| /** |
| * @file |
| * Transmission Control Protocol for IP |
| * See also @ref tcp_raw |
| * |
| * @defgroup tcp_raw TCP |
| * @ingroup callbackstyle_api |
| * Transmission Control Protocol for IP\n |
| * @see @ref api |
| * |
| * Common functions for the TCP implementation, such as functions |
| * for manipulating the data structures and the TCP timer functions. TCP functions |
| * related to input and output is found in tcp_in.c and tcp_out.c respectively.\n |
| * |
| * TCP connection setup |
| * -------------------- |
| * The functions used for setting up connections is similar to that of |
| * the sequential API and of the BSD socket API. A new TCP connection |
| * identifier (i.e., a protocol control block - PCB) is created with the |
| * tcp_new() function. This PCB can then be either set to listen for new |
| * incoming connections or be explicitly connected to another host. |
| * - tcp_new() |
| * - tcp_bind() |
| * - tcp_listen() and tcp_listen_with_backlog() |
| * - tcp_accept() |
| * - tcp_connect() |
| * |
| * Sending TCP data |
| * ---------------- |
| * TCP data is sent by enqueueing the data with a call to tcp_write() and |
| * triggering to send by calling tcp_output(). When the data is successfully |
| * transmitted to the remote host, the application will be notified with a |
| * call to a specified callback function. |
| * - tcp_write() |
| * - tcp_output() |
| * - tcp_sent() |
| * |
| * Receiving TCP data |
| * ------------------ |
| * TCP data reception is callback based - an application specified |
| * callback function is called when new data arrives. When the |
| * application has taken the data, it has to call the tcp_recved() |
| * function to indicate that TCP can advertise increase the receive |
| * window. |
| * - tcp_recv() |
| * - tcp_recved() |
| * |
| * Application polling |
| * ------------------- |
| * When a connection is idle (i.e., no data is either transmitted or |
| * received), lwIP will repeatedly poll the application by calling a |
| * specified callback function. This can be used either as a watchdog |
| * timer for killing connections that have stayed idle for too long, or |
| * as a method of waiting for memory to become available. For instance, |
| * if a call to tcp_write() has failed because memory wasn't available, |
| * the application may use the polling functionality to call tcp_write() |
| * again when the connection has been idle for a while. |
| * - tcp_poll() |
| * |
| * Closing and aborting connections |
| * -------------------------------- |
| * - tcp_close() |
| * - tcp_abort() |
| * - tcp_err() |
| * |
| */ |
| |
| /* |
| * Copyright (c) 2001-2004 Swedish Institute of Computer Science. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without modification, |
| * are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT |
| * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
| * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY |
| * OF SUCH DAMAGE. |
| * |
| * This file is part of the lwIP TCP/IP stack. |
| * |
| * Author: Adam Dunkels <adam@sics.se> |
| * |
| */ |
| |
| #include "lwip/opt.h" |
| |
| #if LWIP_TCP /* don't build if not configured for use in lwipopts.h */ |
| |
| #include "lwip/def.h" |
| #include "lwip/mem.h" |
| #include "lwip/memp.h" |
| #include "lwip/tcp.h" |
| #include "lwip/priv/tcp_priv.h" |
| #include "lwip/debug.h" |
| #include "lwip/stats.h" |
| #include "lwip/ip6.h" |
| #include "lwip/ip6_addr.h" |
| #include "lwip/nd6.h" |
| |
| #include <string.h> |
| |
| #ifdef LWIP_HOOK_FILENAME |
| #include LWIP_HOOK_FILENAME |
| #endif |
| |
| #ifndef TCP_LOCAL_PORT_RANGE_START |
| /* From http://www.iana.org/assignments/port-numbers: |
| "The Dynamic and/or Private Ports are those from 49152 through 65535" */ |
| #define TCP_LOCAL_PORT_RANGE_START 0xc000 |
| #define TCP_LOCAL_PORT_RANGE_END 0xffff |
| #define TCP_ENSURE_LOCAL_PORT_RANGE(port) ((u16_t)(((port) & (u16_t)~TCP_LOCAL_PORT_RANGE_START) + TCP_LOCAL_PORT_RANGE_START)) |
| #endif |
| |
| #if LWIP_TCP_KEEPALIVE |
| #define TCP_KEEP_DUR(pcb) ((pcb)->keep_cnt * (pcb)->keep_intvl) |
| #define TCP_KEEP_INTVL(pcb) ((pcb)->keep_intvl) |
| #else /* LWIP_TCP_KEEPALIVE */ |
| #define TCP_KEEP_DUR(pcb) TCP_MAXIDLE |
| #define TCP_KEEP_INTVL(pcb) TCP_KEEPINTVL_DEFAULT |
| #endif /* LWIP_TCP_KEEPALIVE */ |
| |
| /* As initial send MSS, we use TCP_MSS but limit it to 536. */ |
| #if TCP_MSS > 536 |
| #define INITIAL_MSS 536 |
| #else |
| #define INITIAL_MSS TCP_MSS |
| #endif |
| |
| static const char *const tcp_state_str[] = { |
| "CLOSED", |
| "LISTEN", |
| "SYN_SENT", |
| "SYN_RCVD", |
| "ESTABLISHED", |
| "FIN_WAIT_1", |
| "FIN_WAIT_2", |
| "CLOSE_WAIT", |
| "CLOSING", |
| "LAST_ACK", |
| "TIME_WAIT" |
| }; |
| |
| /* last local TCP port */ |
| static u16_t tcp_port = TCP_LOCAL_PORT_RANGE_START; |
| |
| /* Incremented every coarse grained timer shot (typically every 500 ms). */ |
| u32_t tcp_ticks; |
| static const u8_t tcp_backoff[13] = |
| { 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7}; |
| /* Times per slowtmr hits */ |
| static const u8_t tcp_persist_backoff[7] = { 3, 6, 12, 24, 48, 96, 120 }; |
| |
| /* The TCP PCB lists. */ |
| |
| /** List of all TCP PCBs bound but not yet (connected || listening) */ |
| struct tcp_pcb *tcp_bound_pcbs; |
| /** List of all TCP PCBs in LISTEN state */ |
| union tcp_listen_pcbs_t tcp_listen_pcbs; |
| /** List of all TCP PCBs that are in a state in which |
| * they accept or send data. */ |
| struct tcp_pcb *tcp_active_pcbs; |
| /** List of all TCP PCBs in TIME-WAIT state */ |
| struct tcp_pcb *tcp_tw_pcbs; |
| |
| /** An array with all (non-temporary) PCB lists, mainly used for smaller code size */ |
| struct tcp_pcb **const tcp_pcb_lists[] = {&tcp_listen_pcbs.pcbs, &tcp_bound_pcbs, |
| &tcp_active_pcbs, &tcp_tw_pcbs |
| }; |
| |
| u8_t tcp_active_pcbs_changed; |
| |
| /** Timer counter to handle calling slow-timer from tcp_tmr() */ |
| static u8_t tcp_timer; |
| static u8_t tcp_timer_ctr; |
| static u16_t tcp_new_port(void); |
| |
| static err_t tcp_close_shutdown_fin(struct tcp_pcb *pcb); |
| #if LWIP_TCP_PCB_NUM_EXT_ARGS |
| static void tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args *ext_args); |
| #endif |
| |
| /** |
| * Initialize this module. |
| */ |
| void |
| tcp_init(void) |
| { |
| #ifdef LWIP_RAND |
| tcp_port = TCP_ENSURE_LOCAL_PORT_RANGE(LWIP_RAND()); |
| #endif /* LWIP_RAND */ |
| } |
| |
| /** Free a tcp pcb */ |
| void |
| tcp_free(struct tcp_pcb *pcb) |
| { |
| LWIP_ASSERT("tcp_free: LISTEN", pcb->state != LISTEN); |
| #if LWIP_TCP_PCB_NUM_EXT_ARGS |
| tcp_ext_arg_invoke_callbacks_destroyed(pcb->ext_args); |
| #endif |
| memp_free(MEMP_TCP_PCB, pcb); |
| } |
| |
| /** Free a tcp listen pcb */ |
| static void |
| tcp_free_listen(struct tcp_pcb *pcb) |
| { |
| LWIP_ASSERT("tcp_free_listen: !LISTEN", pcb->state != LISTEN); |
| #if LWIP_TCP_PCB_NUM_EXT_ARGS |
| tcp_ext_arg_invoke_callbacks_destroyed(pcb->ext_args); |
| #endif |
| memp_free(MEMP_TCP_PCB_LISTEN, pcb); |
| } |
| |
| /** |
| * Called periodically to dispatch TCP timers. |
| */ |
| void |
| tcp_tmr(void) |
| { |
| /* Call tcp_fasttmr() every 250 ms */ |
| tcp_fasttmr(); |
| |
| if (++tcp_timer & 1) { |
| /* Call tcp_slowtmr() every 500 ms, i.e., every other timer |
| tcp_tmr() is called. */ |
| tcp_slowtmr(); |
| } |
| } |
| |
| #if LWIP_CALLBACK_API || TCP_LISTEN_BACKLOG |
| /** Called when a listen pcb is closed. Iterates one pcb list and removes the |
| * closed listener pcb from pcb->listener if matching. |
| */ |
| static void |
| tcp_remove_listener(struct tcp_pcb *list, struct tcp_pcb_listen *lpcb) |
| { |
| struct tcp_pcb *pcb; |
| |
| LWIP_ASSERT("tcp_remove_listener: invalid listener", lpcb != NULL); |
| |
| for (pcb = list; pcb != NULL; pcb = pcb->next) { |
| if (pcb->listener == lpcb) { |
| pcb->listener = NULL; |
| } |
| } |
| } |
| #endif |
| |
| /** Called when a listen pcb is closed. Iterates all pcb lists and removes the |
| * closed listener pcb from pcb->listener if matching. |
| */ |
| static void |
| tcp_listen_closed(struct tcp_pcb *pcb) |
| { |
| #if LWIP_CALLBACK_API || TCP_LISTEN_BACKLOG |
| size_t i; |
| LWIP_ASSERT("pcb != NULL", pcb != NULL); |
| LWIP_ASSERT("pcb->state == LISTEN", pcb->state == LISTEN); |
| for (i = 1; i < LWIP_ARRAYSIZE(tcp_pcb_lists); i++) { |
| tcp_remove_listener(*tcp_pcb_lists[i], (struct tcp_pcb_listen *)pcb); |
| } |
| #endif |
| LWIP_UNUSED_ARG(pcb); |
| } |
| |
| #if TCP_LISTEN_BACKLOG |
| /** @ingroup tcp_raw |
| * Delay accepting a connection in respect to the listen backlog: |
| * the number of outstanding connections is increased until |
| * tcp_backlog_accepted() is called. |
| * |
| * ATTENTION: the caller is responsible for calling tcp_backlog_accepted() |
| * or else the backlog feature will get out of sync! |
| * |
| * @param pcb the connection pcb which is not fully accepted yet |
| */ |
| void |
| tcp_backlog_delayed(struct tcp_pcb *pcb) |
| { |
| LWIP_ASSERT("pcb != NULL", pcb != NULL); |
| LWIP_ASSERT_CORE_LOCKED(); |
| if ((pcb->flags & TF_BACKLOGPEND) == 0) { |
| if (pcb->listener != NULL) { |
| pcb->listener->accepts_pending++; |
| LWIP_ASSERT("accepts_pending != 0", pcb->listener->accepts_pending != 0); |
| tcp_set_flags(pcb, TF_BACKLOGPEND); |
| } |
| } |
| } |
| |
| /** @ingroup tcp_raw |
| * A delayed-accept a connection is accepted (or closed/aborted): decreases |
| * the number of outstanding connections after calling tcp_backlog_delayed(). |
| * |
| * ATTENTION: the caller is responsible for calling tcp_backlog_accepted() |
| * or else the backlog feature will get out of sync! |
| * |
| * @param pcb the connection pcb which is now fully accepted (or closed/aborted) |
| */ |
| void |
| tcp_backlog_accepted(struct tcp_pcb *pcb) |
| { |
| LWIP_ASSERT("pcb != NULL", pcb != NULL); |
| LWIP_ASSERT_CORE_LOCKED(); |
| if ((pcb->flags & TF_BACKLOGPEND) != 0) { |
| if (pcb->listener != NULL) { |
| LWIP_ASSERT("accepts_pending != 0", pcb->listener->accepts_pending != 0); |
| pcb->listener->accepts_pending--; |
| tcp_clear_flags(pcb, TF_BACKLOGPEND); |
| } |
| } |
| } |
| #endif /* TCP_LISTEN_BACKLOG */ |
| |
| /** |
| * Closes the TX side of a connection held by the PCB. |
| * For tcp_close(), a RST is sent if the application didn't receive all data |
| * (tcp_recved() not called for all data passed to recv callback). |
| * |
| * Listening pcbs are freed and may not be referenced any more. |
| * Connection pcbs are freed if not yet connected and may not be referenced |
| * any more. If a connection is established (at least SYN received or in |
| * a closing state), the connection is closed, and put in a closing state. |
| * The pcb is then automatically freed in tcp_slowtmr(). It is therefore |
| * unsafe to reference it. |
| * |
| * @param pcb the tcp_pcb to close |
| * @return ERR_OK if connection has been closed |
| * another err_t if closing failed and pcb is not freed |
| */ |
| static err_t |
| tcp_close_shutdown(struct tcp_pcb *pcb, u8_t rst_on_unacked_data) |
| { |
| LWIP_ASSERT("tcp_close_shutdown: invalid pcb", pcb != NULL); |
| |
| if (rst_on_unacked_data && ((pcb->state == ESTABLISHED) || (pcb->state == CLOSE_WAIT))) { |
| if ((pcb->refused_data != NULL) || (pcb->rcv_wnd != TCP_WND_MAX(pcb))) { |
| /* Not all data received by application, send RST to tell the remote |
| side about this. */ |
| LWIP_ASSERT("pcb->flags & TF_RXCLOSED", pcb->flags & TF_RXCLOSED); |
| |
| /* don't call tcp_abort here: we must not deallocate the pcb since |
| that might not be expected when calling tcp_close */ |
| tcp_rst(pcb, pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip, |
| pcb->local_port, pcb->remote_port); |
| |
| tcp_pcb_purge(pcb); |
| TCP_RMV_ACTIVE(pcb); |
| /* Deallocate the pcb since we already sent a RST for it */ |
| if (tcp_input_pcb == pcb) { |
| /* prevent using a deallocated pcb: free it from tcp_input later */ |
| tcp_trigger_input_pcb_close(); |
| } else { |
| tcp_free(pcb); |
| } |
| return ERR_OK; |
| } |
| } |
| |
| /* - states which free the pcb are handled here, |
| - states which send FIN and change state are handled in tcp_close_shutdown_fin() */ |
| switch (pcb->state) { |
| case CLOSED: |
| /* Closing a pcb in the CLOSED state might seem erroneous, |
| * however, it is in this state once allocated and as yet unused |
| * and the user needs some way to free it should the need arise. |
| * Calling tcp_close() with a pcb that has already been closed, (i.e. twice) |
| * or for a pcb that has been used and then entered the CLOSED state |
| * is erroneous, but this should never happen as the pcb has in those cases |
| * been freed, and so any remaining handles are bogus. */ |
| if (pcb->local_port != 0) { |
| TCP_RMV(&tcp_bound_pcbs, pcb); |
| } |
| tcp_free(pcb); |
| break; |
| case LISTEN: |
| tcp_listen_closed(pcb); |
| tcp_pcb_remove(&tcp_listen_pcbs.pcbs, pcb); |
| tcp_free_listen(pcb); |
| break; |
| case SYN_SENT: |
| TCP_PCB_REMOVE_ACTIVE(pcb); |
| tcp_free(pcb); |
| MIB2_STATS_INC(mib2.tcpattemptfails); |
| break; |
| default: |
| return tcp_close_shutdown_fin(pcb); |
| } |
| return ERR_OK; |
| } |
| |
| static err_t |
| tcp_close_shutdown_fin(struct tcp_pcb *pcb) |
| { |
| err_t err; |
| LWIP_ASSERT("pcb != NULL", pcb != NULL); |
| |
| switch (pcb->state) { |
| case SYN_RCVD: |
| err = tcp_send_fin(pcb); |
| if (err == ERR_OK) { |
| tcp_backlog_accepted(pcb); |
| MIB2_STATS_INC(mib2.tcpattemptfails); |
| pcb->state = FIN_WAIT_1; |
| } |
| break; |
| case ESTABLISHED: |
| err = tcp_send_fin(pcb); |
| if (err == ERR_OK) { |
| MIB2_STATS_INC(mib2.tcpestabresets); |
| pcb->state = FIN_WAIT_1; |
| } |
| break; |
| case CLOSE_WAIT: |
| err = tcp_send_fin(pcb); |
| if (err == ERR_OK) { |
| MIB2_STATS_INC(mib2.tcpestabresets); |
| pcb->state = LAST_ACK; |
| } |
| break; |
| default: |
| /* Has already been closed, do nothing. */ |
| return ERR_OK; |
| } |
| |
| if (err == ERR_OK) { |
| /* To ensure all data has been sent when tcp_close returns, we have |
| to make sure tcp_output doesn't fail. |
| Since we don't really have to ensure all data has been sent when tcp_close |
| returns (unsent data is sent from tcp timer functions, also), we don't care |
| for the return value of tcp_output for now. */ |
| tcp_output(pcb); |
| } else if (err == ERR_MEM) { |
| /* Mark this pcb for closing. Closing is retried from tcp_tmr. */ |
| tcp_set_flags(pcb, TF_CLOSEPEND); |
| /* We have to return ERR_OK from here to indicate to the callers that this |
| pcb should not be used any more as it will be freed soon via tcp_tmr. |
| This is OK here since sending FIN does not guarantee a time frime for |
| actually freeing the pcb, either (it is left in closure states for |
| remote ACK or timeout) */ |
| return ERR_OK; |
| } |
| return err; |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Closes the connection held by the PCB. |
| * |
| * Listening pcbs are freed and may not be referenced any more. |
| * Connection pcbs are freed if not yet connected and may not be referenced |
| * any more. If a connection is established (at least SYN received or in |
| * a closing state), the connection is closed, and put in a closing state. |
| * The pcb is then automatically freed in tcp_slowtmr(). It is therefore |
| * unsafe to reference it (unless an error is returned). |
| * |
| * The function may return ERR_MEM if no memory |
| * was available for closing the connection. If so, the application |
| * should wait and try again either by using the acknowledgment |
| * callback or the polling functionality. If the close succeeds, the |
| * function returns ERR_OK. |
| * |
| * @param pcb the tcp_pcb to close |
| * @return ERR_OK if connection has been closed |
| * another err_t if closing failed and pcb is not freed |
| */ |
| err_t |
| tcp_close(struct tcp_pcb *pcb) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| LWIP_ERROR("tcp_close: invalid pcb", pcb != NULL, return ERR_ARG); |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_close: closing in ")); |
| |
| tcp_debug_print_state(pcb->state); |
| |
| if (pcb->state != LISTEN) { |
| /* Set a flag not to receive any more data... */ |
| tcp_set_flags(pcb, TF_RXCLOSED); |
| } |
| /* ... and close */ |
| return tcp_close_shutdown(pcb, 1); |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Causes all or part of a full-duplex connection of this PCB to be shut down. |
| * This doesn't deallocate the PCB unless shutting down both sides! |
| * Shutting down both sides is the same as calling tcp_close, so if it succeds |
| * (i.e. returns ER_OK), the PCB must not be referenced any more! |
| * |
| * @param pcb PCB to shutdown |
| * @param shut_rx shut down receive side if this is != 0 |
| * @param shut_tx shut down send side if this is != 0 |
| * @return ERR_OK if shutdown succeeded (or the PCB has already been shut down) |
| * another err_t on error. |
| */ |
| err_t |
| tcp_shutdown(struct tcp_pcb *pcb, int shut_rx, int shut_tx) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| LWIP_ERROR("tcp_shutdown: invalid pcb", pcb != NULL, return ERR_ARG); |
| |
| if (pcb->state == LISTEN) { |
| return ERR_CONN; |
| } |
| if (shut_rx) { |
| /* shut down the receive side: set a flag not to receive any more data... */ |
| tcp_set_flags(pcb, TF_RXCLOSED); |
| if (shut_tx) { |
| /* shutting down the tx AND rx side is the same as closing for the raw API */ |
| return tcp_close_shutdown(pcb, 1); |
| } |
| /* ... and free buffered data */ |
| if (pcb->refused_data != NULL) { |
| pbuf_free(pcb->refused_data); |
| pcb->refused_data = NULL; |
| } |
| } |
| if (shut_tx) { |
| /* This can't happen twice since if it succeeds, the pcb's state is changed. |
| Only close in these states as the others directly deallocate the PCB */ |
| switch (pcb->state) { |
| case SYN_RCVD: |
| case ESTABLISHED: |
| case CLOSE_WAIT: |
| return tcp_close_shutdown(pcb, (u8_t)shut_rx); |
| default: |
| /* Not (yet?) connected, cannot shutdown the TX side as that would bring us |
| into CLOSED state, where the PCB is deallocated. */ |
| return ERR_CONN; |
| } |
| } |
| return ERR_OK; |
| } |
| |
| /** |
| * Abandons a connection and optionally sends a RST to the remote |
| * host. Deletes the local protocol control block. This is done when |
| * a connection is killed because of shortage of memory. |
| * |
| * @param pcb the tcp_pcb to abort |
| * @param reset boolean to indicate whether a reset should be sent |
| */ |
| void |
| tcp_abandon(struct tcp_pcb *pcb, int reset) |
| { |
| u32_t seqno, ackno; |
| #if LWIP_CALLBACK_API |
| tcp_err_fn errf; |
| #endif /* LWIP_CALLBACK_API */ |
| void *errf_arg; |
| |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| LWIP_ERROR("tcp_abandon: invalid pcb", pcb != NULL, return); |
| |
| /* pcb->state LISTEN not allowed here */ |
| LWIP_ASSERT("don't call tcp_abort/tcp_abandon for listen-pcbs", |
| pcb->state != LISTEN); |
| /* Figure out on which TCP PCB list we are, and remove us. If we |
| are in an active state, call the receive function associated with |
| the PCB with a NULL argument, and send an RST to the remote end. */ |
| if (pcb->state == TIME_WAIT) { |
| tcp_pcb_remove(&tcp_tw_pcbs, pcb); |
| tcp_free(pcb); |
| } else { |
| int send_rst = 0; |
| u16_t local_port = 0; |
| enum tcp_state last_state; |
| seqno = pcb->snd_nxt; |
| ackno = pcb->rcv_nxt; |
| #if LWIP_CALLBACK_API |
| errf = pcb->errf; |
| #endif /* LWIP_CALLBACK_API */ |
| errf_arg = pcb->callback_arg; |
| if (pcb->state == CLOSED) { |
| if (pcb->local_port != 0) { |
| /* bound, not yet opened */ |
| TCP_RMV(&tcp_bound_pcbs, pcb); |
| } |
| } else { |
| send_rst = reset; |
| local_port = pcb->local_port; |
| TCP_PCB_REMOVE_ACTIVE(pcb); |
| } |
| if (pcb->unacked != NULL) { |
| tcp_segs_free(pcb->unacked); |
| } |
| if (pcb->unsent != NULL) { |
| tcp_segs_free(pcb->unsent); |
| } |
| #if TCP_QUEUE_OOSEQ |
| if (pcb->ooseq != NULL) { |
| tcp_segs_free(pcb->ooseq); |
| } |
| #endif /* TCP_QUEUE_OOSEQ */ |
| tcp_backlog_accepted(pcb); |
| if (send_rst) { |
| LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_abandon: sending RST\n")); |
| tcp_rst(pcb, seqno, ackno, &pcb->local_ip, &pcb->remote_ip, local_port, pcb->remote_port); |
| } |
| last_state = pcb->state; |
| tcp_free(pcb); |
| TCP_EVENT_ERR(last_state, errf, errf_arg, ERR_ABRT); |
| } |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Aborts the connection by sending a RST (reset) segment to the remote |
| * host. The pcb is deallocated. This function never fails. |
| * |
| * ATTENTION: When calling this from one of the TCP callbacks, make |
| * sure you always return ERR_ABRT (and never return ERR_ABRT otherwise |
| * or you will risk accessing deallocated memory or memory leaks! |
| * |
| * @param pcb the tcp pcb to abort |
| */ |
| void |
| tcp_abort(struct tcp_pcb *pcb) |
| { |
| tcp_abandon(pcb, 1); |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Binds the connection to a local port number and IP address. If the |
| * IP address is not given (i.e., ipaddr == IP_ANY_TYPE), the connection is |
| * bound to all local IP addresses. |
| * If another connection is bound to the same port, the function will |
| * return ERR_USE, otherwise ERR_OK is returned. |
| * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB |
| * |
| * @param pcb the tcp_pcb to bind (no check is done whether this pcb is |
| * already bound!) |
| * @param ipaddr the local ip address to bind to (use IPx_ADDR_ANY to bind |
| * to any local address |
| * @param port the local port to bind to |
| * @return ERR_USE if the port is already in use |
| * ERR_VAL if bind failed because the PCB is not in a valid state |
| * ERR_OK if bound |
| */ |
| err_t |
| tcp_bind(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port) |
| { |
| int i; |
| int max_pcb_list = NUM_TCP_PCB_LISTS; |
| struct tcp_pcb *cpcb; |
| #if LWIP_IPV6 && LWIP_IPV6_SCOPES |
| ip_addr_t zoned_ipaddr; |
| #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */ |
| |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| #if LWIP_IPV4 |
| /* Don't propagate NULL pointer (IPv4 ANY) to subsequent functions */ |
| if (ipaddr == NULL) { |
| ipaddr = IP4_ADDR_ANY; |
| } |
| #else /* LWIP_IPV4 */ |
| LWIP_ERROR("tcp_bind: invalid ipaddr", ipaddr != NULL, return ERR_ARG); |
| #endif /* LWIP_IPV4 */ |
| |
| LWIP_ERROR("tcp_bind: invalid pcb", pcb != NULL, return ERR_ARG); |
| |
| LWIP_ERROR("tcp_bind: can only bind in state CLOSED", pcb->state == CLOSED, return ERR_VAL); |
| |
| #if SO_REUSE |
| /* Unless the REUSEADDR flag is set, |
| we have to check the pcbs in TIME-WAIT state, also. |
| We do not dump TIME_WAIT pcb's; they can still be matched by incoming |
| packets using both local and remote IP addresses and ports to distinguish. |
| */ |
| if (ip_get_option(pcb, SOF_REUSEADDR)) { |
| max_pcb_list = NUM_TCP_PCB_LISTS_NO_TIME_WAIT; |
| } |
| #endif /* SO_REUSE */ |
| |
| #if LWIP_IPV6 && LWIP_IPV6_SCOPES |
| /* If the given IP address should have a zone but doesn't, assign one now. |
| * This is legacy support: scope-aware callers should always provide properly |
| * zoned source addresses. Do the zone selection before the address-in-use |
| * check below; as such we have to make a temporary copy of the address. */ |
| if (IP_IS_V6(ipaddr) && ip6_addr_lacks_zone(ip_2_ip6(ipaddr), IP6_UNICAST)) { |
| ip_addr_copy(zoned_ipaddr, *ipaddr); |
| ip6_addr_select_zone(ip_2_ip6(&zoned_ipaddr), ip_2_ip6(&zoned_ipaddr)); |
| ipaddr = &zoned_ipaddr; |
| } |
| #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */ |
| |
| if (port == 0) { |
| port = tcp_new_port(); |
| if (port == 0) { |
| return ERR_BUF; |
| } |
| } else { |
| /* Check if the address already is in use (on all lists) */ |
| for (i = 0; i < max_pcb_list; i++) { |
| for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) { |
| if (cpcb->local_port == port) { |
| #if SO_REUSE |
| /* Omit checking for the same port if both pcbs have REUSEADDR set. |
| For SO_REUSEADDR, the duplicate-check for a 5-tuple is done in |
| tcp_connect. */ |
| if (!ip_get_option(pcb, SOF_REUSEADDR) || |
| !ip_get_option(cpcb, SOF_REUSEADDR)) |
| #endif /* SO_REUSE */ |
| { |
| /* @todo: check accept_any_ip_version */ |
| if ((IP_IS_V6(ipaddr) == IP_IS_V6_VAL(cpcb->local_ip)) && |
| (ip_addr_isany(&cpcb->local_ip) || |
| ip_addr_isany(ipaddr) || |
| ip_addr_cmp(&cpcb->local_ip, ipaddr))) { |
| return ERR_USE; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (!ip_addr_isany(ipaddr) |
| #if LWIP_IPV4 && LWIP_IPV6 |
| || (IP_GET_TYPE(ipaddr) != IP_GET_TYPE(&pcb->local_ip)) |
| #endif /* LWIP_IPV4 && LWIP_IPV6 */ |
| ) { |
| ip_addr_set(&pcb->local_ip, ipaddr); |
| } |
| pcb->local_port = port; |
| TCP_REG(&tcp_bound_pcbs, pcb); |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_bind: bind to port %"U16_F"\n", port)); |
| return ERR_OK; |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Binds the connection to a netif and IP address. |
| * After calling this function, all packets received via this PCB |
| * are guaranteed to have come in via the specified netif, and all |
| * outgoing packets will go out via the specified netif. |
| * |
| * @param pcb the tcp_pcb to bind. |
| * @param netif the netif to bind to. Can be NULL. |
| */ |
| void |
| tcp_bind_netif(struct tcp_pcb *pcb, const struct netif *netif) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| if (netif != NULL) { |
| pcb->netif_idx = netif_get_index(netif); |
| } else { |
| pcb->netif_idx = NETIF_NO_INDEX; |
| } |
| } |
| |
| #if LWIP_CALLBACK_API |
| /** |
| * Default accept callback if no accept callback is specified by the user. |
| */ |
| static err_t |
| tcp_accept_null(void *arg, struct tcp_pcb *pcb, err_t err) |
| { |
| LWIP_UNUSED_ARG(arg); |
| LWIP_UNUSED_ARG(err); |
| |
| LWIP_ASSERT("tcp_accept_null: invalid pcb", pcb != NULL); |
| |
| tcp_abort(pcb); |
| |
| return ERR_ABRT; |
| } |
| #endif /* LWIP_CALLBACK_API */ |
| |
| /** |
| * @ingroup tcp_raw |
| * Set the state of the connection to be LISTEN, which means that it |
| * is able to accept incoming connections. The protocol control block |
| * is reallocated in order to consume less memory. Setting the |
| * connection to LISTEN is an irreversible process. |
| * When an incoming connection is accepted, the function specified with |
| * the tcp_accept() function will be called. The pcb has to be bound |
| * to a local port with the tcp_bind() function. |
| * |
| * The tcp_listen() function returns a new connection identifier, and |
| * the one passed as an argument to the function will be |
| * deallocated. The reason for this behavior is that less memory is |
| * needed for a connection that is listening, so tcp_listen() will |
| * reclaim the memory needed for the original connection and allocate a |
| * new smaller memory block for the listening connection. |
| * |
| * tcp_listen() may return NULL if no memory was available for the |
| * listening connection. If so, the memory associated with the pcb |
| * passed as an argument to tcp_listen() will not be deallocated. |
| * |
| * The backlog limits the number of outstanding connections |
| * in the listen queue to the value specified by the backlog argument. |
| * To use it, your need to set TCP_LISTEN_BACKLOG=1 in your lwipopts.h. |
| * |
| * @param pcb the original tcp_pcb |
| * @param backlog the incoming connections queue limit |
| * @return tcp_pcb used for listening, consumes less memory. |
| * |
| * @note The original tcp_pcb is freed. This function therefore has to be |
| * called like this: |
| * tpcb = tcp_listen_with_backlog(tpcb, backlog); |
| */ |
| struct tcp_pcb * |
| tcp_listen_with_backlog(struct tcp_pcb *pcb, u8_t backlog) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| return tcp_listen_with_backlog_and_err(pcb, backlog, NULL); |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Set the state of the connection to be LISTEN, which means that it |
| * is able to accept incoming connections. The protocol control block |
| * is reallocated in order to consume less memory. Setting the |
| * connection to LISTEN is an irreversible process. |
| * |
| * @param pcb the original tcp_pcb |
| * @param backlog the incoming connections queue limit |
| * @param err when NULL is returned, this contains the error reason |
| * @return tcp_pcb used for listening, consumes less memory. |
| * |
| * @note The original tcp_pcb is freed. This function therefore has to be |
| * called like this: |
| * tpcb = tcp_listen_with_backlog_and_err(tpcb, backlog, &err); |
| */ |
| struct tcp_pcb * |
| tcp_listen_with_backlog_and_err(struct tcp_pcb *pcb, u8_t backlog, err_t *err) |
| { |
| struct tcp_pcb_listen *lpcb = NULL; |
| err_t res; |
| |
| LWIP_UNUSED_ARG(backlog); |
| |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| LWIP_ERROR("tcp_listen_with_backlog_and_err: invalid pcb", pcb != NULL, res = ERR_ARG; goto done); |
| LWIP_ERROR("tcp_listen_with_backlog_and_err: pcb already connected", pcb->state == CLOSED, res = ERR_CLSD; goto done); |
| |
| /* already listening? */ |
| if (pcb->state == LISTEN) { |
| lpcb = (struct tcp_pcb_listen *)pcb; |
| res = ERR_ALREADY; |
| goto done; |
| } |
| #if SO_REUSE |
| if (ip_get_option(pcb, SOF_REUSEADDR)) { |
| /* Since SOF_REUSEADDR allows reusing a local address before the pcb's usage |
| is declared (listen-/connection-pcb), we have to make sure now that |
| this port is only used once for every local IP. */ |
| for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) { |
| if ((lpcb->local_port == pcb->local_port) && |
| ip_addr_cmp(&lpcb->local_ip, &pcb->local_ip)) { |
| /* this address/port is already used */ |
| lpcb = NULL; |
| res = ERR_USE; |
| goto done; |
| } |
| } |
| } |
| #endif /* SO_REUSE */ |
| lpcb = (struct tcp_pcb_listen *)memp_malloc(MEMP_TCP_PCB_LISTEN); |
| if (lpcb == NULL) { |
| res = ERR_MEM; |
| goto done; |
| } |
| lpcb->callback_arg = pcb->callback_arg; |
| lpcb->local_port = pcb->local_port; |
| lpcb->state = LISTEN; |
| lpcb->prio = pcb->prio; |
| lpcb->so_options = pcb->so_options; |
| lpcb->netif_idx = pcb->netif_idx; |
| lpcb->ttl = pcb->ttl; |
| lpcb->tos = pcb->tos; |
| #if LWIP_IPV4 && LWIP_IPV6 |
| IP_SET_TYPE_VAL(lpcb->remote_ip, pcb->local_ip.type); |
| #endif /* LWIP_IPV4 && LWIP_IPV6 */ |
| ip_addr_copy(lpcb->local_ip, pcb->local_ip); |
| if (pcb->local_port != 0) { |
| TCP_RMV(&tcp_bound_pcbs, pcb); |
| } |
| #if LWIP_TCP_PCB_NUM_EXT_ARGS |
| /* copy over ext_args to listening pcb */ |
| memcpy(&lpcb->ext_args, &pcb->ext_args, sizeof(pcb->ext_args)); |
| #endif |
| tcp_free(pcb); |
| #if LWIP_CALLBACK_API |
| lpcb->accept = tcp_accept_null; |
| #endif /* LWIP_CALLBACK_API */ |
| #if TCP_LISTEN_BACKLOG |
| lpcb->accepts_pending = 0; |
| tcp_backlog_set(lpcb, backlog); |
| #endif /* TCP_LISTEN_BACKLOG */ |
| TCP_REG(&tcp_listen_pcbs.pcbs, (struct tcp_pcb *)lpcb); |
| res = ERR_OK; |
| done: |
| if (err != NULL) { |
| *err = res; |
| } |
| return (struct tcp_pcb *)lpcb; |
| } |
| |
| /** |
| * Update the state that tracks the available window space to advertise. |
| * |
| * Returns how much extra window would be advertised if we sent an |
| * update now. |
| */ |
| u32_t |
| tcp_update_rcv_ann_wnd(struct tcp_pcb *pcb) |
| { |
| u32_t new_right_edge; |
| |
| LWIP_ASSERT("tcp_update_rcv_ann_wnd: invalid pcb", pcb != NULL); |
| new_right_edge = pcb->rcv_nxt + pcb->rcv_wnd; |
| |
| if (TCP_SEQ_GEQ(new_right_edge, pcb->rcv_ann_right_edge + LWIP_MIN((TCP_WND / 2), pcb->mss))) { |
| /* we can advertise more window */ |
| pcb->rcv_ann_wnd = pcb->rcv_wnd; |
| return new_right_edge - pcb->rcv_ann_right_edge; |
| } else { |
| if (TCP_SEQ_GT(pcb->rcv_nxt, pcb->rcv_ann_right_edge)) { |
| /* Can happen due to other end sending out of advertised window, |
| * but within actual available (but not yet advertised) window */ |
| pcb->rcv_ann_wnd = 0; |
| } else { |
| /* keep the right edge of window constant */ |
| u32_t new_rcv_ann_wnd = pcb->rcv_ann_right_edge - pcb->rcv_nxt; |
| #if !LWIP_WND_SCALE |
| LWIP_ASSERT("new_rcv_ann_wnd <= 0xffff", new_rcv_ann_wnd <= 0xffff); |
| #endif |
| pcb->rcv_ann_wnd = (tcpwnd_size_t)new_rcv_ann_wnd; |
| } |
| return 0; |
| } |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * This function should be called by the application when it has |
| * processed the data. The purpose is to advertise a larger window |
| * when the data has been processed. |
| * |
| * @param pcb the tcp_pcb for which data is read |
| * @param len the amount of bytes that have been read by the application |
| */ |
| void |
| tcp_recved(struct tcp_pcb *pcb, u16_t len) |
| { |
| u32_t wnd_inflation; |
| tcpwnd_size_t rcv_wnd; |
| |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| LWIP_ERROR("tcp_recved: invalid pcb", pcb != NULL, return); |
| |
| /* pcb->state LISTEN not allowed here */ |
| LWIP_ASSERT("don't call tcp_recved for listen-pcbs", |
| pcb->state != LISTEN); |
| |
| rcv_wnd = (tcpwnd_size_t)(pcb->rcv_wnd + len); |
| if ((rcv_wnd > TCP_WND_MAX(pcb)) || (rcv_wnd < pcb->rcv_wnd)) { |
| /* window got too big or tcpwnd_size_t overflow */ |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: window got too big or tcpwnd_size_t overflow\n")); |
| pcb->rcv_wnd = TCP_WND_MAX(pcb); |
| } else { |
| pcb->rcv_wnd = rcv_wnd; |
| } |
| |
| wnd_inflation = tcp_update_rcv_ann_wnd(pcb); |
| |
| /* If the change in the right edge of window is significant (default |
| * watermark is TCP_WND/4), then send an explicit update now. |
| * Otherwise wait for a packet to be sent in the normal course of |
| * events (or more window to be available later) */ |
| if (wnd_inflation >= TCP_WND_UPDATE_THRESHOLD) { |
| tcp_ack_now(pcb); |
| tcp_output(pcb); |
| } |
| |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: received %"U16_F" bytes, wnd %"TCPWNDSIZE_F" (%"TCPWNDSIZE_F").\n", |
| len, pcb->rcv_wnd, (u16_t)(TCP_WND_MAX(pcb) - pcb->rcv_wnd))); |
| } |
| |
| /** |
| * Allocate a new local TCP port. |
| * |
| * @return a new (free) local TCP port number |
| */ |
| static u16_t |
| tcp_new_port(void) |
| { |
| u8_t i; |
| u16_t n = 0; |
| struct tcp_pcb *pcb; |
| |
| again: |
| tcp_port++; |
| if (tcp_port == TCP_LOCAL_PORT_RANGE_END) { |
| tcp_port = TCP_LOCAL_PORT_RANGE_START; |
| } |
| /* Check all PCB lists. */ |
| for (i = 0; i < NUM_TCP_PCB_LISTS; i++) { |
| for (pcb = *tcp_pcb_lists[i]; pcb != NULL; pcb = pcb->next) { |
| if (pcb->local_port == tcp_port) { |
| n++; |
| if (n > (TCP_LOCAL_PORT_RANGE_END - TCP_LOCAL_PORT_RANGE_START)) { |
| return 0; |
| } |
| goto again; |
| } |
| } |
| } |
| return tcp_port; |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Connects to another host. The function given as the "connected" |
| * argument will be called when the connection has been established. |
| * Sets up the pcb to connect to the remote host and sends the |
| * initial SYN segment which opens the connection. |
| * |
| * The tcp_connect() function returns immediately; it does not wait for |
| * the connection to be properly setup. Instead, it will call the |
| * function specified as the fourth argument (the "connected" argument) |
| * when the connection is established. If the connection could not be |
| * properly established, either because the other host refused the |
| * connection or because the other host didn't answer, the "err" |
| * callback function of this pcb (registered with tcp_err, see below) |
| * will be called. |
| * |
| * The tcp_connect() function can return ERR_MEM if no memory is |
| * available for enqueueing the SYN segment. If the SYN indeed was |
| * enqueued successfully, the tcp_connect() function returns ERR_OK. |
| * |
| * @param pcb the tcp_pcb used to establish the connection |
| * @param ipaddr the remote ip address to connect to |
| * @param port the remote tcp port to connect to |
| * @param connected callback function to call when connected (on error, |
| the err calback will be called) |
| * @return ERR_VAL if invalid arguments are given |
| * ERR_OK if connect request has been sent |
| * other err_t values if connect request couldn't be sent |
| */ |
| err_t |
| tcp_connect(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port, |
| tcp_connected_fn connected) |
| { |
| struct netif *netif = NULL; |
| err_t ret; |
| u32_t iss; |
| u16_t old_local_port; |
| |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| LWIP_ERROR("tcp_connect: invalid pcb", pcb != NULL, return ERR_ARG); |
| LWIP_ERROR("tcp_connect: invalid ipaddr", ipaddr != NULL, return ERR_ARG); |
| |
| LWIP_ERROR("tcp_connect: can only connect from state CLOSED", pcb->state == CLOSED, return ERR_ISCONN); |
| |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_connect to port %"U16_F"\n", port)); |
| ip_addr_set(&pcb->remote_ip, ipaddr); |
| pcb->remote_port = port; |
| |
| if (pcb->netif_idx != NETIF_NO_INDEX) { |
| netif = netif_get_by_index(pcb->netif_idx); |
| } else { |
| /* check if we have a route to the remote host */ |
| netif = ip_route(&pcb->local_ip, &pcb->remote_ip); |
| } |
| if (netif == NULL) { |
| /* Don't even try to send a SYN packet if we have no route since that will fail. */ |
| return ERR_RTE; |
| } |
| |
| /* check if local IP has been assigned to pcb, if not, get one */ |
| if (ip_addr_isany(&pcb->local_ip)) { |
| const ip_addr_t *local_ip = ip_netif_get_local_ip(netif, ipaddr); |
| if (local_ip == NULL) { |
| return ERR_RTE; |
| } |
| ip_addr_copy(pcb->local_ip, *local_ip); |
| } |
| |
| #if LWIP_IPV6 && LWIP_IPV6_SCOPES |
| /* If the given IP address should have a zone but doesn't, assign one now. |
| * Given that we already have the target netif, this is easy and cheap. */ |
| if (IP_IS_V6(&pcb->remote_ip) && |
| ip6_addr_lacks_zone(ip_2_ip6(&pcb->remote_ip), IP6_UNICAST)) { |
| ip6_addr_assign_zone(ip_2_ip6(&pcb->remote_ip), IP6_UNICAST, netif); |
| } |
| #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */ |
| |
| old_local_port = pcb->local_port; |
| if (pcb->local_port == 0) { |
| pcb->local_port = tcp_new_port(); |
| if (pcb->local_port == 0) { |
| return ERR_BUF; |
| } |
| } else { |
| #if SO_REUSE |
| if (ip_get_option(pcb, SOF_REUSEADDR)) { |
| /* Since SOF_REUSEADDR allows reusing a local address, we have to make sure |
| now that the 5-tuple is unique. */ |
| struct tcp_pcb *cpcb; |
| int i; |
| /* Don't check listen- and bound-PCBs, check active- and TIME-WAIT PCBs. */ |
| for (i = 2; i < NUM_TCP_PCB_LISTS; i++) { |
| for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) { |
| if ((cpcb->local_port == pcb->local_port) && |
| (cpcb->remote_port == port) && |
| ip_addr_cmp(&cpcb->local_ip, &pcb->local_ip) && |
| ip_addr_cmp(&cpcb->remote_ip, ipaddr)) { |
| /* linux returns EISCONN here, but ERR_USE should be OK for us */ |
| return ERR_USE; |
| } |
| } |
| } |
| } |
| #endif /* SO_REUSE */ |
| } |
| |
| iss = tcp_next_iss(pcb); |
| pcb->rcv_nxt = 0; |
| pcb->snd_nxt = iss; |
| pcb->lastack = iss - 1; |
| pcb->snd_wl2 = iss - 1; |
| pcb->snd_lbb = iss - 1; |
| /* Start with a window that does not need scaling. When window scaling is |
| enabled and used, the window is enlarged when both sides agree on scaling. */ |
| pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND); |
| pcb->rcv_ann_right_edge = pcb->rcv_nxt; |
| pcb->snd_wnd = TCP_WND; |
| /* As initial send MSS, we use TCP_MSS but limit it to 536. |
| The send MSS is updated when an MSS option is received. */ |
| pcb->mss = INITIAL_MSS; |
| #if TCP_CALCULATE_EFF_SEND_MSS |
| pcb->mss = tcp_eff_send_mss_netif(pcb->mss, netif, &pcb->remote_ip); |
| #endif /* TCP_CALCULATE_EFF_SEND_MSS */ |
| pcb->cwnd = 1; |
| #if LWIP_CALLBACK_API |
| pcb->connected = connected; |
| #else /* LWIP_CALLBACK_API */ |
| LWIP_UNUSED_ARG(connected); |
| #endif /* LWIP_CALLBACK_API */ |
| |
| /* Send a SYN together with the MSS option. */ |
| ret = tcp_enqueue_flags(pcb, TCP_SYN); |
| if (ret == ERR_OK) { |
| /* SYN segment was enqueued, changed the pcbs state now */ |
| pcb->state = SYN_SENT; |
| if (old_local_port != 0) { |
| TCP_RMV(&tcp_bound_pcbs, pcb); |
| } |
| TCP_REG_ACTIVE(pcb); |
| MIB2_STATS_INC(mib2.tcpactiveopens); |
| |
| tcp_output(pcb); |
| } |
| return ret; |
| } |
| |
| /** |
| * Called every 500 ms and implements the retransmission timer and the timer that |
| * removes PCBs that have been in TIME-WAIT for enough time. It also increments |
| * various timers such as the inactivity timer in each PCB. |
| * |
| * Automatically called from tcp_tmr(). |
| */ |
| void |
| tcp_slowtmr(void) |
| { |
| struct tcp_pcb *pcb, *prev; |
| tcpwnd_size_t eff_wnd; |
| u8_t pcb_remove; /* flag if a PCB should be removed */ |
| u8_t pcb_reset; /* flag if a RST should be sent when removing */ |
| err_t err; |
| |
| err = ERR_OK; |
| |
| ++tcp_ticks; |
| ++tcp_timer_ctr; |
| |
| tcp_slowtmr_start: |
| /* Steps through all of the active PCBs. */ |
| prev = NULL; |
| pcb = tcp_active_pcbs; |
| if (pcb == NULL) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: no active pcbs\n")); |
| } |
| while (pcb != NULL) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: processing active pcb\n")); |
| LWIP_ASSERT("tcp_slowtmr: active pcb->state != CLOSED\n", pcb->state != CLOSED); |
| LWIP_ASSERT("tcp_slowtmr: active pcb->state != LISTEN\n", pcb->state != LISTEN); |
| LWIP_ASSERT("tcp_slowtmr: active pcb->state != TIME-WAIT\n", pcb->state != TIME_WAIT); |
| if (pcb->last_timer == tcp_timer_ctr) { |
| /* skip this pcb, we have already processed it */ |
| prev = pcb; |
| pcb = pcb->next; |
| continue; |
| } |
| pcb->last_timer = tcp_timer_ctr; |
| |
| pcb_remove = 0; |
| pcb_reset = 0; |
| |
| if (pcb->state == SYN_SENT && pcb->nrtx >= TCP_SYNMAXRTX) { |
| ++pcb_remove; |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max SYN retries reached\n")); |
| } else if (pcb->nrtx >= TCP_MAXRTX) { |
| ++pcb_remove; |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max DATA retries reached\n")); |
| } else { |
| if (pcb->persist_backoff > 0) { |
| LWIP_ASSERT("tcp_slowtimr: persist ticking with in-flight data", pcb->unacked == NULL); |
| LWIP_ASSERT("tcp_slowtimr: persist ticking with empty send buffer", pcb->unsent != NULL); |
| if (pcb->persist_probe >= TCP_MAXRTX) { |
| ++pcb_remove; /* max probes reached */ |
| } else { |
| u8_t backoff_cnt = tcp_persist_backoff[pcb->persist_backoff - 1]; |
| if (pcb->persist_cnt < backoff_cnt) { |
| pcb->persist_cnt++; |
| } |
| if (pcb->persist_cnt >= backoff_cnt) { |
| int next_slot = 1; /* increment timer to next slot */ |
| /* If snd_wnd is zero, send 1 byte probes */ |
| if (pcb->snd_wnd == 0) { |
| if (tcp_zero_window_probe(pcb) != ERR_OK) { |
| next_slot = 0; /* try probe again with current slot */ |
| } |
| /* snd_wnd not fully closed, split unsent head and fill window */ |
| } else { |
| if (tcp_split_unsent_seg(pcb, (u16_t)pcb->snd_wnd) == ERR_OK) { |
| if (tcp_output(pcb) == ERR_OK) { |
| /* sending will cancel persist timer, else retry with current slot */ |
| next_slot = 0; |
| } |
| } |
| } |
| if (next_slot) { |
| pcb->persist_cnt = 0; |
| if (pcb->persist_backoff < sizeof(tcp_persist_backoff)) { |
| pcb->persist_backoff++; |
| } |
| } |
| } |
| } |
| } else { |
| /* Increase the retransmission timer if it is running */ |
| if ((pcb->rtime >= 0) && (pcb->rtime < 0x7FFF)) { |
| ++pcb->rtime; |
| } |
| |
| if (pcb->rtime >= pcb->rto) { |
| /* Time for a retransmission. */ |
| LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_slowtmr: rtime %"S16_F |
| " pcb->rto %"S16_F"\n", |
| pcb->rtime, pcb->rto)); |
| /* If prepare phase fails but we have unsent data but no unacked data, |
| still execute the backoff calculations below, as this means we somehow |
| failed to send segment. */ |
| if ((tcp_rexmit_rto_prepare(pcb) == ERR_OK) || ((pcb->unacked == NULL) && (pcb->unsent != NULL))) { |
| /* Double retransmission time-out unless we are trying to |
| * connect to somebody (i.e., we are in SYN_SENT). */ |
| if (pcb->state != SYN_SENT) { |
| u8_t backoff_idx = LWIP_MIN(pcb->nrtx, sizeof(tcp_backoff) - 1); |
| int calc_rto = ((pcb->sa >> 3) + pcb->sv) << tcp_backoff[backoff_idx]; |
| pcb->rto = (s16_t)LWIP_MIN(calc_rto, 0x7FFF); |
| } |
| |
| /* Reset the retransmission timer. */ |
| pcb->rtime = 0; |
| |
| /* Reduce congestion window and ssthresh. */ |
| eff_wnd = LWIP_MIN(pcb->cwnd, pcb->snd_wnd); |
| pcb->ssthresh = eff_wnd >> 1; |
| if (pcb->ssthresh < (tcpwnd_size_t)(pcb->mss << 1)) { |
| pcb->ssthresh = (tcpwnd_size_t)(pcb->mss << 1); |
| } |
| pcb->cwnd = pcb->mss; |
| LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: cwnd %"TCPWNDSIZE_F |
| " ssthresh %"TCPWNDSIZE_F"\n", |
| pcb->cwnd, pcb->ssthresh)); |
| pcb->bytes_acked = 0; |
| |
| /* The following needs to be called AFTER cwnd is set to one |
| mss - STJ */ |
| tcp_rexmit_rto_commit(pcb); |
| } |
| } |
| } |
| } |
| /* Check if this PCB has stayed too long in FIN-WAIT-2 */ |
| if (pcb->state == FIN_WAIT_2) { |
| /* If this PCB is in FIN_WAIT_2 because of SHUT_WR don't let it time out. */ |
| if (pcb->flags & TF_RXCLOSED) { |
| /* PCB was fully closed (either through close() or SHUT_RDWR): |
| normal FIN-WAIT timeout handling. */ |
| if ((u32_t)(tcp_ticks - pcb->tmr) > |
| TCP_FIN_WAIT_TIMEOUT / TCP_SLOW_INTERVAL) { |
| ++pcb_remove; |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in FIN-WAIT-2\n")); |
| } |
| } |
| } |
| |
| /* Check if KEEPALIVE should be sent */ |
| if (ip_get_option(pcb, SOF_KEEPALIVE) && |
| ((pcb->state == ESTABLISHED) || |
| (pcb->state == CLOSE_WAIT))) { |
| if ((u32_t)(tcp_ticks - pcb->tmr) > |
| (pcb->keep_idle + TCP_KEEP_DUR(pcb)) / TCP_SLOW_INTERVAL) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: KEEPALIVE timeout. Aborting connection to ")); |
| ip_addr_debug_print_val(TCP_DEBUG, pcb->remote_ip); |
| LWIP_DEBUGF(TCP_DEBUG, ("\n")); |
| |
| ++pcb_remove; |
| ++pcb_reset; |
| } else if ((u32_t)(tcp_ticks - pcb->tmr) > |
| (pcb->keep_idle + pcb->keep_cnt_sent * TCP_KEEP_INTVL(pcb)) |
| / TCP_SLOW_INTERVAL) { |
| err = tcp_keepalive(pcb); |
| if (err == ERR_OK) { |
| pcb->keep_cnt_sent++; |
| } |
| } |
| } |
| |
| /* If this PCB has queued out of sequence data, but has been |
| inactive for too long, will drop the data (it will eventually |
| be retransmitted). */ |
| #if TCP_QUEUE_OOSEQ |
| if (pcb->ooseq != NULL && |
| (tcp_ticks - pcb->tmr >= (u32_t)pcb->rto * TCP_OOSEQ_TIMEOUT)) { |
| LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: dropping OOSEQ queued data\n")); |
| tcp_free_ooseq(pcb); |
| } |
| #endif /* TCP_QUEUE_OOSEQ */ |
| |
| /* Check if this PCB has stayed too long in SYN-RCVD */ |
| if (pcb->state == SYN_RCVD) { |
| if ((u32_t)(tcp_ticks - pcb->tmr) > |
| TCP_SYN_RCVD_TIMEOUT / TCP_SLOW_INTERVAL) { |
| ++pcb_remove; |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in SYN-RCVD\n")); |
| } |
| } |
| |
| /* Check if this PCB has stayed too long in LAST-ACK */ |
| if (pcb->state == LAST_ACK) { |
| if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) { |
| ++pcb_remove; |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in LAST-ACK\n")); |
| } |
| } |
| |
| /* If the PCB should be removed, do it. */ |
| if (pcb_remove) { |
| struct tcp_pcb *pcb2; |
| #if LWIP_CALLBACK_API |
| tcp_err_fn err_fn = pcb->errf; |
| #endif /* LWIP_CALLBACK_API */ |
| void *err_arg; |
| enum tcp_state last_state; |
| tcp_pcb_purge(pcb); |
| /* Remove PCB from tcp_active_pcbs list. */ |
| if (prev != NULL) { |
| LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_active_pcbs", pcb != tcp_active_pcbs); |
| prev->next = pcb->next; |
| } else { |
| /* This PCB was the first. */ |
| LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_active_pcbs", tcp_active_pcbs == pcb); |
| tcp_active_pcbs = pcb->next; |
| } |
| |
| if (pcb_reset) { |
| tcp_rst(pcb, pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip, |
| pcb->local_port, pcb->remote_port); |
| } |
| |
| err_arg = pcb->callback_arg; |
| last_state = pcb->state; |
| pcb2 = pcb; |
| pcb = pcb->next; |
| tcp_free(pcb2); |
| |
| tcp_active_pcbs_changed = 0; |
| TCP_EVENT_ERR(last_state, err_fn, err_arg, ERR_ABRT); |
| if (tcp_active_pcbs_changed) { |
| goto tcp_slowtmr_start; |
| } |
| } else { |
| /* get the 'next' element now and work with 'prev' below (in case of abort) */ |
| prev = pcb; |
| pcb = pcb->next; |
| |
| /* We check if we should poll the connection. */ |
| ++prev->polltmr; |
| if (prev->polltmr >= prev->pollinterval) { |
| prev->polltmr = 0; |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: polling application\n")); |
| tcp_active_pcbs_changed = 0; |
| TCP_EVENT_POLL(prev, err); |
| if (tcp_active_pcbs_changed) { |
| goto tcp_slowtmr_start; |
| } |
| /* if err == ERR_ABRT, 'prev' is already deallocated */ |
| if (err == ERR_OK) { |
| tcp_output(prev); |
| } |
| } |
| } |
| } |
| |
| |
| /* Steps through all of the TIME-WAIT PCBs. */ |
| prev = NULL; |
| pcb = tcp_tw_pcbs; |
| while (pcb != NULL) { |
| LWIP_ASSERT("tcp_slowtmr: TIME-WAIT pcb->state == TIME-WAIT", pcb->state == TIME_WAIT); |
| pcb_remove = 0; |
| |
| /* Check if this PCB has stayed long enough in TIME-WAIT */ |
| if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) { |
| ++pcb_remove; |
| } |
| |
| /* If the PCB should be removed, do it. */ |
| if (pcb_remove) { |
| struct tcp_pcb *pcb2; |
| tcp_pcb_purge(pcb); |
| /* Remove PCB from tcp_tw_pcbs list. */ |
| if (prev != NULL) { |
| LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_tw_pcbs", pcb != tcp_tw_pcbs); |
| prev->next = pcb->next; |
| } else { |
| /* This PCB was the first. */ |
| LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_tw_pcbs", tcp_tw_pcbs == pcb); |
| tcp_tw_pcbs = pcb->next; |
| } |
| pcb2 = pcb; |
| pcb = pcb->next; |
| tcp_free(pcb2); |
| } else { |
| prev = pcb; |
| pcb = pcb->next; |
| } |
| } |
| } |
| |
| /** |
| * Is called every TCP_FAST_INTERVAL (250 ms) and process data previously |
| * "refused" by upper layer (application) and sends delayed ACKs or pending FINs. |
| * |
| * Automatically called from tcp_tmr(). |
| */ |
| void |
| tcp_fasttmr(void) |
| { |
| struct tcp_pcb *pcb; |
| |
| ++tcp_timer_ctr; |
| |
| tcp_fasttmr_start: |
| pcb = tcp_active_pcbs; |
| |
| while (pcb != NULL) { |
| if (pcb->last_timer != tcp_timer_ctr) { |
| struct tcp_pcb *next; |
| pcb->last_timer = tcp_timer_ctr; |
| /* send delayed ACKs */ |
| if (pcb->flags & TF_ACK_DELAY) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: delayed ACK\n")); |
| tcp_ack_now(pcb); |
| tcp_output(pcb); |
| tcp_clear_flags(pcb, TF_ACK_DELAY | TF_ACK_NOW); |
| } |
| /* send pending FIN */ |
| if (pcb->flags & TF_CLOSEPEND) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: pending FIN\n")); |
| tcp_clear_flags(pcb, TF_CLOSEPEND); |
| tcp_close_shutdown_fin(pcb); |
| } |
| |
| next = pcb->next; |
| |
| /* If there is data which was previously "refused" by upper layer */ |
| if (pcb->refused_data != NULL) { |
| tcp_active_pcbs_changed = 0; |
| tcp_process_refused_data(pcb); |
| if (tcp_active_pcbs_changed) { |
| /* application callback has changed the pcb list: restart the loop */ |
| goto tcp_fasttmr_start; |
| } |
| } |
| pcb = next; |
| } else { |
| pcb = pcb->next; |
| } |
| } |
| } |
| |
| /** Call tcp_output for all active pcbs that have TF_NAGLEMEMERR set */ |
| void |
| tcp_txnow(void) |
| { |
| struct tcp_pcb *pcb; |
| |
| for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { |
| if (pcb->flags & TF_NAGLEMEMERR) { |
| tcp_output(pcb); |
| } |
| } |
| } |
| |
| /** Pass pcb->refused_data to the recv callback */ |
| err_t |
| tcp_process_refused_data(struct tcp_pcb *pcb) |
| { |
| #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE |
| struct pbuf *rest; |
| #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */ |
| |
| LWIP_ERROR("tcp_process_refused_data: invalid pcb", pcb != NULL, return ERR_ARG); |
| |
| #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE |
| while (pcb->refused_data != NULL) |
| #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */ |
| { |
| err_t err; |
| u8_t refused_flags = pcb->refused_data->flags; |
| /* set pcb->refused_data to NULL in case the callback frees it and then |
| closes the pcb */ |
| struct pbuf *refused_data = pcb->refused_data; |
| #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE |
| pbuf_split_64k(refused_data, &rest); |
| pcb->refused_data = rest; |
| #else /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */ |
| pcb->refused_data = NULL; |
| #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */ |
| /* Notify again application with data previously received. */ |
| LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: notify kept packet\n")); |
| TCP_EVENT_RECV(pcb, refused_data, ERR_OK, err); |
| if (err == ERR_OK) { |
| /* did refused_data include a FIN? */ |
| if ((refused_flags & PBUF_FLAG_TCP_FIN) |
| #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE |
| && (rest == NULL) |
| #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */ |
| ) { |
| /* correct rcv_wnd as the application won't call tcp_recved() |
| for the FIN's seqno */ |
| if (pcb->rcv_wnd != TCP_WND_MAX(pcb)) { |
| pcb->rcv_wnd++; |
| } |
| TCP_EVENT_CLOSED(pcb, err); |
| if (err == ERR_ABRT) { |
| return ERR_ABRT; |
| } |
| } |
| } else if (err == ERR_ABRT) { |
| /* if err == ERR_ABRT, 'pcb' is already deallocated */ |
| /* Drop incoming packets because pcb is "full" (only if the incoming |
| segment contains data). */ |
| LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: drop incoming packets, because pcb is \"full\"\n")); |
| return ERR_ABRT; |
| } else { |
| /* data is still refused, pbuf is still valid (go on for ACK-only packets) */ |
| #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE |
| if (rest != NULL) { |
| pbuf_cat(refused_data, rest); |
| } |
| #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */ |
| pcb->refused_data = refused_data; |
| return ERR_INPROGRESS; |
| } |
| } |
| return ERR_OK; |
| } |
| |
| /** |
| * Deallocates a list of TCP segments (tcp_seg structures). |
| * |
| * @param seg tcp_seg list of TCP segments to free |
| */ |
| void |
| tcp_segs_free(struct tcp_seg *seg) |
| { |
| while (seg != NULL) { |
| struct tcp_seg *next = seg->next; |
| tcp_seg_free(seg); |
| seg = next; |
| } |
| } |
| |
| /** |
| * Frees a TCP segment (tcp_seg structure). |
| * |
| * @param seg single tcp_seg to free |
| */ |
| void |
| tcp_seg_free(struct tcp_seg *seg) |
| { |
| if (seg != NULL) { |
| if (seg->p != NULL) { |
| pbuf_free(seg->p); |
| #if TCP_DEBUG |
| seg->p = NULL; |
| #endif /* TCP_DEBUG */ |
| } |
| memp_free(MEMP_TCP_SEG, seg); |
| } |
| } |
| |
| /** |
| * @ingroup tcp |
| * Sets the priority of a connection. |
| * |
| * @param pcb the tcp_pcb to manipulate |
| * @param prio new priority |
| */ |
| void |
| tcp_setprio(struct tcp_pcb *pcb, u8_t prio) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| LWIP_ERROR("tcp_setprio: invalid pcb", pcb != NULL, return); |
| |
| pcb->prio = prio; |
| } |
| |
| #if TCP_QUEUE_OOSEQ |
| /** |
| * Returns a copy of the given TCP segment. |
| * The pbuf and data are not copied, only the pointers |
| * |
| * @param seg the old tcp_seg |
| * @return a copy of seg |
| */ |
| struct tcp_seg * |
| tcp_seg_copy(struct tcp_seg *seg) |
| { |
| struct tcp_seg *cseg; |
| |
| LWIP_ASSERT("tcp_seg_copy: invalid seg", seg != NULL); |
| |
| cseg = (struct tcp_seg *)memp_malloc(MEMP_TCP_SEG); |
| if (cseg == NULL) { |
| return NULL; |
| } |
| SMEMCPY((u8_t *)cseg, (const u8_t *)seg, sizeof(struct tcp_seg)); |
| pbuf_ref(cseg->p); |
| return cseg; |
| } |
| #endif /* TCP_QUEUE_OOSEQ */ |
| |
| #if LWIP_CALLBACK_API |
| /** |
| * Default receive callback that is called if the user didn't register |
| * a recv callback for the pcb. |
| */ |
| err_t |
| tcp_recv_null(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err) |
| { |
| LWIP_UNUSED_ARG(arg); |
| |
| LWIP_ERROR("tcp_recv_null: invalid pcb", pcb != NULL, return ERR_ARG); |
| |
| if (p != NULL) { |
| tcp_recved(pcb, p->tot_len); |
| pbuf_free(p); |
| } else if (err == ERR_OK) { |
| return tcp_close(pcb); |
| } |
| return ERR_OK; |
| } |
| #endif /* LWIP_CALLBACK_API */ |
| |
| /** |
| * Kills the oldest active connection that has a lower priority than 'prio'. |
| * |
| * @param prio minimum priority |
| */ |
| static void |
| tcp_kill_prio(u8_t prio) |
| { |
| struct tcp_pcb *pcb, *inactive; |
| u32_t inactivity; |
| u8_t mprio; |
| |
| mprio = LWIP_MIN(TCP_PRIO_MAX, prio); |
| |
| /* We want to kill connections with a lower prio, so bail out if |
| * supplied prio is 0 - there can never be a lower prio |
| */ |
| if (mprio == 0) { |
| return; |
| } |
| |
| /* We only want kill connections with a lower prio, so decrement prio by one |
| * and start searching for oldest connection with same or lower priority than mprio. |
| * We want to find the connections with the lowest possible prio, and among |
| * these the one with the longest inactivity time. |
| */ |
| mprio--; |
| |
| inactivity = 0; |
| inactive = NULL; |
| for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { |
| /* lower prio is always a kill candidate */ |
| if ((pcb->prio < mprio) || |
| /* longer inactivity is also a kill candidate */ |
| ((pcb->prio == mprio) && ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity))) { |
| inactivity = tcp_ticks - pcb->tmr; |
| inactive = pcb; |
| mprio = pcb->prio; |
| } |
| } |
| if (inactive != NULL) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_prio: killing oldest PCB %p (%"S32_F")\n", |
| (void *)inactive, inactivity)); |
| tcp_abort(inactive); |
| } |
| } |
| |
| /** |
| * Kills the oldest connection that is in specific state. |
| * Called from tcp_alloc() for LAST_ACK and CLOSING if no more connections are available. |
| */ |
| static void |
| tcp_kill_state(enum tcp_state state) |
| { |
| struct tcp_pcb *pcb, *inactive; |
| u32_t inactivity; |
| |
| LWIP_ASSERT("invalid state", (state == CLOSING) || (state == LAST_ACK)); |
| |
| inactivity = 0; |
| inactive = NULL; |
| /* Go through the list of active pcbs and get the oldest pcb that is in state |
| CLOSING/LAST_ACK. */ |
| for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { |
| if (pcb->state == state) { |
| if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) { |
| inactivity = tcp_ticks - pcb->tmr; |
| inactive = pcb; |
| } |
| } |
| } |
| if (inactive != NULL) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_closing: killing oldest %s PCB %p (%"S32_F")\n", |
| tcp_state_str[state], (void *)inactive, inactivity)); |
| /* Don't send a RST, since no data is lost. */ |
| tcp_abandon(inactive, 0); |
| } |
| } |
| |
| /** |
| * Kills the oldest connection that is in TIME_WAIT state. |
| * Called from tcp_alloc() if no more connections are available. |
| */ |
| static void |
| tcp_kill_timewait(void) |
| { |
| struct tcp_pcb *pcb, *inactive; |
| u32_t inactivity; |
| |
| inactivity = 0; |
| inactive = NULL; |
| /* Go through the list of TIME_WAIT pcbs and get the oldest pcb. */ |
| for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) { |
| if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) { |
| inactivity = tcp_ticks - pcb->tmr; |
| inactive = pcb; |
| } |
| } |
| if (inactive != NULL) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_timewait: killing oldest TIME-WAIT PCB %p (%"S32_F")\n", |
| (void *)inactive, inactivity)); |
| tcp_abort(inactive); |
| } |
| } |
| |
| /* Called when allocating a pcb fails. |
| * In this case, we want to handle all pcbs that want to close first: if we can |
| * now send the FIN (which failed before), the pcb might be in a state that is |
| * OK for us to now free it. |
| */ |
| static void |
| tcp_handle_closepend(void) |
| { |
| struct tcp_pcb *pcb = tcp_active_pcbs; |
| |
| while (pcb != NULL) { |
| struct tcp_pcb *next = pcb->next; |
| /* send pending FIN */ |
| if (pcb->flags & TF_CLOSEPEND) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_handle_closepend: pending FIN\n")); |
| tcp_clear_flags(pcb, TF_CLOSEPEND); |
| tcp_close_shutdown_fin(pcb); |
| } |
| pcb = next; |
| } |
| } |
| |
| /** |
| * Allocate a new tcp_pcb structure. |
| * |
| * @param prio priority for the new pcb |
| * @return a new tcp_pcb that initially is in state CLOSED |
| */ |
| struct tcp_pcb * |
| tcp_alloc(u8_t prio) |
| { |
| struct tcp_pcb *pcb; |
| |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB); |
| if (pcb == NULL) { |
| /* Try to send FIN for all pcbs stuck in TF_CLOSEPEND first */ |
| tcp_handle_closepend(); |
| |
| /* Try killing oldest connection in TIME-WAIT. */ |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest TIME-WAIT connection\n")); |
| tcp_kill_timewait(); |
| /* Try to allocate a tcp_pcb again. */ |
| pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB); |
| if (pcb == NULL) { |
| /* Try killing oldest connection in LAST-ACK (these wouldn't go to TIME-WAIT). */ |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest LAST-ACK connection\n")); |
| tcp_kill_state(LAST_ACK); |
| /* Try to allocate a tcp_pcb again. */ |
| pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB); |
| if (pcb == NULL) { |
| /* Try killing oldest connection in CLOSING. */ |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest CLOSING connection\n")); |
| tcp_kill_state(CLOSING); |
| /* Try to allocate a tcp_pcb again. */ |
| pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB); |
| if (pcb == NULL) { |
| /* Try killing oldest active connection with lower priority than the new one. */ |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing oldest connection with prio lower than %d\n", prio)); |
| tcp_kill_prio(prio); |
| /* Try to allocate a tcp_pcb again. */ |
| pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB); |
| if (pcb != NULL) { |
| /* adjust err stats: memp_malloc failed multiple times before */ |
| MEMP_STATS_DEC(err, MEMP_TCP_PCB); |
| } |
| } |
| if (pcb != NULL) { |
| /* adjust err stats: memp_malloc failed multiple times before */ |
| MEMP_STATS_DEC(err, MEMP_TCP_PCB); |
| } |
| } |
| if (pcb != NULL) { |
| /* adjust err stats: memp_malloc failed multiple times before */ |
| MEMP_STATS_DEC(err, MEMP_TCP_PCB); |
| } |
| } |
| if (pcb != NULL) { |
| /* adjust err stats: memp_malloc failed above */ |
| MEMP_STATS_DEC(err, MEMP_TCP_PCB); |
| } |
| } |
| if (pcb != NULL) { |
| /* zero out the whole pcb, so there is no need to initialize members to zero */ |
| memset(pcb, 0, sizeof(struct tcp_pcb)); |
| pcb->prio = prio; |
| pcb->snd_buf = TCP_SND_BUF; |
| /* Start with a window that does not need scaling. When window scaling is |
| enabled and used, the window is enlarged when both sides agree on scaling. */ |
| pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND); |
| pcb->ttl = TCP_TTL; |
| /* As initial send MSS, we use TCP_MSS but limit it to 536. |
| The send MSS is updated when an MSS option is received. */ |
| pcb->mss = INITIAL_MSS; |
| pcb->rto = 3000 / TCP_SLOW_INTERVAL; |
| pcb->sv = 3000 / TCP_SLOW_INTERVAL; |
| pcb->rtime = -1; |
| pcb->cwnd = 1; |
| pcb->tmr = tcp_ticks; |
| pcb->last_timer = tcp_timer_ctr; |
| |
| /* RFC 5681 recommends setting ssthresh abritrarily high and gives an example |
| of using the largest advertised receive window. We've seen complications with |
| receiving TCPs that use window scaling and/or window auto-tuning where the |
| initial advertised window is very small and then grows rapidly once the |
| connection is established. To avoid these complications, we set ssthresh to the |
| largest effective cwnd (amount of in-flight data) that the sender can have. */ |
| pcb->ssthresh = TCP_SND_BUF; |
| |
| #if LWIP_CALLBACK_API |
| pcb->recv = tcp_recv_null; |
| #endif /* LWIP_CALLBACK_API */ |
| |
| /* Init KEEPALIVE timer */ |
| pcb->keep_idle = TCP_KEEPIDLE_DEFAULT; |
| |
| #if LWIP_TCP_KEEPALIVE |
| pcb->keep_intvl = TCP_KEEPINTVL_DEFAULT; |
| pcb->keep_cnt = TCP_KEEPCNT_DEFAULT; |
| #endif /* LWIP_TCP_KEEPALIVE */ |
| } |
| return pcb; |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Creates a new TCP protocol control block but doesn't place it on |
| * any of the TCP PCB lists. |
| * The pcb is not put on any list until binding using tcp_bind(). |
| * If memory is not available for creating the new pcb, NULL is returned. |
| * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB |
| * |
| * @internal: Maybe there should be a idle TCP PCB list where these |
| * PCBs are put on. Port reservation using tcp_bind() is implemented but |
| * allocated pcbs that are not bound can't be killed automatically if wanting |
| * to allocate a pcb with higher prio (@see tcp_kill_prio()) |
| * |
| * @return a new tcp_pcb that initially is in state CLOSED |
| */ |
| struct tcp_pcb * |
| tcp_new(void) |
| { |
| return tcp_alloc(TCP_PRIO_NORMAL); |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Creates a new TCP protocol control block but doesn't |
| * place it on any of the TCP PCB lists. |
| * The pcb is not put on any list until binding using tcp_bind(). |
| * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB |
| * |
| * @param type IP address type, see @ref lwip_ip_addr_type definitions. |
| * If you want to listen to IPv4 and IPv6 (dual-stack) connections, |
| * supply @ref IPADDR_TYPE_ANY as argument and bind to @ref IP_ANY_TYPE. |
| * @return a new tcp_pcb that initially is in state CLOSED |
| */ |
| struct tcp_pcb * |
| tcp_new_ip_type(u8_t type) |
| { |
| struct tcp_pcb *pcb; |
| pcb = tcp_alloc(TCP_PRIO_NORMAL); |
| #if LWIP_IPV4 && LWIP_IPV6 |
| if (pcb != NULL) { |
| IP_SET_TYPE_VAL(pcb->local_ip, type); |
| IP_SET_TYPE_VAL(pcb->remote_ip, type); |
| } |
| #else |
| LWIP_UNUSED_ARG(type); |
| #endif /* LWIP_IPV4 && LWIP_IPV6 */ |
| return pcb; |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Specifies the program specific state that should be passed to all |
| * other callback functions. The "pcb" argument is the current TCP |
| * connection control block, and the "arg" argument is the argument |
| * that will be passed to the callbacks. |
| * |
| * @param pcb tcp_pcb to set the callback argument |
| * @param arg void pointer argument to pass to callback functions |
| */ |
| void |
| tcp_arg(struct tcp_pcb *pcb, void *arg) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| /* This function is allowed to be called for both listen pcbs and |
| connection pcbs. */ |
| if (pcb != NULL) { |
| pcb->callback_arg = arg; |
| } |
| } |
| #if LWIP_CALLBACK_API |
| |
| /** |
| * @ingroup tcp_raw |
| * Sets the callback function that will be called when new data |
| * arrives. The callback function will be passed a NULL pbuf to |
| * indicate that the remote host has closed the connection. If the |
| * callback function returns ERR_OK or ERR_ABRT it must have |
| * freed the pbuf, otherwise it must not have freed it. |
| * |
| * @param pcb tcp_pcb to set the recv callback |
| * @param recv callback function to call for this pcb when data is received |
| */ |
| void |
| tcp_recv(struct tcp_pcb *pcb, tcp_recv_fn recv) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| if (pcb != NULL) { |
| LWIP_ASSERT("invalid socket state for recv callback", pcb->state != LISTEN); |
| pcb->recv = recv; |
| } |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Specifies the callback function that should be called when data has |
| * successfully been received (i.e., acknowledged) by the remote |
| * host. The len argument passed to the callback function gives the |
| * amount bytes that was acknowledged by the last acknowledgment. |
| * |
| * @param pcb tcp_pcb to set the sent callback |
| * @param sent callback function to call for this pcb when data is successfully sent |
| */ |
| void |
| tcp_sent(struct tcp_pcb *pcb, tcp_sent_fn sent) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| if (pcb != NULL) { |
| LWIP_ASSERT("invalid socket state for sent callback", pcb->state != LISTEN); |
| pcb->sent = sent; |
| } |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Used to specify the function that should be called when a fatal error |
| * has occurred on the connection. |
| * |
| * If a connection is aborted because of an error, the application is |
| * alerted of this event by the err callback. Errors that might abort a |
| * connection are when there is a shortage of memory. The callback |
| * function to be called is set using the tcp_err() function. |
| * |
| * @note The corresponding pcb is already freed when this callback is called! |
| * |
| * @param pcb tcp_pcb to set the err callback |
| * @param err callback function to call for this pcb when a fatal error |
| * has occurred on the connection |
| */ |
| void |
| tcp_err(struct tcp_pcb *pcb, tcp_err_fn err) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| if (pcb != NULL) { |
| LWIP_ASSERT("invalid socket state for err callback", pcb->state != LISTEN); |
| pcb->errf = err; |
| } |
| } |
| |
| /** |
| * @ingroup tcp_raw |
| * Used for specifying the function that should be called when a |
| * LISTENing connection has been connected to another host. |
| * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB |
| * |
| * @param pcb tcp_pcb to set the accept callback |
| * @param accept callback function to call for this pcb when LISTENing |
| * connection has been connected to another host |
| */ |
| void |
| tcp_accept(struct tcp_pcb *pcb, tcp_accept_fn accept) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| if ((pcb != NULL) && (pcb->state == LISTEN)) { |
| struct tcp_pcb_listen *lpcb = (struct tcp_pcb_listen *)pcb; |
| lpcb->accept = accept; |
| } |
| } |
| #endif /* LWIP_CALLBACK_API */ |
| |
| |
| /** |
| * @ingroup tcp_raw |
| * Specifies the polling interval and the callback function that should |
| * be called to poll the application. The interval is specified in |
| * number of TCP coarse grained timer shots, which typically occurs |
| * twice a second. An interval of 10 means that the application would |
| * be polled every 5 seconds. |
| * |
| * When a connection is idle (i.e., no data is either transmitted or |
| * received), lwIP will repeatedly poll the application by calling a |
| * specified callback function. This can be used either as a watchdog |
| * timer for killing connections that have stayed idle for too long, or |
| * as a method of waiting for memory to become available. For instance, |
| * if a call to tcp_write() has failed because memory wasn't available, |
| * the application may use the polling functionality to call tcp_write() |
| * again when the connection has been idle for a while. |
| */ |
| void |
| tcp_poll(struct tcp_pcb *pcb, tcp_poll_fn poll, u8_t interval) |
| { |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| LWIP_ERROR("tcp_poll: invalid pcb", pcb != NULL, return); |
| LWIP_ASSERT("invalid socket state for poll", pcb->state != LISTEN); |
| |
| #if LWIP_CALLBACK_API |
| pcb->poll = poll; |
| #else /* LWIP_CALLBACK_API */ |
| LWIP_UNUSED_ARG(poll); |
| #endif /* LWIP_CALLBACK_API */ |
| pcb->pollinterval = interval; |
| } |
| |
| /** |
| * Purges a TCP PCB. Removes any buffered data and frees the buffer memory |
| * (pcb->ooseq, pcb->unsent and pcb->unacked are freed). |
| * |
| * @param pcb tcp_pcb to purge. The pcb itself is not deallocated! |
| */ |
| void |
| tcp_pcb_purge(struct tcp_pcb *pcb) |
| { |
| LWIP_ERROR("tcp_pcb_purge: invalid pcb", pcb != NULL, return); |
| |
| if (pcb->state != CLOSED && |
| pcb->state != TIME_WAIT && |
| pcb->state != LISTEN) { |
| |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge\n")); |
| |
| tcp_backlog_accepted(pcb); |
| |
| if (pcb->refused_data != NULL) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->refused_data\n")); |
| pbuf_free(pcb->refused_data); |
| pcb->refused_data = NULL; |
| } |
| if (pcb->unsent != NULL) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: not all data sent\n")); |
| } |
| if (pcb->unacked != NULL) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->unacked\n")); |
| } |
| #if TCP_QUEUE_OOSEQ |
| if (pcb->ooseq != NULL) { |
| LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->ooseq\n")); |
| tcp_free_ooseq(pcb); |
| } |
| #endif /* TCP_QUEUE_OOSEQ */ |
| |
| /* Stop the retransmission timer as it will expect data on unacked |
| queue if it fires */ |
| pcb->rtime = -1; |
| |
| tcp_segs_free(pcb->unsent); |
| tcp_segs_free(pcb->unacked); |
| pcb->unacked = pcb->unsent = NULL; |
| #if TCP_OVERSIZE |
| pcb->unsent_oversize = 0; |
| #endif /* TCP_OVERSIZE */ |
| } |
| } |
| |
| /** |
| * Purges the PCB and removes it from a PCB list. Any delayed ACKs are sent first. |
| * |
| * @param pcblist PCB list to purge. |
| * @param pcb tcp_pcb to purge. The pcb itself is NOT deallocated! |
| */ |
| void |
| tcp_pcb_remove(struct tcp_pcb **pcblist, struct tcp_pcb *pcb) |
| { |
| LWIP_ASSERT("tcp_pcb_remove: invalid pcb", pcb != NULL); |
| LWIP_ASSERT("tcp_pcb_remove: invalid pcblist", pcblist != NULL); |
| |
| TCP_RMV(pcblist, pcb); |
| |
| tcp_pcb_purge(pcb); |
| |
| /* if there is an outstanding delayed ACKs, send it */ |
| if ((pcb->state != TIME_WAIT) && |
| (pcb->state != LISTEN) && |
| (pcb->flags & TF_ACK_DELAY)) { |
| tcp_ack_now(pcb); |
| tcp_output(pcb); |
| } |
| |
| if (pcb->state != LISTEN) { |
| LWIP_ASSERT("unsent segments leaking", pcb->unsent == NULL); |
| LWIP_ASSERT("unacked segments leaking", pcb->unacked == NULL); |
| #if TCP_QUEUE_OOSEQ |
| LWIP_ASSERT("ooseq segments leaking", pcb->ooseq == NULL); |
| #endif /* TCP_QUEUE_OOSEQ */ |
| } |
| |
| pcb->state = CLOSED; |
| /* reset the local port to prevent the pcb from being 'bound' */ |
| pcb->local_port = 0; |
| |
| LWIP_ASSERT("tcp_pcb_remove: tcp_pcbs_sane()", tcp_pcbs_sane()); |
| } |
| |
| /** |
| * Calculates a new initial sequence number for new connections. |
| * |
| * @return u32_t pseudo random sequence number |
| */ |
| u32_t |
| tcp_next_iss(struct tcp_pcb *pcb) |
| { |
| #ifdef LWIP_HOOK_TCP_ISN |
| LWIP_ASSERT("tcp_next_iss: invalid pcb", pcb != NULL); |
| return LWIP_HOOK_TCP_ISN(&pcb->local_ip, pcb->local_port, &pcb->remote_ip, pcb->remote_port); |
| #else /* LWIP_HOOK_TCP_ISN */ |
| static u32_t iss = 6510; |
| |
| LWIP_ASSERT("tcp_next_iss: invalid pcb", pcb != NULL); |
| LWIP_UNUSED_ARG(pcb); |
| |
| iss += tcp_ticks; /* XXX */ |
| return iss; |
| #endif /* LWIP_HOOK_TCP_ISN */ |
| } |
| |
| #if TCP_CALCULATE_EFF_SEND_MSS |
| /** |
| * Calculates the effective send mss that can be used for a specific IP address |
| * by calculating the minimum of TCP_MSS and the mtu (if set) of the target |
| * netif (if not NULL). |
| */ |
| u16_t |
| tcp_eff_send_mss_netif(u16_t sendmss, struct netif *outif, const ip_addr_t *dest) |
| { |
| u16_t mss_s; |
| u16_t mtu; |
| |
| LWIP_UNUSED_ARG(dest); /* in case IPv6 is disabled */ |
| |
| LWIP_ASSERT("tcp_eff_send_mss_netif: invalid dst_ip", dest != NULL); |
| |
| #if LWIP_IPV6 |
| #if LWIP_IPV4 |
| if (IP_IS_V6(dest)) |
| #endif /* LWIP_IPV4 */ |
| { |
| /* First look in destination cache, to see if there is a Path MTU. */ |
| mtu = nd6_get_destination_mtu(ip_2_ip6(dest), outif); |
| } |
| #if LWIP_IPV4 |
| else |
| #endif /* LWIP_IPV4 */ |
| #endif /* LWIP_IPV6 */ |
| #if LWIP_IPV4 |
| { |
| if (outif == NULL) { |
| return sendmss; |
| } |
| mtu = outif->mtu; |
| } |
| #endif /* LWIP_IPV4 */ |
| |
| if (mtu != 0) { |
| u16_t offset; |
| #if LWIP_IPV6 |
| #if LWIP_IPV4 |
| if (IP_IS_V6(dest)) |
| #endif /* LWIP_IPV4 */ |
| { |
| offset = IP6_HLEN + TCP_HLEN; |
| } |
| #if LWIP_IPV4 |
| else |
| #endif /* LWIP_IPV4 */ |
| #endif /* LWIP_IPV6 */ |
| #if LWIP_IPV4 |
| { |
| offset = IP_HLEN + TCP_HLEN; |
| } |
| #endif /* LWIP_IPV4 */ |
| mss_s = (mtu > offset) ? (u16_t)(mtu - offset) : 0; |
| /* RFC 1122, chap 4.2.2.6: |
| * Eff.snd.MSS = min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize |
| * We correct for TCP options in tcp_write(), and don't support IP options. |
| */ |
| sendmss = LWIP_MIN(sendmss, mss_s); |
| } |
| return sendmss; |
| } |
| #endif /* TCP_CALCULATE_EFF_SEND_MSS */ |
| |
| /** Helper function for tcp_netif_ip_addr_changed() that iterates a pcb list */ |
| static void |
| tcp_netif_ip_addr_changed_pcblist(const ip_addr_t *old_addr, struct tcp_pcb *pcb_list) |
| { |
| struct tcp_pcb *pcb; |
| pcb = pcb_list; |
| |
| LWIP_ASSERT("tcp_netif_ip_addr_changed_pcblist: invalid old_addr", old_addr != NULL); |
| |
| while (pcb != NULL) { |
| /* PCB bound to current local interface address? */ |
| if (ip_addr_cmp(&pcb->local_ip, old_addr) |
| #if LWIP_AUTOIP |
| /* connections to link-local addresses must persist (RFC3927 ch. 1.9) */ |
| && (!IP_IS_V4_VAL(pcb->local_ip) || !ip4_addr_islinklocal(ip_2_ip4(&pcb->local_ip))) |
| #endif /* LWIP_AUTOIP */ |
| ) { |
| /* this connection must be aborted */ |
| struct tcp_pcb *next = pcb->next; |
| LWIP_DEBUGF(NETIF_DEBUG | LWIP_DBG_STATE, ("netif_set_ipaddr: aborting TCP pcb %p\n", (void *)pcb)); |
| tcp_abort(pcb); |
| pcb = next; |
| } else { |
| pcb = pcb->next; |
| } |
| } |
| } |
| |
| /** This function is called from netif.c when address is changed or netif is removed |
| * |
| * @param old_addr IP address of the netif before change |
| * @param new_addr IP address of the netif after change or NULL if netif has been removed |
| */ |
| void |
| tcp_netif_ip_addr_changed(const ip_addr_t *old_addr, const ip_addr_t *new_addr) |
| { |
| struct tcp_pcb_listen *lpcb; |
| |
| if (!ip_addr_isany(old_addr)) { |
| tcp_netif_ip_addr_changed_pcblist(old_addr, tcp_active_pcbs); |
| tcp_netif_ip_addr_changed_pcblist(old_addr, tcp_bound_pcbs); |
| |
| if (!ip_addr_isany(new_addr)) { |
| /* PCB bound to current local interface address? */ |
| for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) { |
| /* PCB bound to current local interface address? */ |
| if (ip_addr_cmp(&lpcb->local_ip, old_addr)) { |
| /* The PCB is listening to the old ipaddr and |
| * is set to listen to the new one instead */ |
| ip_addr_copy(lpcb->local_ip, *new_addr); |
| } |
| } |
| } |
| } |
| } |
| |
| const char * |
| tcp_debug_state_str(enum tcp_state s) |
| { |
| return tcp_state_str[s]; |
| } |
| |
| err_t |
| tcp_tcp_get_tcp_addrinfo(struct tcp_pcb *pcb, int local, ip_addr_t *addr, u16_t *port) |
| { |
| if (pcb) { |
| if (local) { |
| if (addr) { |
| *addr = pcb->local_ip; |
| } |
| if (port) { |
| *port = pcb->local_port; |
| } |
| } else { |
| if (addr) { |
| *addr = pcb->remote_ip; |
| } |
| if (port) { |
| *port = pcb->remote_port; |
| } |
| } |
| return ERR_OK; |
| } |
| return ERR_VAL; |
| } |
| |
| #if TCP_QUEUE_OOSEQ |
| /* Free all ooseq pbufs (and possibly reset SACK state) */ |
| void |
| tcp_free_ooseq(struct tcp_pcb *pcb) |
| { |
| if (pcb->ooseq) { |
| tcp_segs_free(pcb->ooseq); |
| pcb->ooseq = NULL; |
| #if LWIP_TCP_SACK_OUT |
| memset(pcb->rcv_sacks, 0, sizeof(pcb->rcv_sacks)); |
| #endif /* LWIP_TCP_SACK_OUT */ |
| } |
| } |
| #endif /* TCP_QUEUE_OOSEQ */ |
| |
| #if TCP_DEBUG || TCP_INPUT_DEBUG || TCP_OUTPUT_DEBUG |
| /** |
| * Print a tcp header for debugging purposes. |
| * |
| * @param tcphdr pointer to a struct tcp_hdr |
| */ |
| void |
| tcp_debug_print(struct tcp_hdr *tcphdr) |
| { |
| LWIP_DEBUGF(TCP_DEBUG, ("TCP header:\n")); |
| LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); |
| LWIP_DEBUGF(TCP_DEBUG, ("| %5"U16_F" | %5"U16_F" | (src port, dest port)\n", |
| lwip_ntohs(tcphdr->src), lwip_ntohs(tcphdr->dest))); |
| LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); |
| LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (seq no)\n", |
| lwip_ntohl(tcphdr->seqno))); |
| LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); |
| LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (ack no)\n", |
| lwip_ntohl(tcphdr->ackno))); |
| LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); |
| LWIP_DEBUGF(TCP_DEBUG, ("| %2"U16_F" | |%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"| %5"U16_F" | (hdrlen, flags (", |
| TCPH_HDRLEN(tcphdr), |
| (u16_t)(TCPH_FLAGS(tcphdr) >> 5 & 1), |
| (u16_t)(TCPH_FLAGS(tcphdr) >> 4 & 1), |
| (u16_t)(TCPH_FLAGS(tcphdr) >> 3 & 1), |
| (u16_t)(TCPH_FLAGS(tcphdr) >> 2 & 1), |
| (u16_t)(TCPH_FLAGS(tcphdr) >> 1 & 1), |
| (u16_t)(TCPH_FLAGS(tcphdr) & 1), |
| lwip_ntohs(tcphdr->wnd))); |
| tcp_debug_print_flags(TCPH_FLAGS(tcphdr)); |
| LWIP_DEBUGF(TCP_DEBUG, ("), win)\n")); |
| LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); |
| LWIP_DEBUGF(TCP_DEBUG, ("| 0x%04"X16_F" | %5"U16_F" | (chksum, urgp)\n", |
| lwip_ntohs(tcphdr->chksum), lwip_ntohs(tcphdr->urgp))); |
| LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); |
| } |
| |
| /** |
| * Print a tcp state for debugging purposes. |
| * |
| * @param s enum tcp_state to print |
| */ |
| void |
| tcp_debug_print_state(enum tcp_state s) |
| { |
| LWIP_DEBUGF(TCP_DEBUG, ("State: %s\n", tcp_state_str[s])); |
| } |
| |
| /** |
| * Print tcp flags for debugging purposes. |
| * |
| * @param flags tcp flags, all active flags are printed |
| */ |
| void |
| tcp_debug_print_flags(u8_t flags) |
| { |
| if (flags & TCP_FIN) { |
| LWIP_DEBUGF(TCP_DEBUG, ("FIN ")); |
| } |
| if (flags & TCP_SYN) { |
| LWIP_DEBUGF(TCP_DEBUG, ("SYN ")); |
| } |
| if (flags & TCP_RST) { |
| LWIP_DEBUGF(TCP_DEBUG, ("RST ")); |
| } |
| if (flags & TCP_PSH) { |
| LWIP_DEBUGF(TCP_DEBUG, ("PSH ")); |
| } |
| if (flags & TCP_ACK) { |
| LWIP_DEBUGF(TCP_DEBUG, ("ACK ")); |
| } |
| if (flags & TCP_URG) { |
| LWIP_DEBUGF(TCP_DEBUG, ("URG ")); |
| } |
| if (flags & TCP_ECE) { |
| LWIP_DEBUGF(TCP_DEBUG, ("ECE ")); |
| } |
| if (flags & TCP_CWR) { |
| LWIP_DEBUGF(TCP_DEBUG, ("CWR ")); |
| } |
| LWIP_DEBUGF(TCP_DEBUG, ("\n")); |
| } |
| |
| /** |
| * Print all tcp_pcbs in every list for debugging purposes. |
| */ |
| void |
| tcp_debug_print_pcbs(void) |
| { |
| struct tcp_pcb *pcb; |
| struct tcp_pcb_listen *pcbl; |
| |
| LWIP_DEBUGF(TCP_DEBUG, ("Active PCB states:\n")); |
| for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { |
| LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ", |
| pcb->local_port, pcb->remote_port, |
| pcb->snd_nxt, pcb->rcv_nxt)); |
| tcp_debug_print_state(pcb->state); |
| } |
| |
| LWIP_DEBUGF(TCP_DEBUG, ("Listen PCB states:\n")); |
| for (pcbl = tcp_listen_pcbs.listen_pcbs; pcbl != NULL; pcbl = pcbl->next) { |
| LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F" ", pcbl->local_port)); |
| tcp_debug_print_state(pcbl->state); |
| } |
| |
| LWIP_DEBUGF(TCP_DEBUG, ("TIME-WAIT PCB states:\n")); |
| for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) { |
| LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ", |
| pcb->local_port, pcb->remote_port, |
| pcb->snd_nxt, pcb->rcv_nxt)); |
| tcp_debug_print_state(pcb->state); |
| } |
| } |
| |
| /** |
| * Check state consistency of the tcp_pcb lists. |
| */ |
| s16_t |
| tcp_pcbs_sane(void) |
| { |
| struct tcp_pcb *pcb; |
| for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { |
| LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != CLOSED", pcb->state != CLOSED); |
| LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != LISTEN", pcb->state != LISTEN); |
| LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != TIME-WAIT", pcb->state != TIME_WAIT); |
| } |
| for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) { |
| LWIP_ASSERT("tcp_pcbs_sane: tw pcb->state == TIME-WAIT", pcb->state == TIME_WAIT); |
| } |
| return 1; |
| } |
| #endif /* TCP_DEBUG */ |
| |
| #if LWIP_TCP_PCB_NUM_EXT_ARGS |
| /** |
| * @defgroup tcp_raw_extargs ext arguments |
| * @ingroup tcp_raw |
| * Additional data storage per tcp pcb\n |
| * @see @ref tcp_raw |
| * |
| * When LWIP_TCP_PCB_NUM_EXT_ARGS is > 0, every tcp pcb (including listen pcb) |
| * includes a number of additional argument entries in an array. |
| * |
| * To support memory management, in addition to a 'void *', callbacks can be |
| * provided to manage transition from listening pcbs to connections and to |
| * deallocate memory when a pcb is deallocated (see struct @ref tcp_ext_arg_callbacks). |
| * |
| * After allocating this index, use @ref tcp_ext_arg_set and @ref tcp_ext_arg_get |
| * to store and load arguments from this index for a given pcb. |
| */ |
| |
| static u8_t tcp_ext_arg_id; |
| |
| /** |
| * @ingroup tcp_raw_extargs |
| * Allocate an index to store data in ext_args member of struct tcp_pcb. |
| * Returned value is an index in mentioned array. |
| * The index is *global* over all pcbs! |
| * |
| * When @ref LWIP_TCP_PCB_NUM_EXT_ARGS is > 0, every tcp pcb (including listen pcb) |
| * includes a number of additional argument entries in an array. |
| * |
| * To support memory management, in addition to a 'void *', callbacks can be |
| * provided to manage transition from listening pcbs to connections and to |
| * deallocate memory when a pcb is deallocated (see struct @ref tcp_ext_arg_callbacks). |
| * |
| * After allocating this index, use @ref tcp_ext_arg_set and @ref tcp_ext_arg_get |
| * to store and load arguments from this index for a given pcb. |
| * |
| * @return a unique index into struct tcp_pcb.ext_args |
| */ |
| u8_t |
| tcp_ext_arg_alloc_id(void) |
| { |
| u8_t result = tcp_ext_arg_id; |
| tcp_ext_arg_id++; |
| |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| #if LWIP_TCP_PCB_NUM_EXT_ARGS >= 255 |
| #error LWIP_TCP_PCB_NUM_EXT_ARGS |
| #endif |
| LWIP_ASSERT("Increase LWIP_TCP_PCB_NUM_EXT_ARGS in lwipopts.h", result < LWIP_TCP_PCB_NUM_EXT_ARGS); |
| return result; |
| } |
| |
| /** |
| * @ingroup tcp_raw_extargs |
| * Set callbacks for a given index of ext_args on the specified pcb. |
| * |
| * @param pcb tcp_pcb for which to set the callback |
| * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id) |
| * @param callbacks callback table (const since it is referenced, not copied!) |
| */ |
| void |
| tcp_ext_arg_set_callbacks(struct tcp_pcb *pcb, uint8_t id, const struct tcp_ext_arg_callbacks * const callbacks) |
| { |
| LWIP_ASSERT("pcb != NULL", pcb != NULL); |
| LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS); |
| LWIP_ASSERT("callbacks != NULL", callbacks != NULL); |
| |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| pcb->ext_args[id].callbacks = callbacks; |
| } |
| |
| /** |
| * @ingroup tcp_raw_extargs |
| * Set data for a given index of ext_args on the specified pcb. |
| * |
| * @param pcb tcp_pcb for which to set the data |
| * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id) |
| * @param arg data pointer to set |
| */ |
| void tcp_ext_arg_set(struct tcp_pcb *pcb, uint8_t id, void *arg) |
| { |
| LWIP_ASSERT("pcb != NULL", pcb != NULL); |
| LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS); |
| |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| pcb->ext_args[id].data = arg; |
| } |
| |
| /** |
| * @ingroup tcp_raw_extargs |
| * Set data for a given index of ext_args on the specified pcb. |
| * |
| * @param pcb tcp_pcb for which to set the data |
| * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id) |
| * @return data pointer at the given index |
| */ |
| void *tcp_ext_arg_get(const struct tcp_pcb *pcb, uint8_t id) |
| { |
| LWIP_ASSERT("pcb != NULL", pcb != NULL); |
| LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS); |
| |
| LWIP_ASSERT_CORE_LOCKED(); |
| |
| return pcb->ext_args[id].data; |
| } |
| |
| /** This function calls the "destroy" callback for all ext_args once a pcb is |
| * freed. |
| */ |
| static void |
| tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args *ext_args) |
| { |
| int i; |
| LWIP_ASSERT("ext_args != NULL", ext_args != NULL); |
| |
| for (i = 0; i < LWIP_TCP_PCB_NUM_EXT_ARGS; i++) { |
| if (ext_args[i].callbacks != NULL) { |
| if (ext_args[i].callbacks->destroy != NULL) { |
| ext_args[i].callbacks->destroy((u8_t)i, ext_args[i].data); |
| } |
| } |
| } |
| } |
| |
| /** This function calls the "passive_open" callback for all ext_args if a connection |
| * is in the process of being accepted. This is called just after the SYN is |
| * received and before a SYN/ACK is sent, to allow to modify the very first |
| * segment sent even on passive open. Naturally, the "accepted" callback of the |
| * pcb has not been called yet! |
| */ |
| err_t |
| tcp_ext_arg_invoke_callbacks_passive_open(struct tcp_pcb_listen *lpcb, struct tcp_pcb *cpcb) |
| { |
| int i; |
| LWIP_ASSERT("lpcb != NULL", lpcb != NULL); |
| LWIP_ASSERT("cpcb != NULL", cpcb != NULL); |
| |
| for (i = 0; i < LWIP_TCP_PCB_NUM_EXT_ARGS; i++) { |
| if (lpcb->ext_args[i].callbacks != NULL) { |
| if (lpcb->ext_args[i].callbacks->passive_open != NULL) { |
| err_t err = lpcb->ext_args[i].callbacks->passive_open((u8_t)i, lpcb, cpcb); |
| if (err != ERR_OK) { |
| return err; |
| } |
| } |
| } |
| } |
| return ERR_OK; |
| } |
| #endif /* LWIP_TCP_PCB_NUM_EXT_ARGS */ |
| |
| #endif /* LWIP_TCP */ |