| /** |
| ****************************************************************************** |
| * @file stm32f2xx_hal_rcc.c |
| * @author MCD Application Team |
| * @brief RCC HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Reset and Clock Control (RCC) peripheral: |
| * + Initialization and de-initialization functions |
| * + Peripheral Control functions |
| * |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2017 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| ============================================================================== |
| ##### RCC specific features ##### |
| ============================================================================== |
| [..] |
| After reset the device is running from Internal High Speed oscillator |
| (HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache |
| and I-Cache are disabled, and all peripherals are off except internal |
| SRAM, Flash and JTAG. |
| (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses; |
| all peripherals mapped on these busses are running at HSI speed. |
| (+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
| (+) All GPIOs are in input floating state, except the JTAG pins which |
| are assigned to be used for debug purpose. |
| |
| [..] |
| Once the device started from reset, the user application has to: |
| (+) Configure the clock source to be used to drive the System clock |
| (if the application needs higher frequency/performance) |
| (+) Configure the System clock frequency and Flash settings |
| (+) Configure the AHB and APB busses prescalers |
| (+) Enable the clock for the peripheral(s) to be used |
| (+) Configure the clock source(s) for peripherals which clocks are not |
| derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG) |
| |
| ##### RCC Limitations ##### |
| ============================================================================== |
| [..] |
| A delay between an RCC peripheral clock enable and the effective peripheral |
| enabling should be taken into account in order to manage the peripheral read/write |
| from/to registers. |
| (+) This delay depends on the peripheral mapping. |
| (+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle |
| after the clock enable bit is set on the hardware register |
| (+) If peripheral is mapped on APB: the delay is 2 APB clock cycle |
| after the clock enable bit is set on the hardware register |
| |
| [..] |
| Implemented Workaround: |
| (+) For AHB & APB peripherals, a dummy read to the peripheral register has been |
| inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro. |
| |
| @endverbatim |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32f2xx_hal.h" |
| |
| /** @addtogroup STM32F2xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup RCC RCC |
| * @brief RCC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_RCC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** @addtogroup RCC_Private_Constants |
| * @{ |
| */ |
| #define CLOCKSWITCH_TIMEOUT_VALUE 5000U /* 5 s */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| #define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() |
| #define MCO1_GPIO_PORT GPIOA |
| #define MCO1_PIN GPIO_PIN_8 |
| |
| #define __MCO2_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE() |
| #define MCO2_GPIO_PORT GPIOC |
| #define MCO2_PIN GPIO_PIN_9 |
| /** |
| * @} |
| */ |
| |
| /* Private variables ---------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Variables RCC Private Variables |
| * @{ |
| */ |
| /** |
| * @} |
| */ |
| /* Private function prototypes -----------------------------------------------*/ |
| /* Private functions ---------------------------------------------------------*/ |
| |
| /** @defgroup RCC_Exported_Functions RCC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] |
| This section provides functions allowing to configure the internal/external oscillators |
| (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1 |
| and APB2). |
| |
| [..] Internal/external clock and PLL configuration |
| (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through |
| the PLL as System clock source. |
| |
| (#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC |
| clock source. |
| |
| (#) HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or |
| through the PLL as System clock source. Can be used also as RTC clock source. |
| |
| (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. |
| |
| (#) PLL (clocked by HSI or HSE), featuring two different output clocks: |
| (++) The first output is used to generate the high speed system clock (up to 120 MHz) |
| (++) The second output is used to generate the clock for the USB OTG FS (48 MHz), |
| the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz). |
| |
| (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE() |
| and if a HSE clock failure occurs(HSE used directly or through PLL as System |
| clock source), the System clocks automatically switched to HSI and an interrupt |
| is generated if enabled. The interrupt is linked to the Cortex-M3 NMI |
| (Non-Maskable Interrupt) exception vector. |
| |
| (#) MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL |
| clock (through a configurable prescaler) on PA8 pin. |
| |
| (#) MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S |
| clock (through a configurable prescaler) on PC9 pin. |
| |
| [..] System, AHB and APB busses clocks configuration |
| (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI, |
| HSE and PLL. |
| The AHB clock (HCLK) is derived from System clock through configurable |
| prescaler and used to clock the CPU, memory and peripherals mapped |
| on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived |
| from AHB clock through configurable prescalers and used to clock |
| the peripherals mapped on these busses. You can use |
| "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. |
| |
| -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: |
| (+@) I2S: the I2S clock can be derived either from a specific PLL (PLLI2S) or |
| from an external clock mapped on the I2S_CKIN pin. |
| You have to use __HAL_RCC_PLLI2S_CONFIG() macro to configure this clock. |
| (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock |
| divided by 2 to 31. You have to use __HAL_RCC_RTC_CONFIG() and __HAL_RCC_RTC_ENABLE() |
| macros to configure this clock. |
| (+@) USB OTG FS, SDIO and RTC: USB OTG FS require a frequency equal to 48 MHz |
| to work correctly, while the SDIO require a frequency equal or lower than |
| to 48. This clock is derived of the main PLL through PLLQ divider. |
| (+@) IWDG clock which is always the LSI clock. |
| |
| (#) For the stm32f2xx devices, the maximum |
| frequency of the SYSCLK and HCLK is 120 MHz, PCLK2 60 MHz and PCLK1 30 MHz. |
| Depending on the device voltage range, the maximum frequency should |
| be adapted accordingly: |
| +-------------------------------------------------------------------------------------+ |
| | Latency | HCLK clock frequency (MHz) | |
| | |---------------------------------------------------------------------| |
| | | voltage range | voltage range | voltage range | voltage range | |
| | | 2.7 V - 3.6 V | 2.4 V - 2.7 V | 2.1 V - 2.4 V | 1.8 V - 2.1 V | |
| |---------------|----------------|----------------|-----------------|-----------------| |
| |0WS(1CPU cycle)|0 < HCLK <= 30 |0 < HCLK <= 24 |0 < HCLK <= 18 |0 < HCLK <= 16 | |
| |---------------|----------------|----------------|-----------------|-----------------| |
| |1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |18 < HCLK <= 36 |16 < HCLK <= 32 | |
| |---------------|----------------|----------------|-----------------|-----------------| |
| |2WS(3CPU cycle)|60 < HCLK <= 90 |48 < HCLK <= 72 |36 < HCLK <= 54 |32 < HCLK <= 48 | |
| |---------------|----------------|----------------|-----------------|-----------------| |
| |3WS(4CPU cycle)|90 < HCLK <= 120|72 < HCLK <= 96 |54 < HCLK <= 72 |48 < HCLK <= 64 | |
| |---------------|----------------|----------------|-----------------|-----------------| |
| |4WS(5CPU cycle)| NA |96 < HCLK <= 120|72 < HCLK <= 90 |64 < HCLK <= 80 | |
| |---------------|----------------|----------------|-----------------|-----------------| |
| |5WS(6CPU cycle)| NA | NA |90 < HCLK <= 108 |80 < HCLK <= 96 | |
| |---------------|----------------|----------------|-----------------|-----------------| |
| |6WS(7CPU cycle)| NA | NA |108 < HCLK <= 120|96 < HCLK <= 112 | |
| |---------------|----------------|----------------|-----------------|-----------------| |
| |7WS(8CPU cycle)| NA | NA | NA |112 < HCLK <= 120| |
| +-------------------------------------------------------------------------------------+ |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Resets the RCC clock configuration to the default reset state. |
| * @note The default reset state of the clock configuration is given below: |
| * - HSI ON and used as system clock source |
| * - HSE, PLL and PLLI2S OFF |
| * - AHB, APB1 and APB2 prescaler set to 1. |
| * - CSS, MCO1 and MCO2 OFF |
| * - All interrupts disabled |
| * @note This function doesn't modify the configuration of the |
| * - Peripheral clocks |
| * - LSI, LSE and RTC clocks |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_DeInit(void) |
| { |
| uint32_t tickstart; |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Set HSION bit to the reset value */ |
| SET_BIT(RCC->CR, RCC_CR_HSION); |
| |
| /* Wait till HSI is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Set HSITRIM[4:0] bits to the reset value */ |
| SET_BIT(RCC->CR, RCC_CR_HSITRIM_4); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Reset CFGR register (HSI is selected as system clock source) */ |
| RCC->CFGR = 0x00000000u; |
| |
| /* Wait till clock switch is ready */ |
| while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Clear CR register in 3 steps: first to clear HSEON, HSEBYP and CSSON bits */ |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSEBYP | RCC_CR_CSSON); |
| |
| /* Wait till HSE is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Second step is to clear PLLON bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_PLLON); |
| |
| /* Wait till PLL is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Once PLL is OFF, reset PLLCFGR register to default value */ |
| RCC->PLLCFGR = RCC_PLLCFGR_PLLM_4 | RCC_PLLCFGR_PLLN_6 | RCC_PLLCFGR_PLLN_7 | RCC_PLLCFGR_PLLQ_2; |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Third step is to clear PLLI2SON bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_PLLI2SON); |
| |
| /* Wait till PLLI2S is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLI2SRDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Once PLLI2S is OFF, reset PLLI2SCFGR register to default value */ |
| RCC->PLLI2SCFGR = RCC_PLLI2SCFGR_PLLI2SN_6 | RCC_PLLI2SCFGR_PLLI2SN_7 | RCC_PLLI2SCFGR_PLLI2SR_1; |
| |
| /* Disable all interrupts */ |
| RCC->CIR = 0x00000000u; |
| |
| /* Clear all flags */ |
| RCC->CSR = 0xFFFFFFFFu; |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = HSI_VALUE; |
| |
| /* Adapt Systick interrupt period */ |
| if(HAL_InitTick(uwTickPrio) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| return HAL_OK; |
| } |
| } |
| |
| /** |
| * @brief Initializes the RCC Oscillators according to the specified parameters in the |
| * RCC_OscInitTypeDef. |
| * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC Oscillators. |
| * @note The PLL is not disabled when used as system clock. |
| * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not |
| * supported by this API. User should request a transition to LSE Off |
| * first and then LSE On or LSE Bypass. |
| * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not |
| * supported by this API. User should request a transition to HSE Off |
| * first and then HSE On or HSE Bypass. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| uint32_t tickstart; |
| |
| /* Check Null pointer */ |
| if(RCC_OscInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
| /*------------------------------- HSE Configuration ------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
| /* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */ |
| if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) ||\ |
| ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE))) |
| { |
| if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Set the new HSE configuration ---------------------------------------*/ |
| __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
| |
| /* Check the HSE State */ |
| if((RCC_OscInitStruct->HSEState) != RCC_HSE_OFF) |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is bypassed or disabled */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*----------------------------- HSI Configuration --------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
| assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
| |
| /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ |
| if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) ||\ |
| ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI))) |
| { |
| /* When HSI is used as system clock it will not disabled */ |
| if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) |
| { |
| return HAL_ERROR; |
| } |
| /* Otherwise, just the calibration is allowed */ |
| else |
| { |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value. */ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| } |
| else |
| { |
| /* Check the HSI State */ |
| if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF) |
| { |
| /* Enable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value. */ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*------------------------------ LSI Configuration -------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
| |
| /* Check the LSI State */ |
| if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF) |
| { |
| /* Enable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| /*------------------------------ LSE Configuration -------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
| { |
| FlagStatus pwrclkchanged = RESET; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
| |
| /* Update LSE configuration in Backup Domain control register */ |
| /* Requires to enable write access to Backup Domain of necessary */ |
| if(__HAL_RCC_PWR_IS_CLK_DISABLED()) |
| { |
| __HAL_RCC_PWR_CLK_ENABLE(); |
| pwrclkchanged = SET; |
| } |
| |
| /* Enable write access to Backup domain */ |
| PWR->CR |= PWR_CR_DBP; |
| |
| if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
| { |
| /* Enable write access to Backup domain */ |
| SET_BIT(PWR->CR, PWR_CR_DBP); |
| |
| /* Wait for Backup domain Write protection disable */ |
| tickstart = HAL_GetTick(); |
| |
| while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
| { |
| if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Set the new LSE configuration -----------------------------------------*/ |
| __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
| /* Check the LSE State */ |
| if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF) |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Restore clock configuration if changed */ |
| if(pwrclkchanged == SET) |
| { |
| __HAL_RCC_PWR_CLK_DISABLE(); |
| } |
| } |
| /*-------------------------------- PLL Configuration -----------------------*/ |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
| if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) |
| { |
| /* Check if the PLL is used as system clock or not */ |
| if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) |
| { |
| if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
| assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); |
| assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); |
| assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); |
| assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); |
| |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Configure the main PLL clock source, multiplication and division factors. */ |
| __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
| RCC_OscInitStruct->PLL.PLLM, |
| RCC_OscInitStruct->PLL.PLLN, |
| RCC_OscInitStruct->PLL.PLLP, |
| RCC_OscInitStruct->PLL.PLLQ); |
| |
| /* Enable the main PLL. */ |
| __HAL_RCC_PLL_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| else |
| { |
| /* Check if there is a request to disable the PLL used as System clock source */ |
| if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Do not return HAL_ERROR if request repeats the current configuration */ |
| uint32_t pllcfgr = RCC->PLLCFGR; |
| |
| if((READ_BIT(pllcfgr, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || |
| (READ_BIT(pllcfgr, RCC_PLLCFGR_PLLM) != RCC_OscInitStruct->PLL.PLLM) || |
| ((READ_BIT(pllcfgr, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos) != RCC_OscInitStruct->PLL.PLLN) || |
| (READ_BIT(pllcfgr, RCC_PLLCFGR_PLLP) != RCC_OscInitStruct->PLL.PLLP) || |
| (READ_BIT(pllcfgr, RCC_PLLCFGR_PLLQ) != RCC_OscInitStruct->PLL.PLLQ)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| } |
| } |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the CPU, AHB and APB busses clocks according to the specified |
| * parameters in the RCC_ClkInitStruct. |
| * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC peripheral. |
| * @param FLatency FLASH Latency, this parameter depend on device selected |
| * |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
| * and updated by HAL_RCC_GetHCLKFreq() function called within this function |
| * |
| * @note The HSI is used (enabled by hardware) as system clock source after |
| * startup from Reset, wake-up from STOP and STANDBY mode, or in case |
| * of failure of the HSE used directly or indirectly as system clock |
| * (if the Clock Security System CSS is enabled). |
| * |
| * @note A switch from one clock source to another occurs only if the target |
| * clock source is ready (clock stable after startup delay or PLL locked). |
| * If a clock source which is not yet ready is selected, the switch will |
| * occur when the clock source will be ready. |
| * |
| * @note Depending on the device voltage range, the software has to set correctly |
| * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency |
| * (for more details refer to section above "Initialization/de-initialization functions") |
| * @retval None |
| */ |
| HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
| { |
| uint32_t tickstart; |
| |
| /* Check Null pointer */ |
| if(RCC_ClkInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
| assert_param(IS_FLASH_LATENCY(FLatency)); |
| |
| /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
| must be correctly programmed according to the frequency of the CPU clock |
| (HCLK) and the supply voltage of the device. */ |
| |
| /* Increasing the number of wait states because of higher CPU frequency */ |
| if(FLatency > __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if(__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| /*-------------------------- HCLK Configuration --------------------------*/ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
| { |
| /* Set the highest APBx dividers in order to ensure that we do not go through |
| a non-spec phase whatever we decrease or increase HCLK. */ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_HCLK_DIV16); |
| } |
| |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, (RCC_HCLK_DIV16 << 3U)); |
| } |
| |
| /* Set the new HCLK clock divider */ |
| assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
| } |
| |
| /*------------------------- SYSCLK Configuration ---------------------------*/ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
| { |
| assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
| |
| /* HSE is selected as System Clock Source */ |
| if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
| { |
| /* Check the HSE ready flag */ |
| if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* PLL is selected as System Clock Source */ |
| else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
| { |
| /* Check the PLL ready flag */ |
| if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* HSI is selected as System Clock Source */ |
| else |
| { |
| /* Check the HSI ready flag */ |
| if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Decreasing the number of wait states because of lower CPU frequency */ |
| if(FLatency < __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if(__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| /*-------------------------- PCLK1 Configuration ---------------------------*/ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider); |
| } |
| |
| /*-------------------------- PCLK2 Configuration ---------------------------*/ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
| { |
| assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U)); |
| } |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)]; |
| |
| /* Configure the source of time base considering new system clocks settings */ |
| HAL_InitTick (uwTickPrio); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
| * @brief RCC clocks control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides a set of functions allowing to control the RCC Clocks |
| frequencies. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9). |
| * @note PA8/PC9 should be configured in alternate function mode. |
| * @param RCC_MCOx specifies the output direction for the clock source. |
| * This parameter can be one of the following values: |
| * @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8). |
| * @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9). |
| * @param RCC_MCOSource specifies the clock source to output. |
| * This parameter can be one of the following values: |
| * @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source |
| * @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source |
| * @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source |
| * @arg RCC_MCO1SOURCE_PLLCLK: main PLL clock selected as MCO1 source |
| * @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source |
| * @arg RCC_MCO2SOURCE_PLLI2SCLK: PLLI2S clock selected as MCO2 source |
| * @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source |
| * @arg RCC_MCO2SOURCE_PLLCLK: main PLL clock selected as MCO2 source |
| * @param RCC_MCODiv specifies the MCOx prescaler. |
| * This parameter can be one of the following values: |
| * @arg RCC_MCODIV_1: no division applied to MCOx clock |
| * @arg RCC_MCODIV_2: division by 2 applied to MCOx clock |
| * @arg RCC_MCODIV_3: division by 3 applied to MCOx clock |
| * @arg RCC_MCODIV_4: division by 4 applied to MCOx clock |
| * @arg RCC_MCODIV_5: division by 5 applied to MCOx clock |
| * @retval None |
| */ |
| void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
| { |
| GPIO_InitTypeDef GPIO_InitStruct; |
| /* Check the parameters */ |
| assert_param(IS_RCC_MCO(RCC_MCOx)); |
| assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
| /* RCC_MCO1 */ |
| if(RCC_MCOx == RCC_MCO1) |
| { |
| assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
| |
| /* MCO1 Clock Enable */ |
| __MCO1_CLK_ENABLE(); |
| |
| /* Configure the MCO1 pin in alternate function mode */ |
| GPIO_InitStruct.Pin = MCO1_PIN; |
| GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; |
| GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; |
| GPIO_InitStruct.Pull = GPIO_NOPULL; |
| GPIO_InitStruct.Alternate = GPIO_AF0_MCO; |
| HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct); |
| |
| /* Mask MCO1 and MCO1PRE[2:0] bits then Select MCO1 clock source and prescaler */ |
| MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv)); |
| } |
| else |
| { |
| assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource)); |
| |
| /* MCO2 Clock Enable */ |
| __MCO2_CLK_ENABLE(); |
| |
| /* Configure the MCO2 pin in alternate function mode */ |
| GPIO_InitStruct.Pin = MCO2_PIN; |
| GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; |
| GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; |
| GPIO_InitStruct.Pull = GPIO_NOPULL; |
| GPIO_InitStruct.Alternate = GPIO_AF0_MCO; |
| HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct); |
| |
| /* Mask MCO2 and MCO2PRE[2:0] bits then Select MCO2 clock source and prescaler */ |
| MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 3U))); |
| } |
| } |
| |
| /** |
| * @brief Enables the Clock Security System. |
| * @note If a failure is detected on the HSE oscillator clock, this oscillator |
| * is automatically disabled and an interrupt is generated to inform the |
| * software about the failure (Clock Security System Interrupt, CSSI), |
| * allowing the MCU to perform rescue operations. The CSSI is linked to |
| * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector. |
| * @retval None |
| */ |
| void HAL_RCC_EnableCSS(void) |
| { |
| *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE; |
| } |
| |
| /** |
| * @brief Disables the Clock Security System. |
| * @retval None |
| */ |
| void HAL_RCC_DisableCSS(void) |
| { |
| *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE; |
| } |
| |
| /** |
| * @brief Returns the SYSCLK frequency |
| * |
| * @note The system frequency computed by this function is not the real |
| * frequency in the chip. It is calculated based on the predefined |
| * constant and the selected clock source: |
| * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) |
| * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) |
| * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**) |
| * or HSI_VALUE(*) multiplied/divided by the PLL factors. |
| * @note (*) HSI_VALUE is a constant defined in stm32f2xx_hal_conf.h file (default value |
| * 16 MHz) but the real value may vary depending on the variations |
| * in voltage and temperature. |
| * @note (**) HSE_VALUE is a constant defined in stm32f2xx_hal_conf.h file (default value |
| * 25 MHz), user has to ensure that HSE_VALUE is same as the real |
| * frequency of the crystal used. Otherwise, this function may |
| * have wrong result. |
| * |
| * @note The result of this function could be not correct when using fractional |
| * value for HSE crystal. |
| * |
| * @note This function can be used by the user application to compute the |
| * baudrate for the communication peripherals or configure other parameters. |
| * |
| * @note Each time SYSCLK changes, this function must be called to update the |
| * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * |
| * @retval SYSCLK frequency |
| */ |
| uint32_t HAL_RCC_GetSysClockFreq(void) |
| { |
| uint32_t pllm = 0U, pllvco = 0U, pllp = 0U; |
| uint32_t sysclockfreq = 0U; |
| |
| /* Get SYSCLK source -------------------------------------------------------*/ |
| switch (RCC->CFGR & RCC_CFGR_SWS) |
| { |
| case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */ |
| { |
| sysclockfreq = HSI_VALUE; |
| break; |
| } |
| case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */ |
| { |
| sysclockfreq = HSE_VALUE; |
| break; |
| } |
| case RCC_CFGR_SWS_PLL: /* PLL used as system clock source */ |
| { |
| /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN |
| SYSCLK = PLL_VCO / PLLP */ |
| pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM; |
| if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI) |
| { |
| /* HSE used as PLL clock source */ |
| pllvco = (uint32_t) ((((uint64_t) HSE_VALUE * ((uint64_t) ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)))) / (uint64_t)pllm); |
| } |
| else |
| { |
| /* HSI used as PLL clock source */ |
| pllvco = (uint32_t) ((((uint64_t) HSI_VALUE * ((uint64_t) ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)))) / (uint64_t)pllm); |
| } |
| pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> RCC_PLLCFGR_PLLP_Pos) + 1U) *2U); |
| |
| sysclockfreq = pllvco/pllp; |
| break; |
| } |
| default: |
| { |
| sysclockfreq = HSI_VALUE; |
| break; |
| } |
| } |
| return sysclockfreq; |
| } |
| |
| /** |
| * @brief Returns the HCLK frequency |
| * @note Each time HCLK changes, this function must be called to update the |
| * right HCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
| * and updated within this function |
| * @retval HCLK frequency |
| */ |
| uint32_t HAL_RCC_GetHCLKFreq(void) |
| { |
| return SystemCoreClock; |
| } |
| |
| /** |
| * @brief Returns the PCLK1 frequency |
| * @note Each time PCLK1 changes, this function must be called to update the |
| * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK1 frequency |
| */ |
| uint32_t HAL_RCC_GetPCLK1Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
| return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]); |
| } |
| |
| /** |
| * @brief Returns the PCLK2 frequency |
| * @note Each time PCLK2 changes, this function must be called to update the |
| * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK2 frequency |
| */ |
| uint32_t HAL_RCC_GetPCLK2Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ |
| return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]); |
| } |
| |
| /** |
| * @brief Configures the RCC_OscInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * will be configured. |
| * @retval None |
| */ |
| void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| /* Set all possible values for the Oscillator type parameter ---------------*/ |
| RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; |
| |
| /* Get the HSE configuration -----------------------------------------------*/ |
| if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
| } |
| else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
| } |
| |
| /* Get the HSI configuration -----------------------------------------------*/ |
| if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION) |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
| } |
| |
| RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM)); |
| |
| /* Get the LSE configuration -----------------------------------------------*/ |
| if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
| } |
| else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
| } |
| |
| /* Get the LSI configuration -----------------------------------------------*/ |
| if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION) |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
| } |
| |
| /* Get the PLL configuration -----------------------------------------------*/ |
| if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON) |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
| } |
| RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); |
| RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM); |
| RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)); |
| RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1U) >> POSITION_VAL(RCC_PLLCFGR_PLLP)); |
| RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ)); |
| } |
| |
| /** |
| * @brief Configures the RCC_ClkInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that |
| * will be configured. |
| * @param pFLatency Pointer on the Flash Latency. |
| * @retval None |
| */ |
| void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
| { |
| /* Set all possible values for the Clock type parameter --------------------*/ |
| RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; |
| |
| /* Get the SYSCLK configuration --------------------------------------------*/ |
| RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); |
| |
| /* Get the HCLK configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); |
| |
| /* Get the APB1 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1); |
| |
| /* Get the APB2 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3U); |
| |
| /* Get the Flash Wait State (Latency) configuration ------------------------*/ |
| *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); |
| } |
| |
| /** |
| * @brief This function handles the RCC CSS interrupt request. |
| * @note This API should be called under the NMI_Handler(). |
| * @retval None |
| */ |
| void HAL_RCC_NMI_IRQHandler(void) |
| { |
| /* Check RCC CSSF flag */ |
| if(__HAL_RCC_GET_IT(RCC_IT_CSS)) |
| { |
| /* RCC Clock Security System interrupt user callback */ |
| HAL_RCC_CSSCallback(); |
| |
| /* Clear RCC CSS pending bit */ |
| __HAL_RCC_CLEAR_IT(RCC_IT_CSS); |
| } |
| } |
| |
| /** |
| * @brief RCC Clock Security System interrupt callback |
| * @retval None |
| */ |
| __weak void HAL_RCC_CSSCallback(void) |
| { |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_RCC_CSSCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_RCC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |