blob: fb9e2eccfea27e5cfec0cc4833d668eae9563326 [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_conv_opt_q7.c
* Description: Convolution of Q7 sequences
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupFilters
*/
/**
@addtogroup Conv
@{
*/
/**
@brief Convolution of Q7 sequences.
@param[in] pSrcA points to the first input sequence
@param[in] srcALen length of the first input sequence
@param[in] pSrcB points to the second input sequence
@param[in] srcBLen length of the second input sequence
@param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
@param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
@param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
@return none
@par Scaling and Overflow Behavior
The function is implemented using a 32-bit internal accumulator.
Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.
The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.
The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and then saturated to 1.7 format.
*/
void arm_conv_opt_q7(
const q7_t * pSrcA,
uint32_t srcALen,
const q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst,
q15_t * pScratch1,
q15_t * pScratch2)
{
q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch */
q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch */
q15_t x4; /* Temporary input variable */
q15_t *py; /* Temporary input2 pointer */
q31_t acc0, acc1, acc2, acc3; /* Accumulators */
const q7_t *pIn1, *pIn2; /* InputA and inputB pointer */
uint32_t j, k, blkCnt, tapCnt; /* Loop counter */
q31_t x1, x2, x3, y1; /* Temporary input variables */
const q7_t *px; /* Temporary input1 pointer */
q7_t *pOut = pDst; /* Output pointer */
q7_t out0, out1, out2, out3; /* Temporary variables */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if (srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* points to smaller length sequence */
px = pIn2 + srcBLen - 1;
/* Apply loop unrolling and do 4 Copies simultaneously. */
k = srcBLen >> 2U;
/* First part of the processing with loop unrolling copies 4 data points at a time.
** a second loop below copies for the remaining 1 to 3 samples. */
while (k > 0U)
{
/* copy second buffer in reversal manner */
x4 = (q15_t) *px--;
*pScr2++ = x4;
x4 = (q15_t) *px--;
*pScr2++ = x4;
x4 = (q15_t) *px--;
*pScr2++ = x4;
x4 = (q15_t) *px--;
*pScr2++ = x4;
/* Decrement loop counter */
k--;
}
/* If the count is not a multiple of 4, copy remaining samples here.
** No loop unrolling is used. */
k = srcBLen % 0x4U;
while (k > 0U)
{
/* copy second buffer in reversal manner for remaining samples */
x4 = (q15_t) *px--;
*pScr2++ = x4;
/* Decrement loop counter */
k--;
}
/* Fill (srcBLen - 1U) zeros in scratch buffer */
arm_fill_q15(0, pScr1, (srcBLen - 1U));
/* Update temporary scratch pointer */
pScr1 += (srcBLen - 1U);
/* Copy (srcALen) samples in scratch buffer */
/* Apply loop unrolling and do 4 Copies simultaneously. */
k = srcALen >> 2U;
/* First part of the processing with loop unrolling copies 4 data points at a time.
** a second loop below copies for the remaining 1 to 3 samples. */
while (k > 0U)
{
/* copy second buffer in reversal manner */
x4 = (q15_t) *pIn1++;
*pScr1++ = x4;
x4 = (q15_t) *pIn1++;
*pScr1++ = x4;
x4 = (q15_t) *pIn1++;
*pScr1++ = x4;
x4 = (q15_t) *pIn1++;
*pScr1++ = x4;
/* Decrement loop counter */
k--;
}
/* If the count is not a multiple of 4, copy remaining samples here.
** No loop unrolling is used. */
k = srcALen % 0x4U;
while (k > 0U)
{
/* copy second buffer in reversal manner for remaining samples */
x4 = (q15_t) * pIn1++;
*pScr1++ = x4;
/* Decrement the loop counter */
k--;
}
/* Fill (srcBLen - 1U) zeros at end of scratch buffer */
arm_fill_q15(0, pScr1, (srcBLen - 1U));
/* Update pointer */
pScr1 += (srcBLen - 1U);
/* Temporary pointer for scratch2 */
py = pScratch2;
/* Initialization of pIn2 pointer */
pIn2 = (q7_t *) py;
pScr2 = py;
/* Actual convolution process starts here */
blkCnt = (srcALen + srcBLen - 1U) >> 2U;
while (blkCnt > 0)
{
/* Initialze temporary scratch pointer as scratch1 */
pScr1 = pScratch1;
/* Clear Accumlators */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* Read two samples from scratch1 buffer */
x1 = read_q15x2_ia (&pScr1);
/* Read next two samples from scratch1 buffer */
x2 = read_q15x2_ia (&pScr1);
tapCnt = (srcBLen) >> 2U;
while (tapCnt > 0U)
{
/* Read four samples from smaller buffer */
y1 = read_q15x2_ia (&pScr2);
/* multiply and accumlate */
acc0 = __SMLAD(x1, y1, acc0);
acc2 = __SMLAD(x2, y1, acc2);
/* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x2, x1, 0);
#else
x3 = __PKHBT(x1, x2, 0);
#endif
/* multiply and accumlate */
acc1 = __SMLADX(x3, y1, acc1);
/* Read next two samples from scratch1 buffer */
x1 = read_q15x2_ia (&pScr1);
/* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x1, x2, 0);
#else
x3 = __PKHBT(x2, x1, 0);
#endif
acc3 = __SMLADX(x3, y1, acc3);
/* Read four samples from smaller buffer */
y1 = read_q15x2_ia (&pScr2);
acc0 = __SMLAD(x2, y1, acc0);
acc2 = __SMLAD(x1, y1, acc2);
acc1 = __SMLADX(x3, y1, acc1);
x2 = read_q15x2_ia (&pScr1);
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x2, x1, 0);
#else
x3 = __PKHBT(x1, x2, 0);
#endif
acc3 = __SMLADX(x3, y1, acc3);
/* Decrement loop counter */
tapCnt--;
}
/* Update scratch pointer for remaining samples of smaller length sequence */
pScr1 -= 4U;
/* apply same above for remaining samples of smaller length sequence */
tapCnt = (srcBLen) & 3U;
while (tapCnt > 0U)
{
/* accumlate the results */
acc0 += (*pScr1++ * *pScr2);
acc1 += (*pScr1++ * *pScr2);
acc2 += (*pScr1++ * *pScr2);
acc3 += (*pScr1++ * *pScr2++);
pScr1 -= 3U;
/* Decrement loop counter */
tapCnt--;
}
blkCnt--;
/* Store the result in the accumulator in the destination buffer. */
out0 = (q7_t) (__SSAT(acc0 >> 7U, 8));
out1 = (q7_t) (__SSAT(acc1 >> 7U, 8));
out2 = (q7_t) (__SSAT(acc2 >> 7U, 8));
out3 = (q7_t) (__SSAT(acc3 >> 7U, 8));
write_q7x4_ia (&pOut, __PACKq7(out0, out1, out2, out3));
/* Initialization of inputB pointer */
pScr2 = py;
pScratch1 += 4U;
}
blkCnt = (srcALen + srcBLen - 1U) & 0x3;
/* Calculate convolution for remaining samples of Bigger length sequence */
while (blkCnt > 0)
{
/* Initialze temporary scratch pointer as scratch1 */
pScr1 = pScratch1;
/* Clear Accumlators */
acc0 = 0;
tapCnt = (srcBLen) >> 1U;
while (tapCnt > 0U)
{
acc0 += (*pScr1++ * *pScr2++);
acc0 += (*pScr1++ * *pScr2++);
/* Decrement loop counter */
tapCnt--;
}
tapCnt = (srcBLen) & 1U;
/* apply same above for remaining samples of smaller length sequence */
while (tapCnt > 0U)
{
/* accumlate the results */
acc0 += (*pScr1++ * *pScr2++);
/* Decrement loop counter */
tapCnt--;
}
blkCnt--;
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(acc0 >> 7U, 8));
/* Initialization of inputB pointer */
pScr2 = py;
pScratch1 += 1U;
}
}
/**
@} end of Conv group
*/