blob: 5cf72a2a05d8eec5c36d8c71c3f8595a95041e85 [file] [log] [blame]
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
*
*
* Project: CMSIS NN Library
* Title: arm_nnexamples_nn_test.cpp
*
* Description: Example code for NN kernel testing.
*
* Target Processor: Cortex-M cores
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_nnexamples_nn_test.h"
//#define TEST_SIGMOID
//#define TEST_TANH
#define TEST_POOL
#define TEST_RELU
#define TEST_IP
#define TEST_CONV
#define TEST_NONSQUARE
#define TEST_NNMULT
int test_index = 0;
q7_t test_flags[50];
bool test_pass;
int main()
{
printf("start tests\n");
srand(1);
// common pointers for testing data
q7_t *test1;
q15_t *test2;
q7_t *test3;
q15_t *test4;
for (test_index = 0; test_index<50; test_index++) {
test_flags[test_index] = -1;
}
test_index = 0;
#ifdef TEST_NNMULT
#define NNMULT_DIM 128
test1 = new q7_t[NNMULT_DIM*2];
test2 = new q15_t[NNMULT_DIM*2];
test3 = new q7_t[NNMULT_DIM*2];
test4 = new q15_t[NNMULT_DIM*2];
q7_t * mult_out_q7 = test3;
q7_t * mult_ref_q7 = test3 + NNMULT_DIM;
q15_t * mult_out_q15 = test4;
q15_t * mult_ref_q15 = test4 + NNMULT_DIM;
for (int i=0;i<NNMULT_DIM*2;i++) {
test1[i] = (rand() % 256 - 128);
test2[i] = (rand() % 65536 - 32768);
}
// Test q7
arm_nn_mult_q7(test1, test1+NNMULT_DIM, mult_out_q7, 5, NNMULT_DIM);
arm_nn_mult_q7_ref(test1, test1+NNMULT_DIM, mult_ref_q7, 5, NNMULT_DIM);
verify_results_q7(mult_out_q7, mult_ref_q7, NNMULT_DIM);
arm_nn_mult_q7(test1, test1+NNMULT_DIM, mult_out_q7, 9, NNMULT_DIM);
arm_nn_mult_q7_ref(test1, test1+NNMULT_DIM, mult_ref_q7, 9, NNMULT_DIM);
verify_results_q7(mult_out_q7, mult_ref_q7, NNMULT_DIM);
// Test q15
arm_nn_mult_q15(test2, test2+NNMULT_DIM, mult_out_q15, 13, NNMULT_DIM);
arm_nn_mult_q15_ref(test2, test2+NNMULT_DIM, mult_ref_q15, 13, NNMULT_DIM);
verify_results_q15(mult_out_q15, mult_ref_q15, NNMULT_DIM);
arm_nn_mult_q15(test2, test2+NNMULT_DIM, mult_out_q15, 18, NNMULT_DIM);
arm_nn_mult_q15_ref(test2, test2+NNMULT_DIM, mult_ref_q15, 18, NNMULT_DIM);
verify_results_q15(mult_out_q15, mult_ref_q15, NNMULT_DIM);
#endif
#ifdef TEST_SIGMOID
#define SIGMOID_DIM 128
/* This part tests the running of sigmoid functions */
test1 = new q7_t[SIGMOID_DIM];
test2 = new q15_t[SIGMOID_DIM];
test3 = new q7_t[SIGMOID_DIM];
test4 = new q15_t[SIGMOID_DIM];
srand(1);
for (int i = 0; i < SIGMOID_DIM; i++)
{
test1[i] = (rand() % 256 - 128);
test2[i] = (rand() % 65536 - 32768);
test3[i] = test1[i];
test4[i] = test2[i];
}
arm_nn_activations_direct_q7(test3, SIGMOID_DIM, 3, ARM_SIGMOID);
for (int i = 0; i < SIGMOID_DIM; i++)
{
printf("in: %d out: %d\n", test1[i], test3[i]);
}
printf("start testing q15_t sigmoid\n\n");
arm_nn_activations_direct_q15(test4, SIGMOID_DIM, 3, ARM_SIGMOID);
for (int i = 0; i < SIGMOID_DIM; i++)
{
printf("in: %d out: %d\n", test2[i], test4[i]);
}
delete[]test1;
delete[]test2;
delete[]test3;
delete[]test4;
#endif
#ifdef TEST_TANH
#define TANH_DIM 128
/* This part tests the running of sigmoid functions */
test1 = new q7_t[TANH_DIM];
test2 = new q15_t[TANH_DIM];
test3 = new q7_t[TANH_DIM];
test4 = new q15_t[TANH_DIM];
srand(1);
for (int i = 0; i < TANH_DIM; i++)
{
test1[i] = (rand() % 256 - 128);
test2[i] = (rand() % 65536 - 32768);
test3[i] = test1[i];
test4[i] = test2[i];
}
arm_nn_activations_direct_q7(test3, TANH_DIM, 3, ARM_TANH);
printf("start testing q7_t tanh\n\n");
for (int i = 0; i < TANH_DIM; i++)
{
printf("in: %d out: %d\n", test1[i], test3[i]);
}
printf("start testing q15_t tanh\n\n");
arm_nn_activations_direct_q15(test4, TANH_DIM, 3, ARM_TANH);
for (int i = 0; i < TANH_DIM; i++)
{
printf("in: %d out: %d\n", test2[i], test4[i]);
}
delete[]test1;
delete[]test2;
delete[]test3;
delete[]test4;
#endif
#ifdef TEST_POOL
#define POOL_IM_DIM 32
#define POOL_IM_CH 8
test1 = new q7_t[POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH * 2];
test2 = new q15_t[POOL_IM_DIM * POOL_IM_CH];
test3 = new q7_t[POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH];
for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
{
test1[i] = (rand() % 256 - 128);
}
q7_t *img_in = test1 + POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH;
q7_t *pool_out_ref = test3;
q7_t *pool_out_opt = test3 + POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH / 2;
for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
{
test3[i] = 0;
}
// copy over the img input
for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
{
img_in[i] = test1[i];
}
initialize_results_q7(pool_out_ref, pool_out_opt, POOL_IM_DIM / 2 * POOL_IM_DIM / 2 * POOL_IM_CH);
printf("Start maxpool reference implementation\n");
arm_maxpool_q7_HWC_ref(img_in, POOL_IM_DIM, POOL_IM_CH, 3, 0, 2, POOL_IM_DIM / 2, (q7_t *) test2, pool_out_ref);
// copy over the img input
for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
{
img_in[i] = test1[i];
}
printf("Start maxpool opt implementation\n");
arm_maxpool_q7_HWC(img_in, POOL_IM_DIM, POOL_IM_CH, 3, 0, 2, POOL_IM_DIM / 2, (q7_t *) test2, pool_out_opt);
verify_results_q7(pool_out_ref, pool_out_opt, POOL_IM_DIM / 2 * POOL_IM_DIM / 2 * POOL_IM_CH);
// copy over the img input
for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
{
img_in[i] = test1[i];
}
// copy over the img input
for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
{
img_in[i] = test1[i];
}
printf("Start avepool ref implementation\n");
arm_avepool_q7_HWC_ref(img_in, POOL_IM_DIM, POOL_IM_CH, 3, 0, 2, POOL_IM_DIM / 2, (q7_t *) test2, pool_out_ref);
// copy over the img input
for (int i = 0; i < POOL_IM_DIM * POOL_IM_DIM * POOL_IM_CH; i++)
{
img_in[i] = test1[i];
}
printf("Start avepool opt implementation\n");
arm_avepool_q7_HWC(img_in, POOL_IM_DIM, POOL_IM_CH, 3, 0, 2, POOL_IM_DIM / 2, (q7_t *) test2, pool_out_opt);
// special check here
bool if_ave_pool_match = true;
for (int i = 0; i < POOL_IM_DIM / 2 * POOL_IM_DIM / 2 * POOL_IM_CH; i++)
{
// we tolerate at most difference of 1 here because of rounding errors
if (pool_out_ref[i] - pool_out_opt[i] >= 2 || pool_out_opt[i] - pool_out_ref[i] >= 2)
{
printf("Output mismatch at %d, expected %d, actual %d\n", i, pool_out_ref[i], pool_out_opt[i]);
if_ave_pool_match = false;
}
}
if (if_ave_pool_match == true)
{
printf("Outputs match.\n");
}
delete[]test1;
delete[]test2;
delete[]test3;
#endif
#ifdef TEST_RELU
#define RELU_DIM 127
test1 = new q7_t[RELU_DIM];
test2 = new q15_t[RELU_DIM];
test3 = new q7_t[RELU_DIM];
test4 = new q15_t[RELU_DIM];
for (int i = 0; i < RELU_DIM; i++)
{
test1[i] = (rand() % 256 - 128);
test2[i] = (rand() % 65536 - 32768);
test3[i] = test1[i];
test4[i] = test2[i];
}
q7_t *relu_ref_data_q7 = test1;
q7_t *relu_opt_data_q7 = test3;
q15_t *relu_ref_data_q15 = test2;
q15_t *relu_opt_data_q15 = test4;
printf("Start ref relu q7 implementation\n");
arm_relu_q7_ref(relu_ref_data_q7, RELU_DIM);
printf("Start opt relu q7 implementation\n");
arm_relu_q7(relu_opt_data_q7, RELU_DIM);
verify_results_q7(relu_ref_data_q7, relu_opt_data_q7, RELU_DIM);
printf("Start ref relu q15 implementation\n");
arm_relu_q15_ref(relu_ref_data_q15, RELU_DIM);
printf("Start opt relu q15 implementation\n");
arm_relu_q15(relu_opt_data_q15, RELU_DIM);
verify_results_q15(relu_ref_data_q15, relu_opt_data_q15, RELU_DIM);
delete[]test1;
delete[]test2;
delete[]test3;
delete[]test4;
#endif
#ifdef TEST_IP
#define IP_ROW_DIM 127
#define IP_COL_DIM 127
q7_t ip_weights[IP_ROW_DIM * IP_COL_DIM] = IP2_WEIGHT;
q7_t ip_q7_opt_weights[IP_ROW_DIM * IP_COL_DIM] = IP4_WEIGHT;
q7_t ip_q7_q15_opt_weights[IP_ROW_DIM * IP_COL_DIM] = IP4_q7_q15_WEIGHT;
q15_t ip_q15_weights[IP_ROW_DIM * IP_COL_DIM] = IP2_WEIGHT;
q15_t ip_q15_opt_weights[IP_ROW_DIM * IP_COL_DIM] = IP4_WEIGHT_Q15;
test1 = new q7_t[IP_COL_DIM + IP_ROW_DIM];
test2 = new q15_t[IP_COL_DIM];
test3 = new q7_t[IP_ROW_DIM * 3];
test4 = new q15_t[IP_COL_DIM + IP_ROW_DIM * 2];
for (int i = 0; i < IP_ROW_DIM + IP_COL_DIM; i++)
{
test1[i] = rand() % 256 - 100;
}
for (int i = 0; i < IP_ROW_DIM * 3; i++)
{
test3[i] = 0;
}
q7_t *ip_bias_q7 = test1 + IP_COL_DIM;
q7_t *ip_out_q7_ref = test3;
q7_t *ip_out_q7_opt = test3 + IP_ROW_DIM;
q7_t *ip_out_q7_opt_fast = test3 + 2 * IP_ROW_DIM;
q15_t *ip_out_q15_ref = test4 + IP_COL_DIM;
q15_t *ip_out_q15_opt = test4 + IP_COL_DIM + IP_ROW_DIM;
initialize_results_q7(ip_out_q7_ref, ip_out_q7_opt, IP_ROW_DIM);
initialize_results_q7(ip_out_q7_ref, ip_out_q7_opt_fast, IP_ROW_DIM);
initialize_results_q7(ip_out_q7_ref, ip_out_q7_opt_fast, IP_ROW_DIM);
printf("Start ref q7 implementation\n");
arm_fully_connected_q7_ref(test1, ip_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7, ip_out_q7_ref, test2);
printf("Start q7 implementation\n");
arm_fully_connected_q7(test1, ip_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7, ip_out_q7_opt, test2);
verify_results_q7(ip_out_q7_ref, ip_out_q7_opt, IP_ROW_DIM);
printf("Start q7 ref opt implementation\n");
arm_fully_connected_q7_opt_ref(test1, ip_q7_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7,
ip_out_q7_opt_fast, test2);
verify_results_q7(ip_out_q7_ref, ip_out_q7_opt_fast, IP_ROW_DIM);
printf("Start q7 opt implementation\n");
arm_fully_connected_q7_opt(test1, ip_q7_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7, ip_out_q7_opt_fast,
test2);
verify_results_q7(ip_out_q7_ref, ip_out_q7_opt_fast, IP_ROW_DIM);
for (int i = 0; i < IP_ROW_DIM + IP_COL_DIM; i++)
{
test4[i] = (rand() % 65536 - 32768);
}
initialize_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
printf("Start ref q15 implementation\n");
arm_fully_connected_q15_ref(test4, ip_q15_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, test2, ip_out_q15_ref, NULL);
printf("Start q15 implementation\n");
arm_fully_connected_q15(test4, ip_q15_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, test2, ip_out_q15_opt, NULL);
verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
printf("Start ref opt q15 implementation\n");
arm_fully_connected_q15_opt_ref(test4, ip_q15_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, test2, ip_out_q15_opt,
NULL);
verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
printf("Start opt q15 implementation\n");
arm_fully_connected_q15_opt(test4, ip_q15_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, test2, ip_out_q15_opt, NULL);
verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
initialize_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
printf("Start ref q7_q15 implementation\n");
arm_fully_connected_mat_q7_vec_q15_ref(test4, ip_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7, ip_out_q15_ref,
test2);
printf("Start q7_q15 implementation\n");
arm_fully_connected_mat_q7_vec_q15(test4, ip_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7, ip_out_q15_opt,
test2);
verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
printf("Start ref opt q7_q15 implementation\n");
arm_fully_connected_mat_q7_vec_q15_opt_ref(test4, ip_q7_q15_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7,
ip_out_q15_opt, test2);
verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
printf("Start opt q7_q15 implementation\n");
arm_fully_connected_mat_q7_vec_q15_opt(test4, ip_q7_q15_opt_weights, IP_COL_DIM, IP_ROW_DIM, 1, 7, ip_bias_q7,
ip_out_q15_opt, test2);
verify_results_q15(ip_out_q15_ref, ip_out_q15_opt, IP_ROW_DIM);
delete[]test1;
delete[]test2;
delete[]test3;
delete[]test4;
#endif
#ifdef TEST_NONSQUARE
/* Use RCONV to differential with square CONV */
#define RCONV_IM_DIM_X 10
#define RCONV_IM_DIM_Y 8
#define RCONV_IM_CH 4
#define RCONV_KER_DIM_X 5
#define RCONV_KER_DIM_Y 3
#define RCONV_STRIDE_X 1
#define RCONV_STRIDE_Y 1
#define RCONV_PADDING_X 2
#define RCONV_PADDING_Y 1
#define RCONV_OUT_CH 4
#define RCONV_OUT_DIM_X 10
#define RCONV_OUT_DIM_Y 8
test1 = new q7_t[RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH + RCONV_OUT_CH];
test2 = new q15_t[2 * RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH];
test3 =
new q7_t[RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH + 2 * RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH];
for (int i = 0; i < RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH + RCONV_OUT_CH; i++)
{
test1[i] = rand() % 256 - 100;
}
for (int i = 0;
i < RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH + 2 * RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH; i++)
{
test3[i] = rand() % 256 - 100;
}
q7_t *rconv_weight_q7 = test1;
q7_t *rconv_bias_q7 = test1 + RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH;
q15_t *rconv_buf = test2;
q7_t *rconv_im_in_q7 = test3;
q7_t *rconv_im_out_ref_q7 = test3 + RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH;
q7_t *rconv_im_out_opt_q7 =
test3 + RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH + RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH;
initialize_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
printf("start conv q7 nonsquare ref implementation\n");
arm_convolve_HWC_q7_ref_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_ref_q7,
RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
printf("start conv q7 nonsquare opt implementation\n");
arm_convolve_HWC_q7_fast_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_opt_q7,
RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
verify_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
initialize_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
printf("start conv q7 nonsquare ref implementation\n");
arm_convolve_HWC_q7_ref_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_ref_q7,
RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
printf("start conv q7 nonsquare basic implementation\n");
arm_convolve_HWC_q7_basic_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_opt_q7,
RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
verify_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
initialize_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
printf("start 1x1 conv q7 nonsquare fast implementation\n");
arm_convolve_HWC_q7_fast_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
RCONV_OUT_CH, 1, 1, 0, 0, RCONV_STRIDE_X,
RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_ref_q7, RCONV_OUT_DIM_X,
RCONV_OUT_DIM_Y, rconv_buf, NULL);
printf("start 1x1 conv q7 nonsquare dedicated function implementation\n");
arm_convolve_1x1_HWC_q7_fast_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q7,
RCONV_OUT_CH, 1, 1, 0, 0, RCONV_STRIDE_X,
RCONV_STRIDE_Y, rconv_bias_q7, 1, 7, rconv_im_out_opt_q7, RCONV_OUT_DIM_X,
RCONV_OUT_DIM_Y, rconv_buf, NULL);
verify_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
printf("start depthwise separable conv q7 nonsquare ref implementation\n");
arm_depthwise_separable_conv_HWC_q7_ref_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH,
rconv_weight_q7, RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y,
RCONV_PADDING_X, RCONV_PADDING_Y, RCONV_STRIDE_X, RCONV_STRIDE_Y,
rconv_bias_q7, 1, 7, rconv_im_out_ref_q7, RCONV_OUT_DIM_X,
RCONV_OUT_DIM_Y, rconv_buf, NULL);
printf("start depthwise separable conv q7 nonsquare opt implementation\n");
arm_depthwise_separable_conv_HWC_q7_nonsquare(rconv_im_in_q7, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH,
rconv_weight_q7, RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y,
RCONV_PADDING_X, RCONV_PADDING_Y, RCONV_STRIDE_X, RCONV_STRIDE_Y,
rconv_bias_q7, 1, 7, rconv_im_out_opt_q7, RCONV_OUT_DIM_X,
RCONV_OUT_DIM_Y, rconv_buf, NULL);
verify_results_q7(rconv_im_out_ref_q7, rconv_im_out_opt_q7, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
delete[]test1;
delete[]test2;
delete[]test3;
test2 = new q15_t[RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH + RCONV_OUT_CH]; // weights + bias
test4 = new q15_t[2 * RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH //buffer
+ RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH + 2 * RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH]; // i/o
for (int i = 0; i < RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH + RCONV_OUT_CH; i++)
{
test2[i] = rand() % 256 - 100;
}
for (int i = 0;
i < 2 * RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH
+ RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH + 2 * RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH;
i++)
{
test4[i] = rand() % 256 - 100;
}
q15_t *rconv_weight_q15 = test2;
q15_t *rconv_bias_q15 = test2 + RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH * RCONV_OUT_CH;
rconv_buf = test4;
q15_t *rconv_im_in_q15 = test4 + 2 * RCONV_KER_DIM_Y * RCONV_KER_DIM_X * RCONV_IM_CH;
q15_t *rconv_im_out_ref_q15 = rconv_im_in_q15 + RCONV_IM_DIM_Y * RCONV_IM_DIM_X * RCONV_IM_CH;
q15_t *rconv_im_out_opt_q15 = rconv_im_out_ref_q15 + RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH;
initialize_results_q15(rconv_im_out_ref_q15, rconv_im_out_opt_q15, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
printf("start conv q15 nonsquare ref implementation\n");
arm_convolve_HWC_q15_nonsquare_ref(rconv_im_in_q15, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q15,
RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q15, 1, 7, rconv_im_out_ref_q15,
RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
printf("start conv q5 nonsquare opt implementation\n");
arm_convolve_HWC_q15_fast_nonsquare(rconv_im_in_q15, RCONV_IM_DIM_X, RCONV_IM_DIM_Y, RCONV_IM_CH, rconv_weight_q15,
RCONV_OUT_CH, RCONV_KER_DIM_X, RCONV_KER_DIM_Y, RCONV_PADDING_X, RCONV_PADDING_Y,
RCONV_STRIDE_X, RCONV_STRIDE_Y, rconv_bias_q15, 1, 7, rconv_im_out_opt_q15,
RCONV_OUT_DIM_X, RCONV_OUT_DIM_Y, rconv_buf, NULL);
verify_results_q15(rconv_im_out_ref_q15, rconv_im_out_opt_q15, RCONV_OUT_DIM_Y * RCONV_OUT_DIM_X * RCONV_OUT_CH);
delete [] test2;
delete [] test4;
#endif
#ifdef TEST_CONV
#define CONV_IM_DIM 16
#define CONV_IM_CH 16
#define CONV_KER_DIM 5
#define CONV_OUT_CH 16
#define CONV_OUT_DIM 16
test1 = new q7_t[CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH + CONV_OUT_CH];
test2 =
new q15_t[CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH +
2 * CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH + CONV_OUT_CH];
test3 = new q7_t[CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + 2 * CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH];
test4 = new q15_t[CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + 2 * CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH];
for (int i = 0; i < CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH + CONV_OUT_CH; i++)
{
test1[i] = rand() % 256 - 100;
}
for (int i = 0;
i <
CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH +
2 * CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH + CONV_OUT_CH; i++)
{
test2[i] = (rand() % 65536 - 32768);
}
for (int i = 0; i < CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + 2 * CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH; i++)
{
test3[i] = rand() % 256 - 100;
}
for (int i = 0; i < CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + 2 * CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH; i++)
{
test4[i] = (rand() % 65536 - 32768);
}
q7_t *conv_weight_q7 = test1;
q7_t *conv_bias_q7 = test1 + CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH;
q15_t *conv_weight_q15 = test2;
q15_t *conv_buf = test2 + CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH;
q15_t *conv_bias_q15 =
test2 + CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH +
2 * CONV_KER_DIM * CONV_KER_DIM * CONV_IM_CH * CONV_OUT_CH;
q7_t *conv_im_in_q7 = test3;
q7_t *conv_im_out_ref_q7 = test3 + CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH;
q7_t *conv_im_out_opt_q7 =
test3 + CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH;
q15_t *conv_im_in_q15 = test4;
q15_t *conv_im_out_ref_q15 = test4 + CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH;
q15_t *conv_im_out_opt_q15 =
test4 + CONV_IM_DIM * CONV_IM_DIM * CONV_IM_CH + CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH;
initialize_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
printf("start q7 ref implementation\n");
arm_convolve_HWC_q7_ref(conv_im_in_q7, CONV_IM_DIM, CONV_IM_CH, conv_weight_q7,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_ref_q7,
CONV_OUT_DIM, conv_buf, NULL);
printf("start q7 basic implementation\n");
arm_convolve_HWC_q7_basic(conv_im_in_q7, CONV_IM_DIM, CONV_IM_CH, conv_weight_q7,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_opt_q7,
CONV_OUT_DIM, conv_buf, NULL);
verify_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
printf("start q7 fast implementation\n");
arm_convolve_HWC_q7_fast(conv_im_in_q7, CONV_IM_DIM, CONV_IM_CH, conv_weight_q7,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_opt_q7,
CONV_OUT_DIM, conv_buf, NULL);
verify_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
// testing with RGB
printf("start q7 ref implementation for RGB\n");
arm_convolve_HWC_q7_ref(conv_im_in_q7, CONV_IM_DIM, 3, conv_weight_q7,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_ref_q7,
CONV_OUT_DIM, conv_buf, NULL);
printf("start q7 basic implementation for RGB\n");
arm_convolve_HWC_q7_basic(conv_im_in_q7, CONV_IM_DIM, 3, conv_weight_q7,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_opt_q7,
CONV_OUT_DIM, conv_buf, NULL);
verify_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
printf("start q7 RGB implementation for RGB\n");
arm_convolve_HWC_q7_RGB(conv_im_in_q7, CONV_IM_DIM, 3, conv_weight_q7,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_opt_q7,
CONV_OUT_DIM, conv_buf, NULL);
verify_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
// testing q15
initialize_results_q15(conv_im_out_ref_q15, conv_im_out_opt_q15, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
printf("start q15 ref implementation\n");
arm_convolve_HWC_q15_ref(conv_im_in_q15, CONV_IM_DIM, CONV_IM_CH, conv_weight_q15,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q15, 0, 15, conv_im_out_ref_q15,
CONV_OUT_DIM, conv_buf, NULL);
printf("start q15 basic implementation\n");
arm_convolve_HWC_q15_basic(conv_im_in_q15, CONV_IM_DIM, CONV_IM_CH, conv_weight_q15,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q15, 0, 15, conv_im_out_opt_q15,
CONV_OUT_DIM, conv_buf, NULL);
verify_results_q15(conv_im_out_ref_q15, conv_im_out_opt_q15, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
printf("start q15 fast implementation\n");
arm_convolve_HWC_q15_fast(conv_im_in_q15, CONV_IM_DIM, CONV_IM_CH, conv_weight_q15,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q15, 0, 15, conv_im_out_opt_q15,
CONV_OUT_DIM, conv_buf, NULL);
verify_results_q15(conv_im_out_ref_q15, conv_im_out_opt_q15, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
// depthwise separable conv
initialize_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
printf("start q7 depthwise_separable_conv ref implementation\n");
arm_depthwise_separable_conv_HWC_q7_ref(conv_im_in_q7, CONV_IM_DIM, CONV_IM_CH, conv_weight_q7,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_ref_q7,
CONV_OUT_DIM, conv_buf, NULL);
printf("start q7 depthwise_separable_conv implementation\n");
arm_depthwise_separable_conv_HWC_q7(conv_im_in_q7, CONV_IM_DIM, CONV_IM_CH, conv_weight_q7,
CONV_OUT_CH, CONV_KER_DIM, 2, 1, conv_bias_q7, 1, 7, conv_im_out_opt_q7,
CONV_OUT_DIM, conv_buf, NULL);
verify_results_q7(conv_im_out_ref_q7, conv_im_out_opt_q7, CONV_OUT_DIM * CONV_OUT_DIM * CONV_OUT_CH);
delete[]test1;
delete[]test2;
delete[]test3;
delete[]test4;
#endif
test_pass = true;
test_index = 0;
while (test_flags[test_index] != -1) {
if (test_flags[test_index]) {
test_pass = false;
}
test_index ++;
}
if (test_pass) {
printf("All tests passed\n");
} else {
printf("Test failed passed\n");
}
return 0;
}