| /** |
| * @file |
| * |
| * IPv6 fragmentation and reassembly. |
| */ |
| |
| /* |
| * Copyright (c) 2010 Inico Technologies Ltd. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without modification, |
| * are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT |
| * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
| * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY |
| * OF SUCH DAMAGE. |
| * |
| * This file is part of the lwIP TCP/IP stack. |
| * |
| * Author: Ivan Delamer <delamer@inicotech.com> |
| * |
| * |
| * Please coordinate changes and requests with Ivan Delamer |
| * <delamer@inicotech.com> |
| */ |
| |
| #include "lwip/opt.h" |
| #include "lwip/ip6_frag.h" |
| #include "lwip/ip6.h" |
| #include "lwip/icmp6.h" |
| #include "lwip/nd6.h" |
| #include "lwip/ip.h" |
| |
| #include "lwip/pbuf.h" |
| #include "lwip/memp.h" |
| #include "lwip/stats.h" |
| |
| #include <string.h> |
| |
| #if LWIP_IPV6 && LWIP_IPV6_REASS /* don't build if not configured for use in lwipopts.h */ |
| |
| |
| /** Setting this to 0, you can turn off checking the fragments for overlapping |
| * regions. The code gets a little smaller. Only use this if you know that |
| * overlapping won't occur on your network! */ |
| #ifndef IP_REASS_CHECK_OVERLAP |
| #define IP_REASS_CHECK_OVERLAP 1 |
| #endif /* IP_REASS_CHECK_OVERLAP */ |
| |
| /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is |
| * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller. |
| * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA |
| * is set to 1, so one datagram can be reassembled at a time, only. */ |
| #ifndef IP_REASS_FREE_OLDEST |
| #define IP_REASS_FREE_OLDEST 1 |
| #endif /* IP_REASS_FREE_OLDEST */ |
| |
| #if IPV6_FRAG_COPYHEADER |
| /* The number of bytes we need to "borrow" from (i.e., overwrite in) the header |
| * that precedes the fragment header for reassembly pruposes. */ |
| #define IPV6_FRAG_REQROOM ((s16_t)(sizeof(struct ip6_reass_helper) - IP6_FRAG_HLEN)) |
| #endif |
| |
| #define IP_REASS_FLAG_LASTFRAG 0x01 |
| |
| /** This is a helper struct which holds the starting |
| * offset and the ending offset of this fragment to |
| * easily chain the fragments. |
| * It has the same packing requirements as the IPv6 header, since it replaces |
| * the Fragment Header in memory in incoming fragments to keep |
| * track of the various fragments. |
| */ |
| #ifdef PACK_STRUCT_USE_INCLUDES |
| # include "arch/bpstruct.h" |
| #endif |
| PACK_STRUCT_BEGIN |
| struct ip6_reass_helper { |
| PACK_STRUCT_FIELD(struct pbuf *next_pbuf); |
| PACK_STRUCT_FIELD(u16_t start); |
| PACK_STRUCT_FIELD(u16_t end); |
| } PACK_STRUCT_STRUCT; |
| PACK_STRUCT_END |
| #ifdef PACK_STRUCT_USE_INCLUDES |
| # include "arch/epstruct.h" |
| #endif |
| |
| /* static variables */ |
| static struct ip6_reassdata *reassdatagrams; |
| static u16_t ip6_reass_pbufcount; |
| |
| /* Forward declarations. */ |
| static void ip6_reass_free_complete_datagram(struct ip6_reassdata *ipr); |
| #if IP_REASS_FREE_OLDEST |
| static void ip6_reass_remove_oldest_datagram(struct ip6_reassdata *ipr, int pbufs_needed); |
| #endif /* IP_REASS_FREE_OLDEST */ |
| |
| void |
| ip6_reass_tmr(void) |
| { |
| struct ip6_reassdata *r, *tmp; |
| |
| #if !IPV6_FRAG_COPYHEADER |
| LWIP_ASSERT("sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN, set IPV6_FRAG_COPYHEADER to 1", |
| sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN); |
| #endif /* !IPV6_FRAG_COPYHEADER */ |
| |
| r = reassdatagrams; |
| while (r != NULL) { |
| /* Decrement the timer. Once it reaches 0, |
| * clean up the incomplete fragment assembly */ |
| if (r->timer > 0) { |
| r->timer--; |
| r = r->next; |
| } else { |
| /* reassembly timed out */ |
| tmp = r; |
| /* get the next pointer before freeing */ |
| r = r->next; |
| /* free the helper struct and all enqueued pbufs */ |
| ip6_reass_free_complete_datagram(tmp); |
| } |
| } |
| } |
| |
| /** |
| * Free a datagram (struct ip6_reassdata) and all its pbufs. |
| * Updates the total count of enqueued pbufs (ip6_reass_pbufcount), |
| * sends an ICMP time exceeded packet. |
| * |
| * @param ipr datagram to free |
| */ |
| static void |
| ip6_reass_free_complete_datagram(struct ip6_reassdata *ipr) |
| { |
| struct ip6_reassdata *prev; |
| u16_t pbufs_freed = 0; |
| u16_t clen; |
| struct pbuf *p; |
| struct ip6_reass_helper *iprh; |
| |
| #if LWIP_ICMP6 |
| iprh = (struct ip6_reass_helper *)ipr->p->payload; |
| if (iprh->start == 0) { |
| /* The first fragment was received, send ICMP time exceeded. */ |
| /* First, de-queue the first pbuf from r->p. */ |
| p = ipr->p; |
| ipr->p = iprh->next_pbuf; |
| /* Restore the part that we've overwritten with our helper structure, or we |
| * might send garbage (and disclose a pointer) in the ICMPv6 reply. */ |
| MEMCPY(p->payload, ipr->orig_hdr, sizeof(iprh)); |
| /* Then, move back to the original ipv6 header (we are now pointing to Fragment header). |
| This cannot fail since we already checked when receiving this fragment. */ |
| if (pbuf_header_force(p, (s16_t)((u8_t*)p->payload - (u8_t*)ipr->iphdr))) { |
| LWIP_ASSERT("ip6_reass_free: moving p->payload to ip6 header failed\n", 0); |
| } |
| else { |
| /* Reconstruct the zoned source and destination addresses, so that we do |
| * not end up sending the ICMP response over the wrong link. */ |
| ip6_addr_t src_addr, dest_addr; |
| ip6_addr_copy_from_packed(src_addr, IPV6_FRAG_SRC(ipr)); |
| ip6_addr_set_zone(&src_addr, ipr->src_zone); |
| ip6_addr_copy_from_packed(dest_addr, IPV6_FRAG_DEST(ipr)); |
| ip6_addr_set_zone(&dest_addr, ipr->dest_zone); |
| /* Send the actual ICMP response. */ |
| icmp6_time_exceeded_with_addrs(p, ICMP6_TE_FRAG, &src_addr, &dest_addr); |
| } |
| clen = pbuf_clen(p); |
| LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff); |
| pbufs_freed = (u16_t)(pbufs_freed + clen); |
| pbuf_free(p); |
| } |
| #endif /* LWIP_ICMP6 */ |
| |
| /* First, free all received pbufs. The individual pbufs need to be released |
| separately as they have not yet been chained */ |
| p = ipr->p; |
| while (p != NULL) { |
| struct pbuf *pcur; |
| iprh = (struct ip6_reass_helper *)p->payload; |
| pcur = p; |
| /* get the next pointer before freeing */ |
| p = iprh->next_pbuf; |
| clen = pbuf_clen(pcur); |
| LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff); |
| pbufs_freed = (u16_t)(pbufs_freed + clen); |
| pbuf_free(pcur); |
| } |
| |
| /* Then, unchain the struct ip6_reassdata from the list and free it. */ |
| if (ipr == reassdatagrams) { |
| reassdatagrams = ipr->next; |
| } else { |
| prev = reassdatagrams; |
| while (prev != NULL) { |
| if (prev->next == ipr) { |
| break; |
| } |
| prev = prev->next; |
| } |
| if (prev != NULL) { |
| prev->next = ipr->next; |
| } |
| } |
| memp_free(MEMP_IP6_REASSDATA, ipr); |
| |
| /* Finally, update number of pbufs in reassembly queue */ |
| LWIP_ASSERT("ip_reass_pbufcount >= clen", ip6_reass_pbufcount >= pbufs_freed); |
| ip6_reass_pbufcount = (u16_t)(ip6_reass_pbufcount - pbufs_freed); |
| } |
| |
| #if IP_REASS_FREE_OLDEST |
| /** |
| * Free the oldest datagram to make room for enqueueing new fragments. |
| * The datagram ipr is not freed! |
| * |
| * @param ipr ip6_reassdata for the current fragment |
| * @param pbufs_needed number of pbufs needed to enqueue |
| * (used for freeing other datagrams if not enough space) |
| */ |
| static void |
| ip6_reass_remove_oldest_datagram(struct ip6_reassdata *ipr, int pbufs_needed) |
| { |
| struct ip6_reassdata *r, *oldest; |
| |
| /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs, |
| * but don't free the current datagram! */ |
| do { |
| r = oldest = reassdatagrams; |
| while (r != NULL) { |
| if (r != ipr) { |
| if (r->timer <= oldest->timer) { |
| /* older than the previous oldest */ |
| oldest = r; |
| } |
| } |
| r = r->next; |
| } |
| if (oldest == ipr) { |
| /* nothing to free, ipr is the only element on the list */ |
| return; |
| } |
| if (oldest != NULL) { |
| ip6_reass_free_complete_datagram(oldest); |
| } |
| } while (((ip6_reass_pbufcount + pbufs_needed) > IP_REASS_MAX_PBUFS) && (reassdatagrams != NULL)); |
| } |
| #endif /* IP_REASS_FREE_OLDEST */ |
| |
| /** |
| * Reassembles incoming IPv6 fragments into an IPv6 datagram. |
| * |
| * @param p points to the IPv6 Fragment Header |
| * @return NULL if reassembly is incomplete, pbuf pointing to |
| * IPv6 Header if reassembly is complete |
| */ |
| struct pbuf * |
| ip6_reass(struct pbuf *p) |
| { |
| struct ip6_reassdata *ipr, *ipr_prev; |
| struct ip6_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL; |
| struct ip6_frag_hdr *frag_hdr; |
| u16_t offset, len, start, end; |
| ptrdiff_t hdrdiff; |
| u16_t clen; |
| u8_t valid = 1; |
| struct pbuf *q, *next_pbuf; |
| |
| IP6_FRAG_STATS_INC(ip6_frag.recv); |
| |
| /* ip6_frag_hdr must be in the first pbuf, not chained. Checked by caller. */ |
| LWIP_ASSERT("IPv6 fragment header does not fit in first pbuf", |
| p->len >= sizeof(struct ip6_frag_hdr)); |
| |
| frag_hdr = (struct ip6_frag_hdr *) p->payload; |
| |
| clen = pbuf_clen(p); |
| |
| offset = lwip_ntohs(frag_hdr->_fragment_offset); |
| |
| /* Calculate fragment length from IPv6 payload length. |
| * Adjust for headers before Fragment Header. |
| * And finally adjust by Fragment Header length. */ |
| len = lwip_ntohs(ip6_current_header()->_plen); |
| hdrdiff = (u8_t*)p->payload - (const u8_t*)ip6_current_header(); |
| LWIP_ASSERT("not a valid pbuf (ip6_input check missing?)", hdrdiff <= 0xFFFF); |
| LWIP_ASSERT("not a valid pbuf (ip6_input check missing?)", hdrdiff >= IP6_HLEN); |
| hdrdiff -= IP6_HLEN; |
| hdrdiff += IP6_FRAG_HLEN; |
| if (hdrdiff > len) { |
| IP6_FRAG_STATS_INC(ip6_frag.proterr); |
| goto nullreturn; |
| } |
| len = (u16_t)(len - hdrdiff); |
| start = (offset & IP6_FRAG_OFFSET_MASK); |
| if (start > (0xFFFF - len)) { |
| /* u16_t overflow, cannot handle this */ |
| IP6_FRAG_STATS_INC(ip6_frag.proterr); |
| goto nullreturn; |
| } |
| |
| /* Look for the datagram the fragment belongs to in the current datagram queue, |
| * remembering the previous in the queue for later dequeueing. */ |
| for (ipr = reassdatagrams, ipr_prev = NULL; ipr != NULL; ipr = ipr->next) { |
| /* Check if the incoming fragment matches the one currently present |
| in the reassembly buffer. If so, we proceed with copying the |
| fragment into the buffer. */ |
| if ((frag_hdr->_identification == ipr->identification) && |
| ip6_addr_cmp_packed(ip6_current_src_addr(), &(IPV6_FRAG_SRC(ipr)), ipr->src_zone) && |
| ip6_addr_cmp_packed(ip6_current_dest_addr(), &(IPV6_FRAG_DEST(ipr)), ipr->dest_zone)) { |
| IP6_FRAG_STATS_INC(ip6_frag.cachehit); |
| break; |
| } |
| ipr_prev = ipr; |
| } |
| |
| if (ipr == NULL) { |
| /* Enqueue a new datagram into the datagram queue */ |
| ipr = (struct ip6_reassdata *)memp_malloc(MEMP_IP6_REASSDATA); |
| if (ipr == NULL) { |
| #if IP_REASS_FREE_OLDEST |
| /* Make room and try again. */ |
| ip6_reass_remove_oldest_datagram(ipr, clen); |
| ipr = (struct ip6_reassdata *)memp_malloc(MEMP_IP6_REASSDATA); |
| if (ipr != NULL) { |
| /* re-search ipr_prev since it might have been removed */ |
| for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) { |
| if (ipr_prev->next == ipr) { |
| break; |
| } |
| } |
| } else |
| #endif /* IP_REASS_FREE_OLDEST */ |
| { |
| IP6_FRAG_STATS_INC(ip6_frag.memerr); |
| goto nullreturn; |
| } |
| } |
| |
| memset(ipr, 0, sizeof(struct ip6_reassdata)); |
| ipr->timer = IPV6_REASS_MAXAGE; |
| |
| /* enqueue the new structure to the front of the list */ |
| ipr->next = reassdatagrams; |
| reassdatagrams = ipr; |
| |
| /* Use the current IPv6 header for src/dest address reference. |
| * Eventually, we will replace it when we get the first fragment |
| * (it might be this one, in any case, it is done later). */ |
| /* need to use the none-const pointer here: */ |
| ipr->iphdr = ip_data.current_ip6_header; |
| #if IPV6_FRAG_COPYHEADER |
| MEMCPY(&ipr->src, &ip6_current_header()->src, sizeof(ipr->src)); |
| MEMCPY(&ipr->dest, &ip6_current_header()->dest, sizeof(ipr->dest)); |
| #endif /* IPV6_FRAG_COPYHEADER */ |
| #if LWIP_IPV6_SCOPES |
| /* Also store the address zone information. |
| * @todo It is possible that due to netif destruction and recreation, the |
| * stored zones end up resolving to a different interface. In that case, we |
| * risk sending a "time exceeded" ICMP response over the wrong link. |
| * Ideally, netif destruction would clean up matching pending reassembly |
| * structures, but custom zone mappings would make that non-trivial. */ |
| ipr->src_zone = ip6_addr_zone(ip6_current_src_addr()); |
| ipr->dest_zone = ip6_addr_zone(ip6_current_dest_addr()); |
| #endif /* LWIP_IPV6_SCOPES */ |
| /* copy the fragmented packet id. */ |
| ipr->identification = frag_hdr->_identification; |
| |
| /* copy the nexth field */ |
| ipr->nexth = frag_hdr->_nexth; |
| } |
| |
| /* Check if we are allowed to enqueue more datagrams. */ |
| if ((ip6_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) { |
| #if IP_REASS_FREE_OLDEST |
| ip6_reass_remove_oldest_datagram(ipr, clen); |
| if ((ip6_reass_pbufcount + clen) <= IP_REASS_MAX_PBUFS) { |
| /* re-search ipr_prev since it might have been removed */ |
| for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) { |
| if (ipr_prev->next == ipr) { |
| break; |
| } |
| } |
| } else |
| #endif /* IP_REASS_FREE_OLDEST */ |
| { |
| /* @todo: send ICMPv6 time exceeded here? */ |
| /* drop this pbuf */ |
| IP6_FRAG_STATS_INC(ip6_frag.memerr); |
| goto nullreturn; |
| } |
| } |
| |
| /* Overwrite Fragment Header with our own helper struct. */ |
| #if IPV6_FRAG_COPYHEADER |
| if (IPV6_FRAG_REQROOM > 0) { |
| /* Make room for struct ip6_reass_helper (only required if sizeof(void*) > 4). |
| This cannot fail since we already checked when receiving this fragment. */ |
| u8_t hdrerr = pbuf_header_force(p, IPV6_FRAG_REQROOM); |
| LWIP_UNUSED_ARG(hdrerr); /* in case of LWIP_NOASSERT */ |
| LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0); |
| } |
| #else /* IPV6_FRAG_COPYHEADER */ |
| LWIP_ASSERT("sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN, set IPV6_FRAG_COPYHEADER to 1", |
| sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN); |
| #endif /* IPV6_FRAG_COPYHEADER */ |
| |
| /* Prepare the pointer to the helper structure, and its initial values. |
| * Do not yet write to the structure itself, as we still have to make a |
| * backup of the original data, and we should not do that until we know for |
| * sure that we are going to add this packet to the list. */ |
| iprh = (struct ip6_reass_helper *)p->payload; |
| next_pbuf = NULL; |
| end = (u16_t)(start + len); |
| |
| /* find the right place to insert this pbuf */ |
| /* Iterate through until we either get to the end of the list (append), |
| * or we find on with a larger offset (insert). */ |
| for (q = ipr->p; q != NULL;) { |
| iprh_tmp = (struct ip6_reass_helper*)q->payload; |
| if (start < iprh_tmp->start) { |
| #if IP_REASS_CHECK_OVERLAP |
| if (end > iprh_tmp->start) { |
| /* fragment overlaps with following, throw away */ |
| IP6_FRAG_STATS_INC(ip6_frag.proterr); |
| goto nullreturn; |
| } |
| if (iprh_prev != NULL) { |
| if (start < iprh_prev->end) { |
| /* fragment overlaps with previous, throw away */ |
| IP6_FRAG_STATS_INC(ip6_frag.proterr); |
| goto nullreturn; |
| } |
| } |
| #endif /* IP_REASS_CHECK_OVERLAP */ |
| /* the new pbuf should be inserted before this */ |
| next_pbuf = q; |
| if (iprh_prev != NULL) { |
| /* not the fragment with the lowest offset */ |
| iprh_prev->next_pbuf = p; |
| } else { |
| /* fragment with the lowest offset */ |
| ipr->p = p; |
| } |
| break; |
| } else if (start == iprh_tmp->start) { |
| /* received the same datagram twice: no need to keep the datagram */ |
| goto nullreturn; |
| #if IP_REASS_CHECK_OVERLAP |
| } else if (start < iprh_tmp->end) { |
| /* overlap: no need to keep the new datagram */ |
| IP6_FRAG_STATS_INC(ip6_frag.proterr); |
| goto nullreturn; |
| #endif /* IP_REASS_CHECK_OVERLAP */ |
| } else { |
| /* Check if the fragments received so far have no gaps. */ |
| if (iprh_prev != NULL) { |
| if (iprh_prev->end != iprh_tmp->start) { |
| /* There is a fragment missing between the current |
| * and the previous fragment */ |
| valid = 0; |
| } |
| } |
| } |
| q = iprh_tmp->next_pbuf; |
| iprh_prev = iprh_tmp; |
| } |
| |
| /* If q is NULL, then we made it to the end of the list. Determine what to do now */ |
| if (q == NULL) { |
| if (iprh_prev != NULL) { |
| /* this is (for now), the fragment with the highest offset: |
| * chain it to the last fragment */ |
| #if IP_REASS_CHECK_OVERLAP |
| LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= start); |
| #endif /* IP_REASS_CHECK_OVERLAP */ |
| iprh_prev->next_pbuf = p; |
| if (iprh_prev->end != start) { |
| valid = 0; |
| } |
| } else { |
| #if IP_REASS_CHECK_OVERLAP |
| LWIP_ASSERT("no previous fragment, this must be the first fragment!", |
| ipr->p == NULL); |
| #endif /* IP_REASS_CHECK_OVERLAP */ |
| /* this is the first fragment we ever received for this ip datagram */ |
| ipr->p = p; |
| } |
| } |
| |
| /* Track the current number of pbufs current 'in-flight', in order to limit |
| the number of fragments that may be enqueued at any one time */ |
| ip6_reass_pbufcount = (u16_t)(ip6_reass_pbufcount + clen); |
| |
| /* Remember IPv6 header if this is the first fragment. */ |
| if (start == 0) { |
| /* need to use the none-const pointer here: */ |
| ipr->iphdr = ip_data.current_ip6_header; |
| /* Make a backup of the part of the packet data that we are about to |
| * overwrite, so that we can restore the original later. */ |
| MEMCPY(ipr->orig_hdr, p->payload, sizeof(*iprh)); |
| /* For IPV6_FRAG_COPYHEADER there is no need to copy src/dst again, as they |
| * will be the same as they were. With LWIP_IPV6_SCOPES, the same applies |
| * to the source/destination zones. */ |
| } |
| /* Only after the backup do we get to fill in the actual helper structure. */ |
| iprh->next_pbuf = next_pbuf; |
| iprh->start = start; |
| iprh->end = end; |
| |
| /* If this is the last fragment, calculate total packet length. */ |
| if ((offset & IP6_FRAG_MORE_FLAG) == 0) { |
| ipr->datagram_len = iprh->end; |
| } |
| |
| /* Additional validity tests: we have received first and last fragment. */ |
| iprh_tmp = (struct ip6_reass_helper*)ipr->p->payload; |
| if (iprh_tmp->start != 0) { |
| valid = 0; |
| } |
| if (ipr->datagram_len == 0) { |
| valid = 0; |
| } |
| |
| /* Final validity test: no gaps between current and last fragment. */ |
| iprh_prev = iprh; |
| q = iprh->next_pbuf; |
| while ((q != NULL) && valid) { |
| iprh = (struct ip6_reass_helper*)q->payload; |
| if (iprh_prev->end != iprh->start) { |
| valid = 0; |
| break; |
| } |
| iprh_prev = iprh; |
| q = iprh->next_pbuf; |
| } |
| |
| if (valid) { |
| /* All fragments have been received */ |
| struct ip6_hdr* iphdr_ptr; |
| |
| /* chain together the pbufs contained within the ip6_reassdata list. */ |
| iprh = (struct ip6_reass_helper*) ipr->p->payload; |
| while (iprh != NULL) { |
| next_pbuf = iprh->next_pbuf; |
| if (next_pbuf != NULL) { |
| /* Save next helper struct (will be hidden in next step). */ |
| iprh_tmp = (struct ip6_reass_helper*)next_pbuf->payload; |
| |
| /* hide the fragment header for every succeeding fragment */ |
| pbuf_remove_header(next_pbuf, IP6_FRAG_HLEN); |
| #if IPV6_FRAG_COPYHEADER |
| if (IPV6_FRAG_REQROOM > 0) { |
| /* hide the extra bytes borrowed from ip6_hdr for struct ip6_reass_helper */ |
| u8_t hdrerr = pbuf_remove_header(next_pbuf, IPV6_FRAG_REQROOM); |
| LWIP_UNUSED_ARG(hdrerr); /* in case of LWIP_NOASSERT */ |
| LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0); |
| } |
| #endif |
| pbuf_cat(ipr->p, next_pbuf); |
| } |
| else { |
| iprh_tmp = NULL; |
| } |
| |
| iprh = iprh_tmp; |
| } |
| |
| /* Get the first pbuf. */ |
| p = ipr->p; |
| |
| #if IPV6_FRAG_COPYHEADER |
| if (IPV6_FRAG_REQROOM > 0) { |
| u8_t hdrerr; |
| /* Restore (only) the bytes that we overwrote beyond the fragment header. |
| * Those bytes may belong to either the IPv6 header or an extension |
| * header placed before the fragment header. */ |
| MEMCPY(p->payload, ipr->orig_hdr, IPV6_FRAG_REQROOM); |
| /* get back room for struct ip6_reass_helper (only required if sizeof(void*) > 4) */ |
| hdrerr = pbuf_remove_header(p, IPV6_FRAG_REQROOM); |
| LWIP_UNUSED_ARG(hdrerr); /* in case of LWIP_NOASSERT */ |
| LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0); |
| } |
| #endif |
| |
| /* We need to get rid of the fragment header itself, which is somewhere in |
| * the middle of the packet (but still in the first pbuf of the chain). |
| * Getting rid of the header is required by RFC 2460 Sec. 4.5 and necessary |
| * in order to be able to reassemble packets that are close to full size |
| * (i.e., around 65535 bytes). We simply move up all the headers before the |
| * fragment header, including the IPv6 header, and adjust the payload start |
| * accordingly. This works because all these headers are in the first pbuf |
| * of the chain, and because the caller adjusts all its pointers on |
| * successful reassembly. */ |
| MEMMOVE((u8_t*)ipr->iphdr + sizeof(struct ip6_frag_hdr), ipr->iphdr, |
| (size_t)((u8_t*)p->payload - (u8_t*)ipr->iphdr)); |
| |
| /* This is where the IPv6 header is now. */ |
| iphdr_ptr = (struct ip6_hdr*)((u8_t*)ipr->iphdr + |
| sizeof(struct ip6_frag_hdr)); |
| |
| /* Adjust datagram length by adding header lengths. */ |
| ipr->datagram_len = (u16_t)(ipr->datagram_len + ((u8_t*)p->payload - (u8_t*)iphdr_ptr) |
| - IP6_HLEN); |
| |
| /* Set payload length in ip header. */ |
| iphdr_ptr->_plen = lwip_htons(ipr->datagram_len); |
| |
| /* With the fragment header gone, we now need to adjust the next-header |
| * field of whatever header was originally before it. Since the packet made |
| * it through the original header processing routines at least up to the |
| * fragment header, we do not need any further sanity checks here. */ |
| if (IP6H_NEXTH(iphdr_ptr) == IP6_NEXTH_FRAGMENT) { |
| iphdr_ptr->_nexth = ipr->nexth; |
| } else { |
| u8_t *ptr = (u8_t *)iphdr_ptr + IP6_HLEN; |
| while (*ptr != IP6_NEXTH_FRAGMENT) { |
| ptr += 8 * (1 + ptr[1]); |
| } |
| *ptr = ipr->nexth; |
| } |
| |
| /* release the resources allocated for the fragment queue entry */ |
| if (reassdatagrams == ipr) { |
| /* it was the first in the list */ |
| reassdatagrams = ipr->next; |
| } else { |
| /* it wasn't the first, so it must have a valid 'prev' */ |
| LWIP_ASSERT("sanity check linked list", ipr_prev != NULL); |
| ipr_prev->next = ipr->next; |
| } |
| memp_free(MEMP_IP6_REASSDATA, ipr); |
| |
| /* adjust the number of pbufs currently queued for reassembly. */ |
| clen = pbuf_clen(p); |
| LWIP_ASSERT("ip6_reass_pbufcount >= clen", ip6_reass_pbufcount >= clen); |
| ip6_reass_pbufcount = (u16_t)(ip6_reass_pbufcount - clen); |
| |
| /* Move pbuf back to IPv6 header. This should never fail. */ |
| if (pbuf_header_force(p, (s16_t)((u8_t*)p->payload - (u8_t*)iphdr_ptr))) { |
| LWIP_ASSERT("ip6_reass: moving p->payload to ip6 header failed\n", 0); |
| pbuf_free(p); |
| return NULL; |
| } |
| |
| /* Return the pbuf chain */ |
| return p; |
| } |
| /* the datagram is not (yet?) reassembled completely */ |
| return NULL; |
| |
| nullreturn: |
| IP6_FRAG_STATS_INC(ip6_frag.drop); |
| pbuf_free(p); |
| return NULL; |
| } |
| |
| #endif /* LWIP_IPV6 && LWIP_IPV6_REASS */ |
| |
| #if LWIP_IPV6 && LWIP_IPV6_FRAG |
| |
| #if !LWIP_NETIF_TX_SINGLE_PBUF |
| /** Allocate a new struct pbuf_custom_ref */ |
| static struct pbuf_custom_ref* |
| ip6_frag_alloc_pbuf_custom_ref(void) |
| { |
| return (struct pbuf_custom_ref*)memp_malloc(MEMP_FRAG_PBUF); |
| } |
| |
| /** Free a struct pbuf_custom_ref */ |
| static void |
| ip6_frag_free_pbuf_custom_ref(struct pbuf_custom_ref* p) |
| { |
| LWIP_ASSERT("p != NULL", p != NULL); |
| memp_free(MEMP_FRAG_PBUF, p); |
| } |
| |
| /** Free-callback function to free a 'struct pbuf_custom_ref', called by |
| * pbuf_free. */ |
| static void |
| ip6_frag_free_pbuf_custom(struct pbuf *p) |
| { |
| struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref*)p; |
| LWIP_ASSERT("pcr != NULL", pcr != NULL); |
| LWIP_ASSERT("pcr == p", (void*)pcr == (void*)p); |
| if (pcr->original != NULL) { |
| pbuf_free(pcr->original); |
| } |
| ip6_frag_free_pbuf_custom_ref(pcr); |
| } |
| #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */ |
| |
| /** |
| * Fragment an IPv6 datagram if too large for the netif or path MTU. |
| * |
| * Chop the datagram in MTU sized chunks and send them in order |
| * by pointing PBUF_REFs into p |
| * |
| * @param p ipv6 packet to send |
| * @param netif the netif on which to send |
| * @param dest destination ipv6 address to which to send |
| * |
| * @return ERR_OK if sent successfully, err_t otherwise |
| */ |
| err_t |
| ip6_frag(struct pbuf *p, struct netif *netif, const ip6_addr_t *dest) |
| { |
| struct ip6_hdr *original_ip6hdr; |
| struct ip6_hdr *ip6hdr; |
| struct ip6_frag_hdr *frag_hdr; |
| struct pbuf *rambuf; |
| #if !LWIP_NETIF_TX_SINGLE_PBUF |
| struct pbuf *newpbuf; |
| u16_t newpbuflen = 0; |
| u16_t left_to_copy; |
| #endif |
| static u32_t identification; |
| u16_t left, cop; |
| const u16_t mtu = nd6_get_destination_mtu(dest, netif); |
| const u16_t nfb = (u16_t)((mtu - (IP6_HLEN + IP6_FRAG_HLEN)) & IP6_FRAG_OFFSET_MASK); |
| u16_t fragment_offset = 0; |
| u16_t last; |
| u16_t poff = IP6_HLEN; |
| |
| identification++; |
| |
| original_ip6hdr = (struct ip6_hdr *)p->payload; |
| |
| /* @todo we assume there are no options in the unfragmentable part (IPv6 header). */ |
| LWIP_ASSERT("p->tot_len >= IP6_HLEN", p->tot_len >= IP6_HLEN); |
| left = (u16_t)(p->tot_len - IP6_HLEN); |
| |
| while (left) { |
| last = (left <= nfb); |
| |
| /* Fill this fragment */ |
| cop = last ? left : nfb; |
| |
| #if LWIP_NETIF_TX_SINGLE_PBUF |
| rambuf = pbuf_alloc(PBUF_IP, cop + IP6_FRAG_HLEN, PBUF_RAM); |
| if (rambuf == NULL) { |
| IP6_FRAG_STATS_INC(ip6_frag.memerr); |
| return ERR_MEM; |
| } |
| LWIP_ASSERT("this needs a pbuf in one piece!", |
| (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL)); |
| poff += pbuf_copy_partial(p, (u8_t*)rambuf->payload + IP6_FRAG_HLEN, cop, poff); |
| /* make room for the IP header */ |
| if (pbuf_add_header(rambuf, IP6_HLEN)) { |
| pbuf_free(rambuf); |
| IP6_FRAG_STATS_INC(ip6_frag.memerr); |
| return ERR_MEM; |
| } |
| /* fill in the IP header */ |
| SMEMCPY(rambuf->payload, original_ip6hdr, IP6_HLEN); |
| ip6hdr = (struct ip6_hdr *)rambuf->payload; |
| frag_hdr = (struct ip6_frag_hdr *)((u8_t*)rambuf->payload + IP6_HLEN); |
| #else |
| /* When not using a static buffer, create a chain of pbufs. |
| * The first will be a PBUF_RAM holding the link, IPv6, and Fragment header. |
| * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged, |
| * but limited to the size of an mtu. |
| */ |
| rambuf = pbuf_alloc(PBUF_LINK, IP6_HLEN + IP6_FRAG_HLEN, PBUF_RAM); |
| if (rambuf == NULL) { |
| IP6_FRAG_STATS_INC(ip6_frag.memerr); |
| return ERR_MEM; |
| } |
| LWIP_ASSERT("this needs a pbuf in one piece!", |
| (rambuf->len >= (IP6_HLEN))); |
| SMEMCPY(rambuf->payload, original_ip6hdr, IP6_HLEN); |
| ip6hdr = (struct ip6_hdr *)rambuf->payload; |
| frag_hdr = (struct ip6_frag_hdr *)((u8_t*)rambuf->payload + IP6_HLEN); |
| |
| /* Can just adjust p directly for needed offset. */ |
| p->payload = (u8_t *)p->payload + poff; |
| p->len = (u16_t)(p->len - poff); |
| p->tot_len = (u16_t)(p->tot_len - poff); |
| |
| left_to_copy = cop; |
| while (left_to_copy) { |
| struct pbuf_custom_ref *pcr; |
| newpbuflen = (left_to_copy < p->len) ? left_to_copy : p->len; |
| /* Is this pbuf already empty? */ |
| if (!newpbuflen) { |
| p = p->next; |
| continue; |
| } |
| pcr = ip6_frag_alloc_pbuf_custom_ref(); |
| if (pcr == NULL) { |
| pbuf_free(rambuf); |
| IP6_FRAG_STATS_INC(ip6_frag.memerr); |
| return ERR_MEM; |
| } |
| /* Mirror this pbuf, although we might not need all of it. */ |
| newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc, p->payload, newpbuflen); |
| if (newpbuf == NULL) { |
| ip6_frag_free_pbuf_custom_ref(pcr); |
| pbuf_free(rambuf); |
| IP6_FRAG_STATS_INC(ip6_frag.memerr); |
| return ERR_MEM; |
| } |
| pbuf_ref(p); |
| pcr->original = p; |
| pcr->pc.custom_free_function = ip6_frag_free_pbuf_custom; |
| |
| /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain |
| * so that it is removed when pbuf_dechain is later called on rambuf. |
| */ |
| pbuf_cat(rambuf, newpbuf); |
| left_to_copy = (u16_t)(left_to_copy - newpbuflen); |
| if (left_to_copy) { |
| p = p->next; |
| } |
| } |
| poff = newpbuflen; |
| #endif /* LWIP_NETIF_TX_SINGLE_PBUF */ |
| |
| /* Set headers */ |
| frag_hdr->_nexth = original_ip6hdr->_nexth; |
| frag_hdr->reserved = 0; |
| frag_hdr->_fragment_offset = lwip_htons((u16_t)((fragment_offset & IP6_FRAG_OFFSET_MASK) | (last ? 0 : IP6_FRAG_MORE_FLAG))); |
| frag_hdr->_identification = lwip_htonl(identification); |
| |
| IP6H_NEXTH_SET(ip6hdr, IP6_NEXTH_FRAGMENT); |
| IP6H_PLEN_SET(ip6hdr, (u16_t)(cop + IP6_FRAG_HLEN)); |
| |
| /* No need for separate header pbuf - we allowed room for it in rambuf |
| * when allocated. |
| */ |
| IP6_FRAG_STATS_INC(ip6_frag.xmit); |
| netif->output_ip6(netif, rambuf, dest); |
| |
| /* Unfortunately we can't reuse rambuf - the hardware may still be |
| * using the buffer. Instead we free it (and the ensuing chain) and |
| * recreate it next time round the loop. If we're lucky the hardware |
| * will have already sent the packet, the free will really free, and |
| * there will be zero memory penalty. |
| */ |
| |
| pbuf_free(rambuf); |
| left = (u16_t)(left - cop); |
| fragment_offset = (u16_t)(fragment_offset + cop); |
| } |
| return ERR_OK; |
| } |
| |
| #endif /* LWIP_IPV6 && LWIP_IPV6_FRAG */ |