blob: 8acfd34d52fb73390f461a37a6e894c1489134fd [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_fir_lattice_q31.c
* Description: Q31 FIR lattice filter processing function
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR_Lattice
* @{
*/
/**
* @brief Processing function for the Q31 FIR lattice filter.
* @param[in] *S points to an instance of the Q31 FIR lattice structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of samples to process.
* @return none.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
* In order to avoid overflows the input signal must be scaled down by 2*log2(numStages) bits.
*/
#if defined (ARM_MATH_DSP)
/* Run the below code for Cortex-M4 and Cortex-M3 */
void arm_fir_lattice_q31(
const arm_fir_lattice_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pState; /* State pointer */
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *px; /* temporary state pointer */
q31_t *pk; /* temporary coefficient pointer */
q31_t fcurr1, fnext1, gcurr1 = 0, gnext1; /* temporary variables for first sample in loop unrolling */
q31_t fcurr2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */
uint32_t numStages = S->numStages; /* Length of the filter */
uint32_t blkCnt, stageCnt; /* temporary variables for counts */
q31_t k;
pState = &S->pState[0];
blkCnt = blockSize >> 1U;
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
a second loop below computes the remaining 1 sample. */
while (blkCnt > 0U)
{
/* f0(n) = x(n) */
fcurr1 = *pSrc++;
/* f0(n) = x(n) */
fcurr2 = *pSrc++;
/* Initialize coeff pointer */
pk = (pCoeffs);
/* Initialize state pointer */
px = pState;
/* read g0(n - 1) from state buffer */
gcurr1 = *px;
/* Read the reflection coefficient */
k = *pk++;
/* for sample 1 processing */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
fnext1 = fcurr1 + (fnext1 << 1U);
gnext1 = gcurr1 + (gnext1 << 1U);
/* for sample 1 processing */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext2 = (q31_t) (((q63_t) fcurr1 * k) >> 32);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext2 = (q31_t) (((q63_t) fcurr2 * (k)) >> 32);
fnext2 = fcurr2 + (fnext2 << 1U);
gnext2 = fcurr1 + (gnext2 << 1U);
/* save g1(n) in state buffer */
*px++ = fcurr2;
/* f1(n) is saved in fcurr1
for next stage processing */
fcurr1 = fnext1;
fcurr2 = fnext2;
stageCnt = (numStages - 1U);
/* stage loop */
while (stageCnt > 0U)
{
/* Read the reflection coefficient */
k = *pk++;
/* read g2(n) from state buffer */
gcurr1 = *px;
/* save g1(n) in state buffer */
*px++ = gnext2;
/* Sample processing for K2, K3.... */
/* f2(n) = f1(n) + K2 * g1(n-1) */
fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
fnext2 = (q31_t) (((q63_t) gnext1 * k) >> 32);
fnext1 = fcurr1 + (fnext1 << 1U);
fnext2 = fcurr2 + (fnext2 << 1U);
/* g2(n) = f1(n) * K2 + g1(n-1) */
gnext2 = (q31_t) (((q63_t) fcurr2 * (k)) >> 32);
gnext2 = gnext1 + (gnext2 << 1U);
/* g2(n) = f1(n) * K2 + g1(n-1) */
gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
gnext1 = gcurr1 + (gnext1 << 1U);
/* f1(n) is saved in fcurr1
for next stage processing */
fcurr1 = fnext1;
fcurr2 = fnext2;
stageCnt--;
}
/* y(n) = fN(n) */
*pDst++ = fcurr1;
*pDst++ = fcurr2;
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x2U;
while (blkCnt > 0U)
{
/* f0(n) = x(n) */
fcurr1 = *pSrc++;
/* Initialize coeff pointer */
pk = (pCoeffs);
/* Initialize state pointer */
px = pState;
/* read g0(n - 1) from state buffer */
gcurr1 = *px;
/* Read the reflection coefficient */
k = *pk++;
/* for sample 1 processing */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
fnext1 = fcurr1 + (fnext1 << 1U);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
gnext1 = gcurr1 + (gnext1 << 1U);
/* save g1(n) in state buffer */
*px++ = fcurr1;
/* f1(n) is saved in fcurr1
for next stage processing */
fcurr1 = fnext1;
stageCnt = (numStages - 1U);
/* stage loop */
while (stageCnt > 0U)
{
/* Read the reflection coefficient */
k = *pk++;
/* read g2(n) from state buffer */
gcurr1 = *px;
/* save g1(n) in state buffer */
*px++ = gnext1;
/* Sample processing for K2, K3.... */
/* f2(n) = f1(n) + K2 * g1(n-1) */
fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
fnext1 = fcurr1 + (fnext1 << 1U);
/* g2(n) = f1(n) * K2 + g1(n-1) */
gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
gnext1 = gcurr1 + (gnext1 << 1U);
/* f1(n) is saved in fcurr1
for next stage processing */
fcurr1 = fnext1;
stageCnt--;
}
/* y(n) = fN(n) */
*pDst++ = fcurr1;
blkCnt--;
}
}
#else
/* Run the below code for Cortex-M0 */
void arm_fir_lattice_q31(
const arm_fir_lattice_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pState; /* State pointer */
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *px; /* temporary state pointer */
q31_t *pk; /* temporary coefficient pointer */
q31_t fcurr, fnext, gcurr, gnext; /* temporary variables */
uint32_t numStages = S->numStages; /* Length of the filter */
uint32_t blkCnt, stageCnt; /* temporary variables for counts */
pState = &S->pState[0];
blkCnt = blockSize;
while (blkCnt > 0U)
{
/* f0(n) = x(n) */
fcurr = *pSrc++;
/* Initialize coeff pointer */
pk = (pCoeffs);
/* Initialize state pointer */
px = pState;
/* read g0(n-1) from state buffer */
gcurr = *px;
/* for sample 1 processing */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr;
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr;
/* save g1(n) in state buffer */
*px++ = fcurr;
/* f1(n) is saved in fcurr1
for next stage processing */
fcurr = fnext;
stageCnt = (numStages - 1U);
/* stage loop */
while (stageCnt > 0U)
{
/* read g2(n) from state buffer */
gcurr = *px;
/* save g1(n) in state buffer */
*px++ = gnext;
/* Sample processing for K2, K3.... */
/* f2(n) = f1(n) + K2 * g1(n-1) */
fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr;
/* g2(n) = f1(n) * K2 + g1(n-1) */
gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr;
/* f1(n) is saved in fcurr1
for next stage processing */
fcurr = fnext;
stageCnt--;
}
/* y(n) = fN(n) */
*pDst++ = fcurr;
blkCnt--;
}
}
#endif /* #if defined (ARM_MATH_DSP) */
/**
* @} end of FIR_Lattice group
*/