blob: 8f6806838595b431bafec400988e4fd753ab6e1c [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_iir_lattice_q15.c
* Description: Q15 IIR lattice filter processing function
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup IIR_Lattice
* @{
*/
/**
* @brief Processing function for the Q15 IIR lattice filter.
* @param[in] *S points to an instance of the Q15 IIR lattice structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using a 64-bit internal accumulator.
* Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
* Lastly, the accumulator is saturated to yield a result in 1.15 format.
*/
void arm_iir_lattice_q15(
const arm_iir_lattice_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
#if defined (ARM_MATH_DSP)
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t fcurr, fnext, gcurr = 0, gnext; /* Temporary variables for lattice stages */
q15_t gnext1, gnext2; /* Temporary variables for lattice stages */
uint32_t stgCnt; /* Temporary variables for counts */
q63_t acc; /* Accumlator */
uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
q15_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
uint32_t numStages = S->numStages; /* number of stages */
q15_t *pState; /* State pointer */
q15_t *pStateCurnt; /* State current pointer */
q15_t out; /* Temporary variable for output */
q31_t v; /* Temporary variable for ladder coefficient */
#ifdef UNALIGNED_SUPPORT_DISABLE
q15_t v1, v2;
#endif
blkCnt = blockSize;
pState = &S->pState[0];
/* Sample processing */
while (blkCnt > 0U)
{
/* Read Sample from input buffer */
/* fN(n) = x(n) */
fcurr = *pSrc++;
/* Initialize state read pointer */
px1 = pState;
/* Initialize state write pointer */
px2 = pState;
/* Set accumulator to zero */
acc = 0;
/* Initialize Ladder coeff pointer */
pv = &S->pvCoeffs[0];
/* Initialize Reflection coeff pointer */
pk = &S->pkCoeffs[0];
/* Process sample for first tap */
gcurr = *px1++;
/* fN-1(n) = fN(n) - kN * gN-1(n-1) */
fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
fnext = __SSAT(fnext, 16);
/* gN(n) = kN * fN-1(n) + gN-1(n-1) */
gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
gnext = __SSAT(gnext, 16);
/* write gN(n) into state for next sample processing */
*px2++ = (q15_t) gnext;
/* y(n) += gN(n) * vN */
acc += (q31_t) ((gnext * (*pv++)));
/* Update f values for next coefficient processing */
fcurr = fnext;
/* Loop unrolling. Process 4 taps at a time. */
tapCnt = (numStages - 1U) >> 2;
while (tapCnt > 0U)
{
/* Process sample for 2nd, 6th ...taps */
/* Read gN-2(n-1) from state buffer */
gcurr = *px1++;
/* Process sample for 2nd, 6th .. taps */
/* fN-2(n) = fN-1(n) - kN-1 * gN-2(n-1) */
fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
fnext = __SSAT(fnext, 16);
/* gN-1(n) = kN-1 * fN-2(n) + gN-2(n-1) */
gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
gnext1 = (q15_t) __SSAT(gnext, 16);
/* write gN-1(n) into state */
*px2++ = (q15_t) gnext1;
/* Process sample for 3nd, 7th ...taps */
/* Read gN-3(n-1) from state */
gcurr = *px1++;
/* Process sample for 3rd, 7th .. taps */
/* fN-3(n) = fN-2(n) - kN-2 * gN-3(n-1) */
fcurr = fnext - (((q31_t) gcurr * (*pk)) >> 15);
fcurr = __SSAT(fcurr, 16);
/* gN-2(n) = kN-2 * fN-3(n) + gN-3(n-1) */
gnext = (((q31_t) fcurr * (*pk++)) >> 15) + gcurr;
gnext2 = (q15_t) __SSAT(gnext, 16);
/* write gN-2(n) into state */
*px2++ = (q15_t) gnext2;
/* Read vN-1 and vN-2 at a time */
#ifndef UNALIGNED_SUPPORT_DISABLE
v = *__SIMD32(pv)++;
#else
v1 = *pv++;
v2 = *pv++;
#ifndef ARM_MATH_BIG_ENDIAN
v = __PKHBT(v1, v2, 16);
#else
v = __PKHBT(v2, v1, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Pack gN-1(n) and gN-2(n) */
#ifndef ARM_MATH_BIG_ENDIAN
gnext = __PKHBT(gnext1, gnext2, 16);
#else
gnext = __PKHBT(gnext2, gnext1, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* y(n) += gN-1(n) * vN-1 */
/* process for gN-5(n) * vN-5, gN-9(n) * vN-9 ... */
/* y(n) += gN-2(n) * vN-2 */
/* process for gN-6(n) * vN-6, gN-10(n) * vN-10 ... */
acc = __SMLALD(gnext, v, acc);
/* Process sample for 4th, 8th ...taps */
/* Read gN-4(n-1) from state */
gcurr = *px1++;
/* Process sample for 4th, 8th .. taps */
/* fN-4(n) = fN-3(n) - kN-3 * gN-4(n-1) */
fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
fnext = __SSAT(fnext, 16);
/* gN-3(n) = kN-3 * fN-1(n) + gN-1(n-1) */
gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
gnext1 = (q15_t) __SSAT(gnext, 16);
/* write gN-3(n) for the next sample process */
*px2++ = (q15_t) gnext1;
/* Process sample for 5th, 9th ...taps */
/* Read gN-5(n-1) from state */
gcurr = *px1++;
/* Process sample for 5th, 9th .. taps */
/* fN-5(n) = fN-4(n) - kN-4 * gN-5(n-1) */
fcurr = fnext - (((q31_t) gcurr * (*pk)) >> 15);
fcurr = __SSAT(fcurr, 16);
/* gN-4(n) = kN-4 * fN-5(n) + gN-5(n-1) */
gnext = (((q31_t) fcurr * (*pk++)) >> 15) + gcurr;
gnext2 = (q15_t) __SSAT(gnext, 16);
/* write gN-4(n) for the next sample process */
*px2++ = (q15_t) gnext2;
/* Read vN-3 and vN-4 at a time */
#ifndef UNALIGNED_SUPPORT_DISABLE
v = *__SIMD32(pv)++;
#else
v1 = *pv++;
v2 = *pv++;
#ifndef ARM_MATH_BIG_ENDIAN
v = __PKHBT(v1, v2, 16);
#else
v = __PKHBT(v2, v1, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Pack gN-3(n) and gN-4(n) */
#ifndef ARM_MATH_BIG_ENDIAN
gnext = __PKHBT(gnext1, gnext2, 16);
#else
gnext = __PKHBT(gnext2, gnext1, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* y(n) += gN-4(n) * vN-4 */
/* process for gN-8(n) * vN-8, gN-12(n) * vN-12 ... */
/* y(n) += gN-3(n) * vN-3 */
/* process for gN-7(n) * vN-7, gN-11(n) * vN-11 ... */
acc = __SMLALD(gnext, v, acc);
tapCnt--;
}
fnext = fcurr;
/* If the filter length is not a multiple of 4, compute the remaining filter taps */
tapCnt = (numStages - 1U) % 0x4U;
while (tapCnt > 0U)
{
gcurr = *px1++;
/* Process sample for last taps */
fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
fnext = __SSAT(fnext, 16);
gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
gnext = __SSAT(gnext, 16);
/* Output samples for last taps */
acc += (q31_t) (((q31_t) gnext * (*pv++)));
*px2++ = (q15_t) gnext;
fcurr = fnext;
tapCnt--;
}
/* y(n) += g0(n) * v0 */
acc += (q31_t) (((q31_t) fnext * (*pv++)));
out = (q15_t) __SSAT(acc >> 15, 16);
*px2++ = (q15_t) fnext;
/* write out into pDst */
*pDst++ = out;
/* Advance the state pointer by 4 to process the next group of 4 samples */
pState = pState + 1U;
blkCnt--;
}
/* Processing is complete. Now copy last S->numStages samples to start of the buffer
for the preperation of next frame process */
/* Points to the start of the state buffer */
pStateCurnt = &S->pState[0];
pState = &S->pState[blockSize];
stgCnt = (numStages >> 2U);
/* copy data */
while (stgCnt > 0U)
{
#ifndef UNALIGNED_SUPPORT_DISABLE
*__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
*__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
#else
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Decrement the loop counter */
stgCnt--;
}
/* Calculation of count for remaining q15_t data */
stgCnt = (numStages) % 0x4U;
/* copy data */
while (stgCnt > 0U)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
stgCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q31_t fcurr, fnext = 0, gcurr = 0, gnext; /* Temporary variables for lattice stages */
uint32_t stgCnt; /* Temporary variables for counts */
q63_t acc; /* Accumlator */
uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
q15_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
uint32_t numStages = S->numStages; /* number of stages */
q15_t *pState; /* State pointer */
q15_t *pStateCurnt; /* State current pointer */
q15_t out; /* Temporary variable for output */
blkCnt = blockSize;
pState = &S->pState[0];
/* Sample processing */
while (blkCnt > 0U)
{
/* Read Sample from input buffer */
/* fN(n) = x(n) */
fcurr = *pSrc++;
/* Initialize state read pointer */
px1 = pState;
/* Initialize state write pointer */
px2 = pState;
/* Set accumulator to zero */
acc = 0;
/* Initialize Ladder coeff pointer */
pv = &S->pvCoeffs[0];
/* Initialize Reflection coeff pointer */
pk = &S->pkCoeffs[0];
tapCnt = numStages;
while (tapCnt > 0U)
{
gcurr = *px1++;
/* Process sample */
/* fN-1(n) = fN(n) - kN * gN-1(n-1) */
fnext = fcurr - ((gcurr * (*pk)) >> 15);
fnext = __SSAT(fnext, 16);
/* gN(n) = kN * fN-1(n) + gN-1(n-1) */
gnext = ((fnext * (*pk++)) >> 15) + gcurr;
gnext = __SSAT(gnext, 16);
/* Output samples */
/* y(n) += gN(n) * vN */
acc += (q31_t) ((gnext * (*pv++)));
/* write gN(n) into state for next sample processing */
*px2++ = (q15_t) gnext;
/* Update f values for next coefficient processing */
fcurr = fnext;
tapCnt--;
}
/* y(n) += g0(n) * v0 */
acc += (q31_t) ((fnext * (*pv++)));
out = (q15_t) __SSAT(acc >> 15, 16);
*px2++ = (q15_t) fnext;
/* write out into pDst */
*pDst++ = out;
/* Advance the state pointer by 1 to process the next group of samples */
pState = pState + 1U;
blkCnt--;
}
/* Processing is complete. Now copy last S->numStages samples to start of the buffer
for the preperation of next frame process */
/* Points to the start of the state buffer */
pStateCurnt = &S->pState[0];
pState = &S->pState[blockSize];
stgCnt = numStages;
/* copy data */
while (stgCnt > 0U)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
stgCnt--;
}
#endif /* #if defined (ARM_MATH_DSP) */
}
/**
* @} end of IIR_Lattice group
*/