blob: 8880ab9c91a9760a53c8bac3bc9dd6589865d84e [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cfft_radix2_q15.c
* Description: Radix-2 Decimation in Frequency CFFT & CIFFT Fixed point processing function
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
void arm_radix2_butterfly_q15(
q15_t * pSrc,
uint32_t fftLen,
q15_t * pCoef,
uint16_t twidCoefModifier);
void arm_radix2_butterfly_inverse_q15(
q15_t * pSrc,
uint32_t fftLen,
q15_t * pCoef,
uint16_t twidCoefModifier);
void arm_bitreversal_q15(
q15_t * pSrc,
uint32_t fftLen,
uint16_t bitRevFactor,
uint16_t * pBitRevTab);
/**
* @ingroup groupTransforms
*/
/**
* @addtogroup ComplexFFT
* @{
*/
/**
* @details
* @brief Processing function for the fixed-point CFFT/CIFFT.
* @deprecated Do not use this function. It has been superseded by \ref arm_cfft_q15 and will be removed
* @param[in] *S points to an instance of the fixed-point CFFT/CIFFT structure.
* @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
* @return none.
*/
void arm_cfft_radix2_q15(
const arm_cfft_radix2_instance_q15 * S,
q15_t * pSrc)
{
if (S->ifftFlag == 1U)
{
arm_radix2_butterfly_inverse_q15(pSrc, S->fftLen,
S->pTwiddle, S->twidCoefModifier);
}
else
{
arm_radix2_butterfly_q15(pSrc, S->fftLen,
S->pTwiddle, S->twidCoefModifier);
}
arm_bitreversal_q15(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
}
/**
* @} end of ComplexFFT group
*/
void arm_radix2_butterfly_q15(
q15_t * pSrc,
uint32_t fftLen,
q15_t * pCoef,
uint16_t twidCoefModifier)
{
#if defined (ARM_MATH_DSP)
unsigned i, j, k, l;
unsigned n1, n2, ia;
q15_t in;
q31_t T, S, R;
q31_t coeff, out1, out2;
//N = fftLen;
n2 = fftLen;
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (i = 0; i < n2; i++)
{
coeff = _SIMD32_OFFSET(pCoef + (ia * 2U));
ia = ia + twidCoefModifier;
l = i + n2;
T = _SIMD32_OFFSET(pSrc + (2 * i));
in = ((int16_t) (T & 0xFFFF)) >> 1;
T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);
S = _SIMD32_OFFSET(pSrc + (2 * l));
in = ((int16_t) (S & 0xFFFF)) >> 1;
S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUAD(coeff, R) >> 16;
out2 = __SMUSDX(coeff, R);
#else
out1 = __SMUSDX(R, coeff) >> 16U;
out2 = __SMUAD(coeff, R);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
_SIMD32_OFFSET(pSrc + (2U * l)) =
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
coeff = _SIMD32_OFFSET(pCoef + (ia * 2U));
ia = ia + twidCoefModifier;
// loop for butterfly
i++;
l++;
T = _SIMD32_OFFSET(pSrc + (2 * i));
in = ((int16_t) (T & 0xFFFF)) >> 1;
T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);
S = _SIMD32_OFFSET(pSrc + (2 * l));
in = ((int16_t) (S & 0xFFFF)) >> 1;
S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUAD(coeff, R) >> 16;
out2 = __SMUSDX(coeff, R);
#else
out1 = __SMUSDX(R, coeff) >> 16U;
out2 = __SMUAD(coeff, R);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
_SIMD32_OFFSET(pSrc + (2U * l)) =
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
} // groups loop end
twidCoefModifier = twidCoefModifier << 1U;
// loop for stage
for (k = fftLen / 2; k > 2; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
coeff = _SIMD32_OFFSET(pCoef + (ia * 2U));
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
T = _SIMD32_OFFSET(pSrc + (2 * i));
S = _SIMD32_OFFSET(pSrc + (2 * l));
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUAD(coeff, R) >> 16;
out2 = __SMUSDX(coeff, R);
#else
out1 = __SMUSDX(R, coeff) >> 16U;
out2 = __SMUAD(coeff, R);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
_SIMD32_OFFSET(pSrc + (2U * l)) =
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
i += n1;
l = i + n2;
T = _SIMD32_OFFSET(pSrc + (2 * i));
S = _SIMD32_OFFSET(pSrc + (2 * l));
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUAD(coeff, R) >> 16;
out2 = __SMUSDX(coeff, R);
#else
out1 = __SMUSDX(R, coeff) >> 16U;
out2 = __SMUAD(coeff, R);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
_SIMD32_OFFSET(pSrc + (2U * l)) =
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1U;
} // stages loop end
n1 = n2;
n2 = n2 >> 1;
ia = 0;
coeff = _SIMD32_OFFSET(pCoef + (ia * 2U));
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = 0; i < fftLen; i += n1)
{
l = i + n2;
T = _SIMD32_OFFSET(pSrc + (2 * i));
S = _SIMD32_OFFSET(pSrc + (2 * l));
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S);
_SIMD32_OFFSET(pSrc + (2U * l)) = R;
i += n1;
l = i + n2;
T = _SIMD32_OFFSET(pSrc + (2 * i));
S = _SIMD32_OFFSET(pSrc + (2 * l));
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S);
_SIMD32_OFFSET(pSrc + (2U * l)) = R;
} // groups loop end
#else
unsigned i, j, k, l;
unsigned n1, n2, ia;
q15_t xt, yt, cosVal, sinVal;
//N = fftLen;
n2 = fftLen;
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
pSrc[2 * i + 1] =
((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) +
((int16_t) (((q31_t) yt * sinVal) >> 16)));
pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) -
((int16_t) (((q31_t) xt * sinVal) >> 16)));
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1U;
// loop for stage
for (k = fftLen / 2; k > 2; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1U;
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1U;
pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) +
((int16_t) (((q31_t) yt * sinVal) >> 16)));
pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) -
((int16_t) (((q31_t) xt * sinVal) >> 16)));
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1U;
} // stages loop end
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
pSrc[2U * l] = xt;
pSrc[2U * l + 1U] = yt;
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1U;
#endif // #if defined (ARM_MATH_DSP)
}
void arm_radix2_butterfly_inverse_q15(
q15_t * pSrc,
uint32_t fftLen,
q15_t * pCoef,
uint16_t twidCoefModifier)
{
#if defined (ARM_MATH_DSP)
unsigned i, j, k, l;
unsigned n1, n2, ia;
q15_t in;
q31_t T, S, R;
q31_t coeff, out1, out2;
//N = fftLen;
n2 = fftLen;
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (i = 0; i < n2; i++)
{
coeff = _SIMD32_OFFSET(pCoef + (ia * 2U));
ia = ia + twidCoefModifier;
l = i + n2;
T = _SIMD32_OFFSET(pSrc + (2 * i));
in = ((int16_t) (T & 0xFFFF)) >> 1;
T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);
S = _SIMD32_OFFSET(pSrc + (2 * l));
in = ((int16_t) (S & 0xFFFF)) >> 1;
S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUSD(coeff, R) >> 16;
out2 = __SMUADX(coeff, R);
#else
out1 = __SMUADX(R, coeff) >> 16U;
out2 = __SMUSD(__QSUB(0, coeff), R);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
_SIMD32_OFFSET(pSrc + (2U * l)) =
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
coeff = _SIMD32_OFFSET(pCoef + (ia * 2U));
ia = ia + twidCoefModifier;
// loop for butterfly
i++;
l++;
T = _SIMD32_OFFSET(pSrc + (2 * i));
in = ((int16_t) (T & 0xFFFF)) >> 1;
T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);
S = _SIMD32_OFFSET(pSrc + (2 * l));
in = ((int16_t) (S & 0xFFFF)) >> 1;
S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUSD(coeff, R) >> 16;
out2 = __SMUADX(coeff, R);
#else
out1 = __SMUADX(R, coeff) >> 16U;
out2 = __SMUSD(__QSUB(0, coeff), R);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
_SIMD32_OFFSET(pSrc + (2U * l)) =
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
} // groups loop end
twidCoefModifier = twidCoefModifier << 1U;
// loop for stage
for (k = fftLen / 2; k > 2; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
coeff = _SIMD32_OFFSET(pCoef + (ia * 2U));
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
T = _SIMD32_OFFSET(pSrc + (2 * i));
S = _SIMD32_OFFSET(pSrc + (2 * l));
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUSD(coeff, R) >> 16;
out2 = __SMUADX(coeff, R);
#else
out1 = __SMUADX(R, coeff) >> 16U;
out2 = __SMUSD(__QSUB(0, coeff), R);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
_SIMD32_OFFSET(pSrc + (2U * l)) =
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
i += n1;
l = i + n2;
T = _SIMD32_OFFSET(pSrc + (2 * i));
S = _SIMD32_OFFSET(pSrc + (2 * l));
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUSD(coeff, R) >> 16;
out2 = __SMUADX(coeff, R);
#else
out1 = __SMUADX(R, coeff) >> 16U;
out2 = __SMUSD(__QSUB(0, coeff), R);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
_SIMD32_OFFSET(pSrc + (2U * l)) =
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1U;
} // stages loop end
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
coeff = _SIMD32_OFFSET(pCoef + (ia * 2U));
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
T = _SIMD32_OFFSET(pSrc + (2 * i));
S = _SIMD32_OFFSET(pSrc + (2 * l));
R = __QSUB16(T, S);
_SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S);
_SIMD32_OFFSET(pSrc + (2U * l)) = R;
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1U;
#else
unsigned i, j, k, l;
unsigned n1, n2, ia;
q15_t xt, yt, cosVal, sinVal;
//N = fftLen;
n2 = fftLen;
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
pSrc[2 * i + 1] =
((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) -
((int16_t) (((q31_t) yt * sinVal) >> 16)));
pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) +
((int16_t) (((q31_t) xt * sinVal) >> 16)));
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1U;
// loop for stage
for (k = fftLen / 2; k > 2; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1U;
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1U;
pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) -
((int16_t) (((q31_t) yt * sinVal) >> 16)));
pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) +
((int16_t) (((q31_t) xt * sinVal) >> 16)));
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1U;
} // stages loop end
n1 = n2;
n2 = n2 >> 1;
ia = 0;
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = 0; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
pSrc[2U * l] = xt;
pSrc[2U * l + 1U] = yt;
} // groups loop end
#endif // #if defined (ARM_MATH_DSP)
}