@addtogroup IIR_Lattice
@{
*/
/**
@brief Processing function for the Q31 IIR lattice filter.
@param[in] S points to an instance of the Q31 IIR lattice structure
@param[in] pSrc points to the block of input data
@param[out] pDst points to the block of output data
@param[in] blockSize number of samples to process
@return none
@par Scaling and Overflow Behavior
The function is implemented using an internal 64-bit accumulator.
The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
Thus, if the accumulator result overflows it wraps around rather than clip.
In order to avoid overflows completely the input signal must be scaled down by 2*log2(numStages) bits.
After all multiply-accumulates are performed, the 2.62 accumulator is saturated to 1.32 format and then truncated to 1.31 format.
*/
void arm_iir_lattice_q31(
const arm_iir_lattice_instance_q31 * S,
const q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pState = S->pState; /* State pointer */
q31_t *pStateCur; /* State current pointer */
q31_t fcurr, fnext = 0, gcurr = 0, gnext; /* Temporary variables for lattice stages */
q63_t acc; /* Accumlator */
q31_t *px1, *px2, *pk, *pv; /* Temporary pointers for state and coef */
uint32_t numStages = S->numStages; /* Number of stages */
uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
/* initialise loop count */
blkCnt = blockSize;
#if defined (ARM_MATH_DSP)
/* Sample processing */
while (blkCnt > 0U)
{
/* Read Sample from input buffer */
/* fN(n) = x(n) */
fcurr = *pSrc++;
/* Initialize Ladder coeff pointer */
pv = &S->pvCoeffs[0];
/* Initialize Reflection coeff pointer */
pk = &S->pkCoeffs[0];
/* Initialize state read pointer */
px1 = pState;
/* Initialize state write pointer */
px2 = pState;
/* Set accumulator to zero */
acc = 0;
/* Process sample for first tap */
gcurr = *px1++;
/* fN-1(n) = fN(n) - kN * gN-1(n-1) */
fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk )) >> 31));
/* gN(n) = kN * fN-1(n) + gN-1(n-1) */
gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
/* write gN-1(n-1) into state for next sample processing */
*px2++ = gnext;
/* y(n) += gN(n) * vN */
acc += ((q63_t) gnext * *pv++);
/* Update f values for next coefficient processing */
fcurr = fnext;
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 taps at a time. */
tapCnt = (numStages - 1U) >> 2U;
while (tapCnt > 0U)
{
/* Process sample for 2nd, 6th ...taps */
/* Read gN-2(n-1) from state buffer */
gcurr = *px1++;
/* fN-2(n) = fN-1(n) - kN-1 * gN-2(n-1) */
fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk )) >> 31));
/* gN-1(n) = kN-1 * fN-2(n) + gN-2(n-1) */
gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
/* y(n) += gN-1(n) * vN-1 */
/* process for gN-5(n) * vN-5, gN-9(n) * vN-9 ... */
acc += ((q63_t) gnext * *pv++);
/* write gN-1(n) into state for next sample processing */
*px2++ = gnext;
/* Process sample for 3nd, 7th ...taps */
/* Read gN-3(n-1) from state buffer */
gcurr = *px1++;
/* Process sample for 3rd, 7th .. taps */
/* fN-3(n) = fN-2(n) - kN-2 * gN-3(n-1) */
fcurr = __QSUB(fnext, (q31_t) (((q63_t) gcurr * (*pk )) >> 31));
/* gN-2(n) = kN-2 * fN-3(n) + gN-3(n-1) */
gnext = __QADD(gcurr, (q31_t) (((q63_t) fcurr * (*pk++)) >> 31));
/* y(n) += gN-2(n) * vN-2 */
/* process for gN-6(n) * vN-6, gN-10(n) * vN-10 ... */
acc += ((q63_t) gnext * *pv++);
/* write gN-2(n) into state for next sample processing */
*px2++ = gnext;
/* Process sample for 4th, 8th ...taps */
/* Read gN-4(n-1) from state buffer */
gcurr = *px1++;
/* Process sample for 4th, 8th .. taps */
/* fN-4(n) = fN-3(n) - kN-3 * gN-4(n-1) */
fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk )) >> 31));
/* gN-3(n) = kN-3 * fN-4(n) + gN-4(n-1) */
gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
/* y(n) += gN-3(n) * vN-3 */
/* process for gN-7(n) * vN-7, gN-11(n) * vN-11 ... */
acc += ((q63_t) gnext * *pv++);
/* write gN-3(n) into state for next sample processing */
*px2++ = gnext;
/* Process sample for 5th, 9th ...taps */
/* Read gN-5(n-1) from state buffer */
gcurr = *px1++;
/* Process sample for 5th, 9th .. taps */
/* fN-5(n) = fN-4(n) - kN-4 * gN-1(n-1) */
fcurr = __QSUB(fnext, (q31_t) (((q63_t) gcurr * (*pk )) >> 31));
/* gN-4(n) = kN-4 * fN-5(n) + gN-5(n-1) */
gnext = __QADD(gcurr, (q31_t) (((q63_t) fcurr * (*pk++)) >> 31));
/* y(n) += gN-4(n) * vN-4 */
/* process for gN-8(n) * vN-8, gN-12(n) * vN-12 ... */
acc += ((q63_t) gnext * *pv++);
/* write gN-4(n) into state for next sample processing */
*px2++ = gnext;
/* Decrement loop counter */
tapCnt--;
}
fnext = fcurr;
/* Loop unrolling: Compute remaining taps */
tapCnt = (numStages - 1U) % 0x4U;
#else
/* Initialize blkCnt with number of samples */
tapCnt = (numStages - 1U);
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (tapCnt > 0U)
{
gcurr = *px1++;
/* Process sample for last taps */
fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk )) >> 31));
gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
/* Output samples for last taps */
acc += ((q63_t) gnext * *pv++);
*px2++ = gnext;
fcurr = fnext;
/* Decrement loop counter */
tapCnt--;
}
/* y(n) += g0(n) * v0 */
acc += ((q63_t) fnext * *pv++);
*px2++ = fnext;
/* write out into pDst */
*pDst++ = (q31_t) (acc >> 31U);
/* Advance the state pointer by 4 to process the next group of 4 samples */
pState = pState + 1U;
/* Decrement loop counter */
blkCnt--;
}
/* Processing is complete. Now copy last S->numStages samples to start of the buffer
for the preperation of next frame process */
/* Points to the start of the state buffer */
pStateCur = &S->pState[0];
pState = &S->pState[blockSize];
/* Copy data */
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 taps at a time. */
tapCnt = numStages >> 2U;
while (tapCnt > 0U)
{
*pStateCur++ = *pState++;
*pStateCur++ = *pState++;
*pStateCur++ = *pState++;
*pStateCur++ = *pState++;
/* Decrement loop counter */
tapCnt--;
}
/* Loop unrolling: Compute remaining taps */
tapCnt = numStages % 0x4U;
#else
/* Initialize blkCnt with number of samples */
tapCnt = (numStages - 1U);
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (tapCnt > 0U)
{
*pStateCur++ = *pState++;
/* Decrement loop counter */
tapCnt--;
}
#else /* #if defined (ARM_MATH_DSP) */
/* Sample processing */
while (blkCnt > 0U)
{
/* Read Sample from input buffer */
/* fN(n) = x(n) */
fcurr = *pSrc++;
/* Initialize Ladder coeff pointer */
pv = &S->pvCoeffs[0];
/* Initialize Reflection coeff pointer */
pk = &S->pkCoeffs[0];
/* Initialize state read pointer */
px1 = pState;
/* Initialize state write pointer */
px2 = pState;
/* Set accumulator to zero */
acc = 0;
tapCnt = numStages;
while (tapCnt > 0U)
{
gcurr = *px1++;
/* Process sample */
/* fN-1(n) = fN(n) - kN * gN-1(n-1) */
fnext = clip_q63_to_q31(((q63_t) fcurr - ((q31_t) (((q63_t) gcurr * (*pk )) >> 31))));
/* gN(n) = kN * fN-1(n) + gN-1(n-1) */
gnext = clip_q63_to_q31(((q63_t) gcurr + ((q31_t) (((q63_t) fnext * (*pk++)) >> 31))));
/* Output samples */
/* y(n) += gN(n) * vN */
acc += ((q63_t) gnext * *pv++);
/* write gN-1(n-1) into state for next sample processing */
*px2++ = gnext;
/* Update f values for next coefficient processing */
fcurr = fnext;
tapCnt--;
}
/* y(n) += g0(n) * v0 */
acc += ((q63_t) fnext * *pv++);
*px2++ = fnext;
/* write out into pDst */
*pDst++ = (q31_t) (acc >> 31U);
/* Advance the state pointer by 1 to process the next group of samples */
pState = pState + 1U;
/* Decrement loop counter */
blkCnt--;
}
/* Processing is complete. Now copy last S->numStages samples to start of the buffer
for the preperation of next frame process */
/* Points to the start of the state buffer */
pStateCur = &S->pState[0];
pState = &S->pState[blockSize];
tapCnt = numStages;
/* Copy data */
while (tapCnt > 0U)
{
*pStateCur++ = *pState++;
/* Decrement loop counter */
tapCnt--;
}
#endif /* #if defined (ARM_MATH_DSP) */
}
/**
@} end of IIR_Lattice group
*/