blob: 42e7c0d48ae607ad9831f43cda97ef4ea2d71efe [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_fir_lattice_q15.c
* Description: Q15 FIR lattice filter processing function
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupFilters
*/
/**
@addtogroup FIR_Lattice
@{
*/
/**
@brief Processing function for Q15 FIR lattice filter.
@param[in] S points to an instance of the Q15 FIR lattice structure
@param[in] pSrc points to the block of input data
@param[out] pDst points to the block of output data
@param[in] blockSize number of samples to process
@return none
*/
void arm_fir_lattice_q15(
const arm_fir_lattice_instance_q15 * S,
const q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
q15_t *pState = S->pState; /* State pointer */
const q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q15_t *px; /* Temporary state pointer */
const q15_t *pk; /* Temporary coefficient pointer */
uint32_t numStages = S->numStages; /* Number of stages in the filter */
uint32_t blkCnt, stageCnt; /* Loop counters */
q31_t fcurr0, fnext0, gnext0, gcurr0; /* Temporary variables */
#if (1)
//#if !defined(ARM_MATH_CM0_FAMILY)
#if defined (ARM_MATH_LOOPUNROLL)
q31_t fcurr1, fnext1, gnext1; /* Temporary variables for second sample in loop unrolling */
q31_t fcurr2, fnext2, gnext2; /* Temporary variables for third sample in loop unrolling */
q31_t fcurr3, fnext3, gnext3; /* Temporary variables for fourth sample in loop unrolling */
#endif
gcurr0 = 0;
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U;
while (blkCnt > 0U)
{
/* Read two samples from input buffer */
/* f0(n) = x(n) */
fcurr0 = *pSrc++;
fcurr1 = *pSrc++;
/* Initialize state pointer */
px = pState;
/* Initialize coeff pointer */
pk = pCoeffs;
/* Read g0(n-1) from state buffer */
gcurr0 = *px;
/* Process first sample for first tap */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext0 = (q31_t) ((gcurr0 * (*pk)) >> 15U) + fcurr0;
fnext0 = __SSAT(fnext0, 16);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext0 = (q31_t) ((fcurr0 * (*pk)) >> 15U) + gcurr0;
gnext0 = __SSAT(gnext0, 16);
/* Process second sample for first tap */
fnext1 = (q31_t) ((fcurr0 * (*pk)) >> 15U) + fcurr1;
fnext1 = __SSAT(fnext1, 16);
gnext1 = (q31_t) ((fcurr1 * (*pk)) >> 15U) + fcurr0;
gnext1 = __SSAT(gnext1, 16);
/* Read next two samples from input buffer */
/* f0(n+2) = x(n+2) */
fcurr2 = *pSrc++;
fcurr3 = *pSrc++;
/* Process third sample for first tap */
fnext2 = (q31_t) ((fcurr1 * (*pk)) >> 15U) + fcurr2;
fnext2 = __SSAT(fnext2, 16);
gnext2 = (q31_t) ((fcurr2 * (*pk)) >> 15U) + fcurr1;
gnext2 = __SSAT(gnext2, 16);
/* Process fourth sample for first tap */
fnext3 = (q31_t) ((fcurr2 * (*pk )) >> 15U) + fcurr3;
fnext3 = __SSAT(fnext3, 16);
gnext3 = (q31_t) ((fcurr3 * (*pk++)) >> 15U) + fcurr2;
gnext3 = __SSAT(gnext3, 16);
/* Copy only last input sample into the state buffer
which will be used for next samples processing */
*px++ = (q15_t) fcurr3;
/* Update of f values for next coefficient set processing */
fcurr0 = fnext0;
fcurr1 = fnext1;
fcurr2 = fnext2;
fcurr3 = fnext3;
/* Loop unrolling. Process 4 taps at a time . */
stageCnt = (numStages - 1U) >> 2U;
/* Loop over the number of taps. Unroll by a factor of 4.
Repeat until we've computed numStages-3 coefficients. */
/* Process 2nd, 3rd, 4th and 5th taps ... here */
while (stageCnt > 0U)
{
/* Read g1(n-1), g3(n-1) .... from state */
gcurr0 = *px;
/* save g1(n) in state buffer */
*px++ = (q15_t) gnext3;
/* Process first sample for 2nd, 6th .. tap */
/* Sample processing for K2, K6.... */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext0 = (q31_t) ((gcurr0 * (*pk)) >> 15U) + fcurr0;
fnext0 = __SSAT(fnext0, 16);
/* Process second sample for 2nd, 6th .. tap */
/* for sample 2 processing */
fnext1 = (q31_t) ((gnext0 * (*pk)) >> 15U) + fcurr1;
fnext1 = __SSAT(fnext1, 16);
/* Process third sample for 2nd, 6th .. tap */
fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fcurr2;
fnext2 = __SSAT(fnext2, 16);
/* Process fourth sample for 2nd, 6th .. tap */
fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fcurr3;
fnext3 = __SSAT(fnext3, 16);
/* g1(n) = f0(n) * K1 + g0(n-1) */
/* Calculation of state values for next stage */
gnext3 = (q31_t) ((fcurr3 * (*pk)) >> 15U) + gnext2;
gnext3 = __SSAT(gnext3, 16);
gnext2 = (q31_t) ((fcurr2 * (*pk)) >> 15U) + gnext1;
gnext2 = __SSAT(gnext2, 16);
gnext1 = (q31_t) ((fcurr1 * (*pk)) >> 15U) + gnext0;
gnext1 = __SSAT(gnext1, 16);
gnext0 = (q31_t) ((fcurr0 * (*pk++)) >> 15U) + gcurr0;
gnext0 = __SSAT(gnext0, 16);
/* Read g2(n-1), g4(n-1) .... from state */
gcurr0 = *px;
/* save g1(n) in state buffer */
*px++ = (q15_t) gnext3;
/* Sample processing for K3, K7.... */
/* Process first sample for 3rd, 7th .. tap */
/* f3(n) = f2(n) + K3 * g2(n-1) */
fcurr0 = (q31_t) ((gcurr0 * (*pk)) >> 15U) + fnext0;
fcurr0 = __SSAT(fcurr0, 16);
/* Process second sample for 3rd, 7th .. tap */
fcurr1 = (q31_t) ((gnext0 * (*pk)) >> 15U) + fnext1;
fcurr1 = __SSAT(fcurr1, 16);
/* Process third sample for 3rd, 7th .. tap */
fcurr2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fnext2;
fcurr2 = __SSAT(fcurr2, 16);
/* Process fourth sample for 3rd, 7th .. tap */
fcurr3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fnext3;
fcurr3 = __SSAT(fcurr3, 16);
/* Calculation of state values for next stage */
/* g3(n) = f2(n) * K3 + g2(n-1) */
gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15U) + gnext2;
gnext3 = __SSAT(gnext3, 16);
gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15U) + gnext1;
gnext2 = __SSAT(gnext2, 16);
gnext1 = (q31_t) ((fnext1 * (*pk)) >> 15U) + gnext0;
gnext1 = __SSAT(gnext1, 16);
gnext0 = (q31_t) ((fnext0 * (*pk++)) >> 15U) + gcurr0;
gnext0 = __SSAT(gnext0, 16);
/* Read g1(n-1), g3(n-1) .... from state */
gcurr0 = *px;
/* save g1(n) in state buffer */
*px++ = (q15_t) gnext3;
/* Sample processing for K4, K8.... */
/* Process first sample for 4th, 8th .. tap */
/* f4(n) = f3(n) + K4 * g3(n-1) */
fnext0 = (q31_t) ((gcurr0 * (*pk)) >> 15U) + fcurr0;
fnext0 = __SSAT(fnext0, 16);
/* Process second sample for 4th, 8th .. tap */
/* for sample 2 processing */
fnext1 = (q31_t) ((gnext0 * (*pk)) >> 15U) + fcurr1;
fnext1 = __SSAT(fnext1, 16);
/* Process third sample for 4th, 8th .. tap */
fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fcurr2;
fnext2 = __SSAT(fnext2, 16);
/* Process fourth sample for 4th, 8th .. tap */
fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fcurr3;
fnext3 = __SSAT(fnext3, 16);
/* g4(n) = f3(n) * K4 + g3(n-1) */
/* Calculation of state values for next stage */
gnext3 = (q31_t) ((fcurr3 * (*pk)) >> 15U) + gnext2;
gnext3 = __SSAT(gnext3, 16);
gnext2 = (q31_t) ((fcurr2 * (*pk)) >> 15U) + gnext1;
gnext2 = __SSAT(gnext2, 16);
gnext1 = (q31_t) ((fcurr1 * (*pk)) >> 15U) + gnext0;
gnext1 = __SSAT(gnext1, 16);
gnext0 = (q31_t) ((fcurr0 * (*pk++)) >> 15U) + gcurr0;
gnext0 = __SSAT(gnext0, 16);
/* Read g2(n-1), g4(n-1) .... from state */
gcurr0 = *px;
/* save g4(n) in state buffer */
*px++ = (q15_t) gnext3;
/* Sample processing for K5, K9.... */
/* Process first sample for 5th, 9th .. tap */
/* f5(n) = f4(n) + K5 * g4(n-1) */
fcurr0 = (q31_t) ((gcurr0 * (*pk)) >> 15U) + fnext0;
fcurr0 = __SSAT(fcurr0, 16);
/* Process second sample for 5th, 9th .. tap */
fcurr1 = (q31_t) ((gnext0 * (*pk)) >> 15U) + fnext1;
fcurr1 = __SSAT(fcurr1, 16);
/* Process third sample for 5th, 9th .. tap */
fcurr2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fnext2;
fcurr2 = __SSAT(fcurr2, 16);
/* Process fourth sample for 5th, 9th .. tap */
fcurr3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fnext3;
fcurr3 = __SSAT(fcurr3, 16);
/* Calculation of state values for next stage */
/* g5(n) = f4(n) * K5 + g4(n-1) */
gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15U) + gnext2;
gnext3 = __SSAT(gnext3, 16);
gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15U) + gnext1;
gnext2 = __SSAT(gnext2, 16);
gnext1 = (q31_t) ((fnext1 * (*pk)) >> 15U) + gnext0;
gnext1 = __SSAT(gnext1, 16);
gnext0 = (q31_t) ((fnext0 * (*pk++)) >> 15U) + gcurr0;
gnext0 = __SSAT(gnext0, 16);
stageCnt--;
}
/* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */
stageCnt = (numStages - 1U) % 0x4U;
while (stageCnt > 0U)
{
gcurr0 = *px;
/* save g value in state buffer */
*px++ = (q15_t) gnext3;
/* Process four samples for last three taps here */
fnext0 = (q31_t) ((gcurr0 * (*pk)) >> 15U) + fcurr0;
fnext0 = __SSAT(fnext0, 16);
fnext1 = (q31_t) ((gnext0 * (*pk)) >> 15U) + fcurr1;
fnext1 = __SSAT(fnext1, 16);
fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fcurr2;
fnext2 = __SSAT(fnext2, 16);
fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fcurr3;
fnext3 = __SSAT(fnext3, 16);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext3 = (q31_t) ((fcurr3 * (*pk)) >> 15U) + gnext2;
gnext3 = __SSAT(gnext3, 16);
gnext2 = (q31_t) ((fcurr2 * (*pk)) >> 15U) + gnext1;
gnext2 = __SSAT(gnext2, 16);
gnext1 = (q31_t) ((fcurr1 * (*pk)) >> 15U) + gnext0;
gnext1 = __SSAT(gnext1, 16);
gnext0 = (q31_t) ((fcurr0 * (*pk++)) >> 15U) + gcurr0;
gnext0 = __SSAT(gnext0, 16);
/* Update of f values for next coefficient set processing */
fcurr0 = fnext0;
fcurr1 = fnext1;
fcurr2 = fnext2;
fcurr3 = fnext3;
stageCnt--;
}
/* The results in the 4 accumulators, store in the destination buffer. */
/* y(n) = fN(n) */
#ifndef ARM_MATH_BIG_ENDIAN
write_q15x2_ia (&pDst, __PKHBT(fcurr0, fcurr1, 16));
write_q15x2_ia (&pDst, __PKHBT(fcurr2, fcurr3, 16));
#else
write_q15x2_ia (&pDst, __PKHBT(fcurr1, fcurr0, 16));
write_q15x2_ia (&pDst, __PKHBT(fcurr3, fcurr2, 16));
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
blkCnt--;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = blockSize % 0x4U;
#else
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U)
{
/* f0(n) = x(n) */
fcurr0 = *pSrc++;
/* Initialize state pointer */
px = pState;
/* Initialize coeff pointer */
pk = pCoeffs;
/* read g2(n) from state buffer */
gcurr0 = *px;
/* for sample 1 processing */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext0 = (((q31_t) gcurr0 * (*pk)) >> 15U) + fcurr0;
fnext0 = __SSAT(fnext0, 16);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext0 = (((q31_t) fcurr0 * (*pk++)) >> 15U) + gcurr0;
gnext0 = __SSAT(gnext0, 16);
/* save g1(n) in state buffer */
*px++ = (q15_t) fcurr0;
/* f1(n) is saved in fcurr0 for next stage processing */
fcurr0 = fnext0;
stageCnt = (numStages - 1U);
/* stage loop */
while (stageCnt > 0U)
{
/* read g2(n) from state buffer */
gcurr0 = *px;
/* save g1(n) in state buffer */
*px++ = (q15_t) gnext0;
/* Sample processing for K2, K3.... */
/* f2(n) = f1(n) + K2 * g1(n-1) */
fnext0 = (((q31_t) gcurr0 * (*pk)) >> 15U) + fcurr0;
fnext0 = __SSAT(fnext0, 16);
/* g2(n) = f1(n) * K2 + g1(n-1) */
gnext0 = (((q31_t) fcurr0 * (*pk++)) >> 15U) + gcurr0;
gnext0 = __SSAT(gnext0, 16);
/* f1(n) is saved in fcurr0 for next stage processing */
fcurr0 = fnext0;
stageCnt--;
}
/* y(n) = fN(n) */
*pDst++ = __SSAT(fcurr0, 16);
blkCnt--;
}
#else
/* alternate version for CM0_FAMILY */
blkCnt = blockSize;
while (blkCnt > 0U)
{
/* f0(n) = x(n) */
fcurr0 = *pSrc++;
/* Initialize state pointer */
px = pState;
/* Initialize coeff pointer */
pk = pCoeffs;
/* read g0(n-1) from state buffer */
gcurr0 = *px;
/* for sample 1 processing */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext0 = ((gcurr0 * (*pk)) >> 15U) + fcurr0;
fnext0 = __SSAT(fnext, 16);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext0 = ((fcurr0 * (*pk++)) >> 15U) + gcurr0;
gnext0 = __SSAT(gnext0, 16);
/* save f0(n) in state buffer */
*px++ = (q15_t) fcurr0;
/* f1(n) is saved in fcurr for next stage processing */
fcurr0 = fnext0;
stageCnt = (numStages - 1U);
/* stage loop */
while (stageCnt > 0U)
{
/* read g1(n-1) from state buffer */
gcurr0 = *px;
/* save g0(n-1) in state buffer */
*px++ = (q15_t) gnext0;
/* Sample processing for K2, K3.... */
/* f2(n) = f1(n) + K2 * g1(n-1) */
fnext0 = ((gcurr0 * (*pk)) >> 15U) + fcurr0;
fnext0 = __SSAT(fnext0, 16);
/* g2(n) = f1(n) * K2 + g1(n-1) */
gnext0 = ((fcurr0 * (*pk++)) >> 15U) + gcurr0;
gnext0 = __SSAT(gnext0, 16);
/* f1(n) is saved in fcurr0 for next stage processing */
fcurr0 = fnext0;
stageCnt--;
}
/* y(n) = fN(n) */
*pDst++ = __SSAT(fcurr0, 16);
blkCnt--;
}
#endif /* #if !defined(ARM_MATH_CM0_FAMILY) */
}
/**
@} end of FIR_Lattice group
*/