blob: c5a81d459a303c129c413a70be87e12fba1c81c2 [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df2T_f32.c
* Description: Processing function for floating-point transposed direct form II Biquad cascade filter
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure
*
* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure.
* The filters are implemented as a cascade of second order Biquad sections.
* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions.
* Only floating-point data is supported.
*
* This function operate on blocks of input and output data and each call to the function
* processes <code>blockSize</code> samples through the filter.
* <code>pSrc</code> points to the array of input data and
* <code>pDst</code> points to the array of output data.
* Both arrays contain <code>blockSize</code> values.
*
* \par Algorithm
* Each Biquad stage implements a second order filter using the difference equation:
* <pre>
* y[n] = b0 * x[n] + d1
* d1 = b1 * x[n] + a1 * y[n] + d2
* d2 = b2 * x[n] + a2 * y[n]
* </pre>
* where d1 and d2 represent the two state values.
*
* \par
* A Biquad filter using a transposed Direct Form II structure is shown below.
* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad"
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
* Pay careful attention to the sign of the feedback coefficients.
* Some design tools flip the sign of the feedback coefficients:
* <pre>
* y[n] = b0 * x[n] + d1;
* d1 = b1 * x[n] - a1 * y[n] + d2;
* d2 = b2 * x[n] - a2 * y[n];
* </pre>
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
*
* \par
* Higher order filters are realized as a cascade of second order sections.
* <code>numStages</code> refers to the number of second order stages used.
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the
* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
*
* \par
* <code>pState</code> points to the state variable array.
* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>.
* The state variables are arranged in the <code>pState</code> array as:
* <pre>
* {d11, d12, d21, d22, ...}
* </pre>
* where <code>d1x</code> refers to the state variables for the first Biquad and
* <code>d2x</code> refers to the state variables for the second Biquad.
* The state array has a total length of <code>2*numStages</code> values.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
*
* \par
* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II.
* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types.
* That is why the Direct Form I structure supports Q15 and Q31 data types.
* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>.
* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad.
* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage.
*
* \par Instance Structure
* The coefficients and state variables for a filter are stored together in an instance data structure.
* A separate instance structure must be defined for each filter.
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
*
* \par Init Functions
* There is also an associated initialization function.
* The initialization function performs following operations:
* - Sets the values of the internal structure fields.
* - Zeros out the values in the state buffer.
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
* numStages, pCoeffs, pState. Also set all of the values in pState to zero.
*
* \par
* Use of the initialization function is optional.
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
* To place an instance structure into a const data section, the instance structure must be manually initialized.
* Set the values in the state buffer to zeros before static initialization.
* For example, to statically initialize the instance structure use
* <pre>
* arm_biquad_cascade_df2T_instance_f32 S1 = {numStages, pState, pCoeffs};
* </pre>
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer.
* <code>pCoeffs</code> is the address of the coefficient buffer;
*
*/
/**
* @addtogroup BiquadCascadeDF2T
* @{
*/
/**
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
* @param[in] *S points to an instance of the filter data structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of samples to process.
* @return none.
*/
LOW_OPTIMIZATION_ENTER
void arm_biquad_cascade_df2T_f32(
const arm_biquad_cascade_df2T_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
float32_t *pIn = pSrc; /* source pointer */
float32_t *pOut = pDst; /* destination pointer */
float32_t *pState = S->pState; /* State pointer */
float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
float32_t acc1; /* accumulator */
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
float32_t Xn1; /* temporary input */
float32_t d1, d2; /* state variables */
uint32_t sample, stage = S->numStages; /* loop counters */
#if defined(ARM_MATH_CM7)
float32_t Xn2, Xn3, Xn4, Xn5, Xn6, Xn7, Xn8; /* Input State variables */
float32_t Xn9, Xn10, Xn11, Xn12, Xn13, Xn14, Xn15, Xn16;
float32_t acc2, acc3, acc4, acc5, acc6, acc7; /* Simulates the accumulator */
float32_t acc8, acc9, acc10, acc11, acc12, acc13, acc14, acc15, acc16;
do
{
/* Reading the coefficients */
b0 = pCoeffs[0];
b1 = pCoeffs[1];
b2 = pCoeffs[2];
a1 = pCoeffs[3];
/* Apply loop unrolling and compute 16 output values simultaneously. */
sample = blockSize >> 4U;
a2 = pCoeffs[4];
/*Reading the state values */
d1 = pState[0];
d2 = pState[1];
pCoeffs += 5U;
/* First part of the processing with loop unrolling. Compute 16 outputs at a time.
** a second loop below computes the remaining 1 to 15 samples. */
while (sample > 0U) {
/* y[n] = b0 * x[n] + d1 */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
/* d2 = b2 * x[n] + a2 * y[n] */
/* Read the first 2 inputs. 2 cycles */
Xn1 = pIn[0 ];
Xn2 = pIn[1 ];
/* Sample 1. 5 cycles */
Xn3 = pIn[2 ];
acc1 = b0 * Xn1 + d1;
Xn4 = pIn[3 ];
d1 = b1 * Xn1 + d2;
Xn5 = pIn[4 ];
d2 = b2 * Xn1;
Xn6 = pIn[5 ];
d1 += a1 * acc1;
Xn7 = pIn[6 ];
d2 += a2 * acc1;
/* Sample 2. 5 cycles */
Xn8 = pIn[7 ];
acc2 = b0 * Xn2 + d1;
Xn9 = pIn[8 ];
d1 = b1 * Xn2 + d2;
Xn10 = pIn[9 ];
d2 = b2 * Xn2;
Xn11 = pIn[10];
d1 += a1 * acc2;
Xn12 = pIn[11];
d2 += a2 * acc2;
/* Sample 3. 5 cycles */
Xn13 = pIn[12];
acc3 = b0 * Xn3 + d1;
Xn14 = pIn[13];
d1 = b1 * Xn3 + d2;
Xn15 = pIn[14];
d2 = b2 * Xn3;
Xn16 = pIn[15];
d1 += a1 * acc3;
pIn += 16;
d2 += a2 * acc3;
/* Sample 4. 5 cycles */
acc4 = b0 * Xn4 + d1;
d1 = b1 * Xn4 + d2;
d2 = b2 * Xn4;
d1 += a1 * acc4;
d2 += a2 * acc4;
/* Sample 5. 5 cycles */
acc5 = b0 * Xn5 + d1;
d1 = b1 * Xn5 + d2;
d2 = b2 * Xn5;
d1 += a1 * acc5;
d2 += a2 * acc5;
/* Sample 6. 5 cycles */
acc6 = b0 * Xn6 + d1;
d1 = b1 * Xn6 + d2;
d2 = b2 * Xn6;
d1 += a1 * acc6;
d2 += a2 * acc6;
/* Sample 7. 5 cycles */
acc7 = b0 * Xn7 + d1;
d1 = b1 * Xn7 + d2;
d2 = b2 * Xn7;
d1 += a1 * acc7;
d2 += a2 * acc7;
/* Sample 8. 5 cycles */
acc8 = b0 * Xn8 + d1;
d1 = b1 * Xn8 + d2;
d2 = b2 * Xn8;
d1 += a1 * acc8;
d2 += a2 * acc8;
/* Sample 9. 5 cycles */
acc9 = b0 * Xn9 + d1;
d1 = b1 * Xn9 + d2;
d2 = b2 * Xn9;
d1 += a1 * acc9;
d2 += a2 * acc9;
/* Sample 10. 5 cycles */
acc10 = b0 * Xn10 + d1;
d1 = b1 * Xn10 + d2;
d2 = b2 * Xn10;
d1 += a1 * acc10;
d2 += a2 * acc10;
/* Sample 11. 5 cycles */
acc11 = b0 * Xn11 + d1;
d1 = b1 * Xn11 + d2;
d2 = b2 * Xn11;
d1 += a1 * acc11;
d2 += a2 * acc11;
/* Sample 12. 5 cycles */
acc12 = b0 * Xn12 + d1;
d1 = b1 * Xn12 + d2;
d2 = b2 * Xn12;
d1 += a1 * acc12;
d2 += a2 * acc12;
/* Sample 13. 5 cycles */
acc13 = b0 * Xn13 + d1;
d1 = b1 * Xn13 + d2;
d2 = b2 * Xn13;
pOut[0 ] = acc1 ;
d1 += a1 * acc13;
pOut[1 ] = acc2 ;
d2 += a2 * acc13;
/* Sample 14. 5 cycles */
pOut[2 ] = acc3 ;
acc14 = b0 * Xn14 + d1;
pOut[3 ] = acc4 ;
d1 = b1 * Xn14 + d2;
pOut[4 ] = acc5 ;
d2 = b2 * Xn14;
pOut[5 ] = acc6 ;
d1 += a1 * acc14;
pOut[6 ] = acc7 ;
d2 += a2 * acc14;
/* Sample 15. 5 cycles */
pOut[7 ] = acc8 ;
pOut[8 ] = acc9 ;
acc15 = b0 * Xn15 + d1;
pOut[9 ] = acc10;
d1 = b1 * Xn15 + d2;
pOut[10] = acc11;
d2 = b2 * Xn15;
pOut[11] = acc12;
d1 += a1 * acc15;
pOut[12] = acc13;
d2 += a2 * acc15;
/* Sample 16. 5 cycles */
pOut[13] = acc14;
acc16 = b0 * Xn16 + d1;
pOut[14] = acc15;
d1 = b1 * Xn16 + d2;
pOut[15] = acc16;
d2 = b2 * Xn16;
sample--;
d1 += a1 * acc16;
pOut += 16;
d2 += a2 * acc16;
}
sample = blockSize & 0xFu;
while (sample > 0U) {
Xn1 = *pIn;
acc1 = b0 * Xn1 + d1;
pIn++;
d1 = b1 * Xn1 + d2;
*pOut = acc1;
d2 = b2 * Xn1;
pOut++;
d1 += a1 * acc1;
sample--;
d2 += a2 * acc1;
}
/* Store the updated state variables back into the state array */
pState[0] = d1;
/* The current stage input is given as the output to the next stage */
pIn = pDst;
pState[1] = d2;
/* decrement the loop counter */
stage--;
pState += 2U;
/*Reset the output working pointer */
pOut = pDst;
} while (stage > 0U);
#elif defined(ARM_MATH_CM0_FAMILY)
/* Run the below code for Cortex-M0 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/*Reading the state values */
d1 = pState[0];
d2 = pState[1];
sample = blockSize;
while (sample > 0U)
{
/* Read the input */
Xn1 = *pIn++;
/* y[n] = b0 * x[n] + d1 */
acc1 = (b0 * Xn1) + d1;
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc1;
/* Every time after the output is computed state should be updated. */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
d1 = ((b1 * Xn1) + (a1 * acc1)) + d2;
/* d2 = b2 * x[n] + a2 * y[n] */
d2 = (b2 * Xn1) + (a2 * acc1);
/* decrement the loop counter */
sample--;
}
/* Store the updated state variables back into the state array */
*pState++ = d1;
*pState++ = d2;
/* The current stage input is given as the output to the next stage */
pIn = pDst;
/*Reset the output working pointer */
pOut = pDst;
/* decrement the loop counter */
stage--;
} while (stage > 0U);
#else
float32_t Xn2, Xn3, Xn4; /* Input State variables */
float32_t acc2, acc3, acc4; /* accumulator */
float32_t p0, p1, p2, p3, p4, A1;
/* Run the below code for Cortex-M4 and Cortex-M3 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/*Reading the state values */
d1 = pState[0];
d2 = pState[1];
/* Apply loop unrolling and compute 4 output values simultaneously. */
sample = blockSize >> 2U;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (sample > 0U) {
/* y[n] = b0 * x[n] + d1 */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
/* d2 = b2 * x[n] + a2 * y[n] */
/* Read the four inputs */
Xn1 = pIn[0];
Xn2 = pIn[1];
Xn3 = pIn[2];
Xn4 = pIn[3];
pIn += 4;
p0 = b0 * Xn1;
p1 = b1 * Xn1;
acc1 = p0 + d1;
p0 = b0 * Xn2;
p3 = a1 * acc1;
p2 = b2 * Xn1;
A1 = p1 + p3;
p4 = a2 * acc1;
d1 = A1 + d2;
d2 = p2 + p4;
p1 = b1 * Xn2;
acc2 = p0 + d1;
p0 = b0 * Xn3;
p3 = a1 * acc2;
p2 = b2 * Xn2;
A1 = p1 + p3;
p4 = a2 * acc2;
d1 = A1 + d2;
d2 = p2 + p4;
p1 = b1 * Xn3;
acc3 = p0 + d1;
p0 = b0 * Xn4;
p3 = a1 * acc3;
p2 = b2 * Xn3;
A1 = p1 + p3;
p4 = a2 * acc3;
d1 = A1 + d2;
d2 = p2 + p4;
acc4 = p0 + d1;
p1 = b1 * Xn4;
p3 = a1 * acc4;
p2 = b2 * Xn4;
A1 = p1 + p3;
p4 = a2 * acc4;
d1 = A1 + d2;
d2 = p2 + p4;
pOut[0] = acc1;
pOut[1] = acc2;
pOut[2] = acc3;
pOut[3] = acc4;
pOut += 4;
sample--;
}
sample = blockSize & 0x3U;
while (sample > 0U) {
Xn1 = *pIn++;
p0 = b0 * Xn1;
p1 = b1 * Xn1;
acc1 = p0 + d1;
p3 = a1 * acc1;
p2 = b2 * Xn1;
A1 = p1 + p3;
p4 = a2 * acc1;
d1 = A1 + d2;
d2 = p2 + p4;
*pOut++ = acc1;
sample--;
}
/* Store the updated state variables back into the state array */
*pState++ = d1;
*pState++ = d2;
/* The current stage input is given as the output to the next stage */
pIn = pDst;
/*Reset the output working pointer */
pOut = pDst;
/* decrement the loop counter */
stage--;
} while (stage > 0U);
#endif
}
LOW_OPTIMIZATION_EXIT
/**
* @} end of BiquadCascadeDF2T group
*/