blob: 1eda7197420bcbb88595868e211aa34a63aed4af [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_correlate_opt_q15.c
* Description: Correlation of Q15 sequences
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup Corr
* @{
*/
/**
* @brief Correlation of Q15 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
* @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @return none.
*
* \par Restrictions
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
* In this case input, output, scratch buffers should be aligned by 32-bit
*
* @details
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* The function is implemented using a 64-bit internal accumulator.
* Both inputs are in 1.15 format and multiplications yield a 2.30 result.
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
* This approach provides 33 guard bits and there is no risk of overflow.
* The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
*
* \par
* Refer to <code>arm_correlate_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
*
*
*/
void arm_correlate_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
q15_t * pScratch)
{
q15_t *pIn1; /* inputA pointer */
q15_t *pIn2; /* inputB pointer */
q63_t acc0, acc1, acc2, acc3; /* Accumulators */
q15_t *py; /* Intermediate inputB pointer */
q31_t x1, x2, x3; /* temporary variables for holding input1 and input2 values */
uint32_t j, blkCnt, outBlockSize; /* loop counter */
int32_t inc = 1; /* output pointer increment */
uint32_t tapCnt;
q31_t y1, y2;
q15_t *pScr; /* Intermediate pointers */
q15_t *pOut = pDst; /* output pointer */
#ifdef UNALIGNED_SUPPORT_DISABLE
q15_t a, b;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
/* But CORR(x, y) is reverse of CORR(y, x) */
/* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
/* and the destination pointer modifier, inc is set to -1 */
/* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
/* But to improve the performance,
* we include zeroes in the output instead of zero padding either of the the inputs*/
/* If srcALen > srcBLen,
* (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
/* If srcALen < srcBLen,
* (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
if (srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = (pSrcA);
/* Initialization of inputB pointer */
pIn2 = (pSrcB);
/* Number of output samples is calculated */
outBlockSize = (2U * srcALen) - 1U;
/* When srcALen > srcBLen, zero padding is done to srcB
* to make their lengths equal.
* Instead, (outBlockSize - (srcALen + srcBLen - 1))
* number of output samples are made zero */
j = outBlockSize - (srcALen + (srcBLen - 1U));
/* Updating the pointer position to non zero value */
pOut += j;
}
else
{
/* Initialization of inputA pointer */
pIn1 = (pSrcB);
/* Initialization of inputB pointer */
pIn2 = (pSrcA);
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
/* CORR(x, y) = Reverse order(CORR(y, x)) */
/* Hence set the destination pointer to point to the last output sample */
pOut = pDst + ((srcALen + srcBLen) - 2U);
/* Destination address modifier is set to -1 */
inc = -1;
}
pScr = pScratch;
/* Fill (srcBLen - 1U) zeros in scratch buffer */
arm_fill_q15(0, pScr, (srcBLen - 1U));
/* Update temporary scratch pointer */
pScr += (srcBLen - 1U);
#ifndef UNALIGNED_SUPPORT_DISABLE
/* Copy (srcALen) samples in scratch buffer */
arm_copy_q15(pIn1, pScr, srcALen);
/* Update pointers */
//pIn1 += srcALen;
pScr += srcALen;
#else
/* Apply loop unrolling and do 4 Copies simultaneously. */
j = srcALen >> 2U;
/* First part of the processing with loop unrolling copies 4 data points at a time.
** a second loop below copies for the remaining 1 to 3 samples. */
while (j > 0U)
{
/* copy second buffer in reversal manner */
*pScr++ = *pIn1++;
*pScr++ = *pIn1++;
*pScr++ = *pIn1++;
*pScr++ = *pIn1++;
/* Decrement the loop counter */
j--;
}
/* If the count is not a multiple of 4, copy remaining samples here.
** No loop unrolling is used. */
j = srcALen % 0x4U;
while (j > 0U)
{
/* copy second buffer in reversal manner for remaining samples */
*pScr++ = *pIn1++;
/* Decrement the loop counter */
j--;
}
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
#ifndef UNALIGNED_SUPPORT_DISABLE
/* Fill (srcBLen - 1U) zeros at end of scratch buffer */
arm_fill_q15(0, pScr, (srcBLen - 1U));
/* Update pointer */
pScr += (srcBLen - 1U);
#else
/* Apply loop unrolling and do 4 Copies simultaneously. */
j = (srcBLen - 1U) >> 2U;
/* First part of the processing with loop unrolling copies 4 data points at a time.
** a second loop below copies for the remaining 1 to 3 samples. */
while (j > 0U)
{
/* copy second buffer in reversal manner */
*pScr++ = 0;
*pScr++ = 0;
*pScr++ = 0;
*pScr++ = 0;
/* Decrement the loop counter */
j--;
}
/* If the count is not a multiple of 4, copy remaining samples here.
** No loop unrolling is used. */
j = (srcBLen - 1U) % 0x4U;
while (j > 0U)
{
/* copy second buffer in reversal manner for remaining samples */
*pScr++ = 0;
/* Decrement the loop counter */
j--;
}
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Temporary pointer for scratch2 */
py = pIn2;
/* Actual correlation process starts here */
blkCnt = (srcALen + srcBLen - 1U) >> 2;
while (blkCnt > 0)
{
/* Initialze temporary scratch pointer as scratch1 */
pScr = pScratch;
/* Clear Accumlators */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* Read four samples from scratch1 buffer */
x1 = *__SIMD32(pScr)++;
/* Read next four samples from scratch1 buffer */
x2 = *__SIMD32(pScr)++;
tapCnt = (srcBLen) >> 2U;
while (tapCnt > 0U)
{
#ifndef UNALIGNED_SUPPORT_DISABLE
/* Read four samples from smaller buffer */
y1 = _SIMD32_OFFSET(pIn2);
y2 = _SIMD32_OFFSET(pIn2 + 2U);
acc0 = __SMLALD(x1, y1, acc0);
acc2 = __SMLALD(x2, y1, acc2);
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x2, x1, 0);
#else
x3 = __PKHBT(x1, x2, 0);
#endif
acc1 = __SMLALDX(x3, y1, acc1);
x1 = _SIMD32_OFFSET(pScr);
acc0 = __SMLALD(x2, y2, acc0);
acc2 = __SMLALD(x1, y2, acc2);
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x1, x2, 0);
#else
x3 = __PKHBT(x2, x1, 0);
#endif
acc3 = __SMLALDX(x3, y1, acc3);
acc1 = __SMLALDX(x3, y2, acc1);
x2 = _SIMD32_OFFSET(pScr + 2U);
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x2, x1, 0);
#else
x3 = __PKHBT(x1, x2, 0);
#endif
acc3 = __SMLALDX(x3, y2, acc3);
#else
/* Read four samples from smaller buffer */
a = *pIn2;
b = *(pIn2 + 1);
#ifndef ARM_MATH_BIG_ENDIAN
y1 = __PKHBT(a, b, 16);
#else
y1 = __PKHBT(b, a, 16);
#endif
a = *(pIn2 + 2);
b = *(pIn2 + 3);
#ifndef ARM_MATH_BIG_ENDIAN
y2 = __PKHBT(a, b, 16);
#else
y2 = __PKHBT(b, a, 16);
#endif
acc0 = __SMLALD(x1, y1, acc0);
acc2 = __SMLALD(x2, y1, acc2);
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x2, x1, 0);
#else
x3 = __PKHBT(x1, x2, 0);
#endif
acc1 = __SMLALDX(x3, y1, acc1);
a = *pScr;
b = *(pScr + 1);
#ifndef ARM_MATH_BIG_ENDIAN
x1 = __PKHBT(a, b, 16);
#else
x1 = __PKHBT(b, a, 16);
#endif
acc0 = __SMLALD(x2, y2, acc0);
acc2 = __SMLALD(x1, y2, acc2);
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x1, x2, 0);
#else
x3 = __PKHBT(x2, x1, 0);
#endif
acc3 = __SMLALDX(x3, y1, acc3);
acc1 = __SMLALDX(x3, y2, acc1);
a = *(pScr + 2);
b = *(pScr + 3);
#ifndef ARM_MATH_BIG_ENDIAN
x2 = __PKHBT(a, b, 16);
#else
x2 = __PKHBT(b, a, 16);
#endif
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x2, x1, 0);
#else
x3 = __PKHBT(x1, x2, 0);
#endif
acc3 = __SMLALDX(x3, y2, acc3);
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
pIn2 += 4U;
pScr += 4U;
/* Decrement the loop counter */
tapCnt--;
}
/* Update scratch pointer for remaining samples of smaller length sequence */
pScr -= 4U;
/* apply same above for remaining samples of smaller length sequence */
tapCnt = (srcBLen) & 3U;
while (tapCnt > 0U)
{
/* accumlate the results */
acc0 += (*pScr++ * *pIn2);
acc1 += (*pScr++ * *pIn2);
acc2 += (*pScr++ * *pIn2);
acc3 += (*pScr++ * *pIn2++);
pScr -= 3U;
/* Decrement the loop counter */
tapCnt--;
}
blkCnt--;
/* Store the results in the accumulators in the destination buffer. */
*pOut = (__SSAT(acc0 >> 15U, 16));
pOut += inc;
*pOut = (__SSAT(acc1 >> 15U, 16));
pOut += inc;
*pOut = (__SSAT(acc2 >> 15U, 16));
pOut += inc;
*pOut = (__SSAT(acc3 >> 15U, 16));
pOut += inc;
/* Initialization of inputB pointer */
pIn2 = py;
pScratch += 4U;
}
blkCnt = (srcALen + srcBLen - 1U) & 0x3;
/* Calculate correlation for remaining samples of Bigger length sequence */
while (blkCnt > 0)
{
/* Initialze temporary scratch pointer as scratch1 */
pScr = pScratch;
/* Clear Accumlators */
acc0 = 0;
tapCnt = (srcBLen) >> 1U;
while (tapCnt > 0U)
{
acc0 += (*pScr++ * *pIn2++);
acc0 += (*pScr++ * *pIn2++);
/* Decrement the loop counter */
tapCnt--;
}
tapCnt = (srcBLen) & 1U;
/* apply same above for remaining samples of smaller length sequence */
while (tapCnt > 0U)
{
/* accumlate the results */
acc0 += (*pScr++ * *pIn2++);
/* Decrement the loop counter */
tapCnt--;
}
blkCnt--;
/* Store the result in the accumulator in the destination buffer. */
*pOut = (q15_t) (__SSAT((acc0 >> 15), 16));
pOut += inc;
/* Initialization of inputB pointer */
pIn2 = py;
pScratch += 1U;
}
}
/**
* @} end of Corr group
*/