blob: 596b434bfdf317aed5850bc3d1bb9eb05e989eab [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df2T_f32.c
* Description: Processing function for floating-point transposed direct form II Biquad cascade filter
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupFilters
*/
/**
@addtogroup BiquadCascadeDF2T
@{
*/
/**
@brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
@param[in] S points to an instance of the filter data structure
@param[in] pSrc points to the block of input data
@param[out] pDst points to the block of output data
@param[in] blockSize number of samples to process
@return none
*/
#if defined(ARM_MATH_NEON)
void arm_biquad_cascade_df2T_f32(
const arm_biquad_cascade_df2T_instance_f32 * S,
const float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
const float32_t *pIn = pSrc; /* source pointer */
float32_t *pOut = pDst; /* destination pointer */
float32_t *pState = S->pState; /* State pointer */
const float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
float32_t acc1; /* accumulator */
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
float32_t Xn1; /* temporary input */
float32_t d1, d2; /* state variables */
uint32_t sample, stageCnt,stage = S->numStages; /* loop counters */
float32_t Xn2, Xn3, Xn4; /* Input State variables */
float32_t acc2, acc3, acc4; /* accumulator */
float32_t p0, p1, p2, p3, p4, A1;
float32x4_t XnV, YnV;
float32x4x2_t dV;
float32x4_t zeroV = vdupq_n_f32(0.0);
float32x4_t t1,t2,t3,t4,b1V,b2V,a1V,a2V,s;
/* Loop unrolling. Compute 4 outputs at a time */
stageCnt = stage >> 2;
while (stageCnt > 0U)
{
/* Reading the coefficients */
t1 = vld1q_f32(pCoeffs);
pCoeffs += 4;
t2 = vld1q_f32(pCoeffs);
pCoeffs += 4;
t3 = vld1q_f32(pCoeffs);
pCoeffs += 4;
t4 = vld1q_f32(pCoeffs);
pCoeffs += 4;
b1V = vld1q_f32(pCoeffs);
pCoeffs += 4;
b2V = vld1q_f32(pCoeffs);
pCoeffs += 4;
a1V = vld1q_f32(pCoeffs);
pCoeffs += 4;
a2V = vld1q_f32(pCoeffs);
pCoeffs += 4;
/* Reading the state values */
dV = vld2q_f32(pState);
sample = blockSize;
while (sample > 0U) {
/* y[n] = b0 * x[n] + d1 */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
/* d2 = b2 * x[n] + a2 * y[n] */
XnV = vdupq_n_f32(*pIn++);
s = dV.val[0];
YnV = s;
s = vextq_f32(zeroV,dV.val[0],3);
YnV = vmlaq_f32(YnV, t1, s);
s = vextq_f32(zeroV,dV.val[0],2);
YnV = vmlaq_f32(YnV, t2, s);
s = vextq_f32(zeroV,dV.val[0],1);
YnV = vmlaq_f32(YnV, t3, s);
YnV = vmlaq_f32(YnV, t4, XnV);
s = vextq_f32(XnV,YnV,3);
dV.val[0] = vmlaq_f32(dV.val[1], s, b1V);
dV.val[0] = vmlaq_f32(dV.val[0], YnV, a1V);
dV.val[1] = vmulq_f32(s, b2V);
dV.val[1] = vmlaq_f32(dV.val[1], YnV, a2V);
*pOut++ = YnV[3];
sample--;
}
/* Store the updated state variables back into the state array */
vst2q_f32(pState,dV);
pState += 8;
/* The current stage input is given as the output to the next stage */
pIn = pDst;
/*Reset the output working pointer */
pOut = pDst;
/* decrement the loop counter */
stageCnt--;
}
/* Tail */
stageCnt = stage & 3;
while (stageCnt > 0U)
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/*Reading the state values */
d1 = pState[0];
d2 = pState[1];
sample = blockSize;
while (sample > 0U)
{
/* Read the input */
Xn1 = *pIn++;
/* y[n] = b0 * x[n] + d1 */
acc1 = (b0 * Xn1) + d1;
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc1;
/* Every time after the output is computed state should be updated. */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
d1 = ((b1 * Xn1) + (a1 * acc1)) + d2;
/* d2 = b2 * x[n] + a2 * y[n] */
d2 = (b2 * Xn1) + (a2 * acc1);
/* decrement the loop counter */
sample--;
}
/* Store the updated state variables back into the state array */
*pState++ = d1;
*pState++ = d2;
/* The current stage input is given as the output to the next stage */
pIn = pDst;
/*Reset the output working pointer */
pOut = pDst;
/* decrement the loop counter */
stageCnt--;
}
}
#else
LOW_OPTIMIZATION_ENTER
void arm_biquad_cascade_df2T_f32(
const arm_biquad_cascade_df2T_instance_f32 * S,
const float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
const float32_t *pIn = pSrc; /* Source pointer */
float32_t *pOut = pDst; /* Destination pointer */
float32_t *pState = S->pState; /* State pointer */
const float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
float32_t acc1; /* Accumulator */
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
float32_t Xn1; /* Temporary input */
float32_t d1, d2; /* State variables */
uint32_t sample, stage = S->numStages; /* Loop counters */
do
{
/* Reading the coefficients */
b0 = pCoeffs[0];
b1 = pCoeffs[1];
b2 = pCoeffs[2];
a1 = pCoeffs[3];
a2 = pCoeffs[4];
/* Reading the state values */
d1 = pState[0];
d2 = pState[1];
pCoeffs += 5U;
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 16 outputs at a time */
sample = blockSize >> 4U;
while (sample > 0U) {
/* y[n] = b0 * x[n] + d1 */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
/* d2 = b2 * x[n] + a2 * y[n] */
/* 1 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 2 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 3 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 4 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 5 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 6 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 7 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 8 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 9 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 10 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 11 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 12 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 13 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 14 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 15 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* 16 */
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* decrement loop counter */
sample--;
}
/* Loop unrolling: Compute remaining outputs */
sample = blockSize & 0xFU;
#else
/* Initialize blkCnt with number of samples */
sample = blockSize;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (sample > 0U) {
Xn1 = *pIn++;
acc1 = b0 * Xn1 + d1;
d1 = b1 * Xn1 + d2;
d1 += a1 * acc1;
d2 = b2 * Xn1;
d2 += a2 * acc1;
*pOut++ = acc1;
/* decrement loop counter */
sample--;
}
/* Store the updated state variables back into the state array */
pState[0] = d1;
pState[1] = d2;
pState += 2U;
/* The current stage input is given as the output to the next stage */
pIn = pDst;
/* Reset the output working pointer */
pOut = pDst;
/* decrement loop counter */
stage--;
} while (stage > 0U);
}
LOW_OPTIMIZATION_EXIT
#endif /* #if defined(ARM_MATH_NEON) */
/**
@} end of BiquadCascadeDF2T group
*/