blob: fdfa63e1a96f74ee7ae970e57ef6d8627a86d789 [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cfft_radix2_init_f32.c
* Description: Radix-2 Decimation in Frequency Floating-point CFFT & CIFFT Initialization function
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
#include "arm_common_tables.h"
/**
* @ingroup groupTransforms
*/
/**
* @addtogroup ComplexFFT
* @{
*/
/**
* @brief Initialization function for the floating-point CFFT/CIFFT.
* @deprecated Do not use this function. It has been superseded by \ref arm_cfft_f32 and will be removed
* in the future.
* @param[in,out] *S points to an instance of the floating-point CFFT/CIFFT structure.
* @param[in] fftLen length of the FFT.
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
*
* \par Description:
* \par
* The parameter <code>ifftFlag</code> controls whether a forward or inverse transform is computed.
* Set(=1) ifftFlag for calculation of CIFFT otherwise CFFT is calculated
* \par
* The parameter <code>bitReverseFlag</code> controls whether output is in normal order or bit reversed order.
* Set(=1) bitReverseFlag for output to be in normal order otherwise output is in bit reversed order.
* \par
* The parameter <code>fftLen</code> Specifies length of CFFT/CIFFT process. Supported FFT Lengths are 16, 64, 256, 1024.
* \par
* This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.
*/
arm_status arm_cfft_radix2_init_f32(
arm_cfft_radix2_instance_f32 * S,
uint16_t fftLen,
uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
/* Initialise the default arm status */
arm_status status = ARM_MATH_SUCCESS;
/* Initialise the FFT length */
S->fftLen = fftLen;
/* Initialise the Twiddle coefficient pointer */
S->pTwiddle = (float32_t *) twiddleCoef;
/* Initialise the Flag for selection of CFFT or CIFFT */
S->ifftFlag = ifftFlag;
/* Initialise the Flag for calculation Bit reversal or not */
S->bitReverseFlag = bitReverseFlag;
/* Initializations of structure parameters depending on the FFT length */
switch (S->fftLen)
{
case 4096U:
/* Initializations of structure parameters for 4096 point FFT */
/* Initialise the twiddle coef modifier value */
S->twidCoefModifier = 1U;
/* Initialise the bit reversal table modifier */
S->bitRevFactor = 1U;
/* Initialise the bit reversal table pointer */
S->pBitRevTable = (uint16_t *) armBitRevTable;
/* Initialise the 1/fftLen Value */
S->onebyfftLen = 0.000244140625;
break;
case 2048U:
/* Initializations of structure parameters for 2048 point FFT */
/* Initialise the twiddle coef modifier value */
S->twidCoefModifier = 2U;
/* Initialise the bit reversal table modifier */
S->bitRevFactor = 2U;
/* Initialise the bit reversal table pointer */
S->pBitRevTable = (uint16_t *) & armBitRevTable[1];
/* Initialise the 1/fftLen Value */
S->onebyfftLen = 0.00048828125;
break;
case 1024U:
/* Initializations of structure parameters for 1024 point FFT */
/* Initialise the twiddle coef modifier value */
S->twidCoefModifier = 4U;
/* Initialise the bit reversal table modifier */
S->bitRevFactor = 4U;
/* Initialise the bit reversal table pointer */
S->pBitRevTable = (uint16_t *) & armBitRevTable[3];
/* Initialise the 1/fftLen Value */
S->onebyfftLen = 0.0009765625f;
break;
case 512U:
/* Initializations of structure parameters for 512 point FFT */
/* Initialise the twiddle coef modifier value */
S->twidCoefModifier = 8U;
/* Initialise the bit reversal table modifier */
S->bitRevFactor = 8U;
/* Initialise the bit reversal table pointer */
S->pBitRevTable = (uint16_t *) & armBitRevTable[7];
/* Initialise the 1/fftLen Value */
S->onebyfftLen = 0.001953125;
break;
case 256U:
/* Initializations of structure parameters for 256 point FFT */
S->twidCoefModifier = 16U;
S->bitRevFactor = 16U;
S->pBitRevTable = (uint16_t *) & armBitRevTable[15];
S->onebyfftLen = 0.00390625f;
break;
case 128U:
/* Initializations of structure parameters for 128 point FFT */
S->twidCoefModifier = 32U;
S->bitRevFactor = 32U;
S->pBitRevTable = (uint16_t *) & armBitRevTable[31];
S->onebyfftLen = 0.0078125;
break;
case 64U:
/* Initializations of structure parameters for 64 point FFT */
S->twidCoefModifier = 64U;
S->bitRevFactor = 64U;
S->pBitRevTable = (uint16_t *) & armBitRevTable[63];
S->onebyfftLen = 0.015625f;
break;
case 32U:
/* Initializations of structure parameters for 64 point FFT */
S->twidCoefModifier = 128U;
S->bitRevFactor = 128U;
S->pBitRevTable = (uint16_t *) & armBitRevTable[127];
S->onebyfftLen = 0.03125;
break;
case 16U:
/* Initializations of structure parameters for 16 point FFT */
S->twidCoefModifier = 256U;
S->bitRevFactor = 256U;
S->pBitRevTable = (uint16_t *) & armBitRevTable[255];
S->onebyfftLen = 0.0625f;
break;
default:
/* Reporting argument error if fftSize is not valid value */
status = ARM_MATH_ARGUMENT_ERROR;
break;
}
return (status);
}
/**
* @} end of ComplexFFT group
*/