blob: b135b2efc1c1c8e9dcaad5c624cd3229e6956524 [file] [log] [blame]
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. October 2015
* $Revision: V.1.4.5 a
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_fast_q31.c
*
* Description: Processing function for the
* Q31 Fast Biquad cascade DirectFormI(DF1) filter.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @details
*
* @param[in] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* This function is optimized for speed at the expense of fixed-point precision and overflow protection.
* The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
* These intermediate results are added to a 2.30 accumulator.
* Finally, the accumulator is saturated and converted to a 1.31 result.
* The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
* In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function
* arm_biquad_cascade_df1_init_q31() to initialize filter structure.
*
* \par
* Refer to the function <code>arm_biquad_cascade_df1_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure.
* Use the function <code>arm_biquad_cascade_df1_init_q31()</code> to initialize the filter structure.
*/
void arm_biquad_cascade_df1_fast_q31(
const arm_biquad_casd_df1_inst_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t acc = 0; /* accumulator */
q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
q31_t *pIn = pSrc; /* input pointer initialization */
q31_t *pOut = pDst; /* output pointer initialization */
q31_t *pState = S->pState; /* pState pointer initialization */
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
q31_t Xn; /* temporary input */
int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
uint32_t sample, stage = S->numStages; /* loop counters */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the state values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* Apply loop unrolling and compute 4 output values simultaneously. */
/* The variables acc ... acc3 hold output values that are being computed:
*
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(sample > 0u)
{
/* Read the input */
Xn = *pIn;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
/*acc = (q31_t) (((q63_t) b1 * Xn1) >> 32);*/
mult_32x32_keep32_R(acc, b1, Xn1);
/* acc += b1 * x[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b0 * (Xn))) >> 32);*/
multAcc_32x32_keep32_R(acc, b0, Xn);
/* acc += b[2] * x[n-2] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, b2, Xn2);
/* acc += a1 * y[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, a1, Yn1);
/* acc += a2 * y[n-2] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, a2, Yn2);
/* The result is converted to 1.31 , Yn2 variable is reused */
Yn2 = acc << shift;
/* Read the second input */
Xn2 = *(pIn + 1u);
/* Store the output in the destination buffer. */
*pOut = Yn2;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
/*acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);*/
mult_32x32_keep32_R(acc, b0, Xn2);
/* acc += b1 * x[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);*/
multAcc_32x32_keep32_R(acc, b1, Xn);
/* acc += b[2] * x[n-2] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, b2, Xn1);
/* acc += a1 * y[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, a1, Yn2);
/* acc += a2 * y[n-2] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, a2, Yn1);
/* The result is converted to 1.31, Yn1 variable is reused */
Yn1 = acc << shift;
/* Read the third input */
Xn1 = *(pIn + 2u);
/* Store the output in the destination buffer. */
*(pOut + 1u) = Yn1;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
/*acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);*/
mult_32x32_keep32_R(acc, b0, Xn1);
/* acc += b1 * x[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, b1, Xn2);
/* acc += b[2] * x[n-2] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);*/
multAcc_32x32_keep32_R(acc, b2, Xn);
/* acc += a1 * y[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, a1, Yn1);
/* acc += a2 * y[n-2] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, a2, Yn2);
/* The result is converted to 1.31, Yn2 variable is reused */
Yn2 = acc << shift;
/* Read the forth input */
Xn = *(pIn + 3u);
/* Store the output in the destination buffer. */
*(pOut + 2u) = Yn2;
pIn += 4u;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
/*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
mult_32x32_keep32_R(acc, b0, Xn);
/* acc += b1 * x[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, b1, Xn1);
/* acc += b[2] * x[n-2] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, b2, Xn2);
/* acc += a1 * y[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, a1, Yn2);
/* acc += a2 * y[n-2] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, a2, Yn1);
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
Xn2 = Xn1;
/* The result is converted to 1.31, Yn1 variable is reused */
Yn1 = acc << shift;
/* Xn1 = Xn */
Xn1 = Xn;
/* Store the output in the destination buffer. */
*(pOut + 3u) = Yn1;
pOut += 4u;
/* decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
sample = (blockSize & 0x3u);
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
/*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
mult_32x32_keep32_R(acc, b0, Xn);
/* acc += b1 * x[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, b1, Xn1);
/* acc += b[2] * x[n-2] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, b2, Xn2);
/* acc += a1 * y[n-1] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
multAcc_32x32_keep32_R(acc, a1, Yn1);
/* acc += a2 * y[n-2] */
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
multAcc_32x32_keep32_R(acc, a2, Yn2);
/* The result is converted to 1.31 */
acc = acc << shift;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = acc;
/* Store the output in the destination buffer. */
*pOut++ = acc;
/* decrement the loop counter */
sample--;
}
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent stages occur in-place in the output buffer */
pIn = pDst;
/* Reset to destination pointer */
pOut = pDst;
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
} while(--stage);
}
/**
* @} end of BiquadCascadeDF1 group
*/