blob: 02a074068ec096f89bfcb8aafc010fa90e3123a9 [file] [log] [blame]
/**
******************************************************************************
* @file stm32f4xx_ll_spi.c
* @author MCD Application Team
* @brief SPI LL module driver.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_ll_spi.h"
#include "stm32f4xx_ll_bus.h"
#include "stm32f4xx_ll_rcc.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
/** @addtogroup STM32F4xx_LL_Driver
* @{
*/
#if defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6)
/** @addtogroup SPI_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup SPI_LL_Private_Constants SPI Private Constants
* @{
*/
/* SPI registers Masks */
#define SPI_CR1_CLEAR_MASK (SPI_CR1_CPHA | SPI_CR1_CPOL | SPI_CR1_MSTR | \
SPI_CR1_BR | SPI_CR1_LSBFIRST | SPI_CR1_SSI | \
SPI_CR1_SSM | SPI_CR1_RXONLY | SPI_CR1_DFF | \
SPI_CR1_CRCNEXT | SPI_CR1_CRCEN | SPI_CR1_BIDIOE | \
SPI_CR1_BIDIMODE)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup SPI_LL_Private_Macros SPI Private Macros
* @{
*/
#define IS_LL_SPI_TRANSFER_DIRECTION(__VALUE__) (((__VALUE__) == LL_SPI_FULL_DUPLEX) \
|| ((__VALUE__) == LL_SPI_SIMPLEX_RX) \
|| ((__VALUE__) == LL_SPI_HALF_DUPLEX_RX) \
|| ((__VALUE__) == LL_SPI_HALF_DUPLEX_TX))
#define IS_LL_SPI_MODE(__VALUE__) (((__VALUE__) == LL_SPI_MODE_MASTER) \
|| ((__VALUE__) == LL_SPI_MODE_SLAVE))
#define IS_LL_SPI_DATAWIDTH(__VALUE__) (((__VALUE__) == LL_SPI_DATAWIDTH_8BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_16BIT))
#define IS_LL_SPI_POLARITY(__VALUE__) (((__VALUE__) == LL_SPI_POLARITY_LOW) \
|| ((__VALUE__) == LL_SPI_POLARITY_HIGH))
#define IS_LL_SPI_PHASE(__VALUE__) (((__VALUE__) == LL_SPI_PHASE_1EDGE) \
|| ((__VALUE__) == LL_SPI_PHASE_2EDGE))
#define IS_LL_SPI_NSS(__VALUE__) (((__VALUE__) == LL_SPI_NSS_SOFT) \
|| ((__VALUE__) == LL_SPI_NSS_HARD_INPUT) \
|| ((__VALUE__) == LL_SPI_NSS_HARD_OUTPUT))
#define IS_LL_SPI_BAUDRATE(__VALUE__) (((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV2) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV4) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV8) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV16) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV32) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV64) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV128) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV256))
#define IS_LL_SPI_BITORDER(__VALUE__) (((__VALUE__) == LL_SPI_LSB_FIRST) \
|| ((__VALUE__) == LL_SPI_MSB_FIRST))
#define IS_LL_SPI_CRCCALCULATION(__VALUE__) (((__VALUE__) == LL_SPI_CRCCALCULATION_ENABLE) \
|| ((__VALUE__) == LL_SPI_CRCCALCULATION_DISABLE))
#define IS_LL_SPI_CRC_POLYNOMIAL(__VALUE__) ((__VALUE__) >= 0x1U)
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup SPI_LL_Exported_Functions
* @{
*/
/** @addtogroup SPI_LL_EF_Init
* @{
*/
/**
* @brief De-initialize the SPI registers to their default reset values.
* @param SPIx SPI Instance
* @retval An ErrorStatus enumeration value:
* - SUCCESS: SPI registers are de-initialized
* - ERROR: SPI registers are not de-initialized
*/
ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx)
{
ErrorStatus status = ERROR;
/* Check the parameters */
assert_param(IS_SPI_ALL_INSTANCE(SPIx));
#if defined(SPI1)
if (SPIx == SPI1)
{
/* Force reset of SPI clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_SPI1);
/* Release reset of SPI clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_SPI1);
status = SUCCESS;
}
#endif /* SPI1 */
#if defined(SPI2)
if (SPIx == SPI2)
{
/* Force reset of SPI clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_SPI2);
/* Release reset of SPI clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_SPI2);
status = SUCCESS;
}
#endif /* SPI2 */
#if defined(SPI3)
if (SPIx == SPI3)
{
/* Force reset of SPI clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_SPI3);
/* Release reset of SPI clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_SPI3);
status = SUCCESS;
}
#endif /* SPI3 */
#if defined(SPI4)
if (SPIx == SPI4)
{
/* Force reset of SPI clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_SPI4);
/* Release reset of SPI clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_SPI4);
status = SUCCESS;
}
#endif /* SPI4 */
#if defined(SPI5)
if (SPIx == SPI5)
{
/* Force reset of SPI clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_SPI5);
/* Release reset of SPI clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_SPI5);
status = SUCCESS;
}
#endif /* SPI5 */
#if defined(SPI6)
if (SPIx == SPI6)
{
/* Force reset of SPI clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_SPI6);
/* Release reset of SPI clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_SPI6);
status = SUCCESS;
}
#endif /* SPI6 */
return status;
}
/**
* @brief Initialize the SPI registers according to the specified parameters in SPI_InitStruct.
* @note As some bits in SPI configuration registers can only be written when the SPI is disabled (SPI_CR1_SPE bit =0),
* SPI peripheral should be in disabled state prior calling this function. Otherwise, ERROR result will be returned.
* @param SPIx SPI Instance
* @param SPI_InitStruct pointer to a @ref LL_SPI_InitTypeDef structure
* @retval An ErrorStatus enumeration value. (Return always SUCCESS)
*/
ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct)
{
ErrorStatus status = ERROR;
/* Check the SPI Instance SPIx*/
assert_param(IS_SPI_ALL_INSTANCE(SPIx));
/* Check the SPI parameters from SPI_InitStruct*/
assert_param(IS_LL_SPI_TRANSFER_DIRECTION(SPI_InitStruct->TransferDirection));
assert_param(IS_LL_SPI_MODE(SPI_InitStruct->Mode));
assert_param(IS_LL_SPI_DATAWIDTH(SPI_InitStruct->DataWidth));
assert_param(IS_LL_SPI_POLARITY(SPI_InitStruct->ClockPolarity));
assert_param(IS_LL_SPI_PHASE(SPI_InitStruct->ClockPhase));
assert_param(IS_LL_SPI_NSS(SPI_InitStruct->NSS));
assert_param(IS_LL_SPI_BAUDRATE(SPI_InitStruct->BaudRate));
assert_param(IS_LL_SPI_BITORDER(SPI_InitStruct->BitOrder));
assert_param(IS_LL_SPI_CRCCALCULATION(SPI_InitStruct->CRCCalculation));
if (LL_SPI_IsEnabled(SPIx) == 0x00000000U)
{
/*---------------------------- SPIx CR1 Configuration ------------------------
* Configure SPIx CR1 with parameters:
* - TransferDirection: SPI_CR1_BIDIMODE, SPI_CR1_BIDIOE and SPI_CR1_RXONLY bits
* - Master/Slave Mode: SPI_CR1_MSTR bit
* - DataWidth: SPI_CR1_DFF bit
* - ClockPolarity: SPI_CR1_CPOL bit
* - ClockPhase: SPI_CR1_CPHA bit
* - NSS management: SPI_CR1_SSM bit
* - BaudRate prescaler: SPI_CR1_BR[2:0] bits
* - BitOrder: SPI_CR1_LSBFIRST bit
* - CRCCalculation: SPI_CR1_CRCEN bit
*/
MODIFY_REG(SPIx->CR1,
SPI_CR1_CLEAR_MASK,
SPI_InitStruct->TransferDirection | SPI_InitStruct->Mode | SPI_InitStruct->DataWidth |
SPI_InitStruct->ClockPolarity | SPI_InitStruct->ClockPhase |
SPI_InitStruct->NSS | SPI_InitStruct->BaudRate |
SPI_InitStruct->BitOrder | SPI_InitStruct->CRCCalculation);
/*---------------------------- SPIx CR2 Configuration ------------------------
* Configure SPIx CR2 with parameters:
* - NSS management: SSOE bit
*/
MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, (SPI_InitStruct->NSS >> 16U));
/*---------------------------- SPIx CRCPR Configuration ----------------------
* Configure SPIx CRCPR with parameters:
* - CRCPoly: CRCPOLY[15:0] bits
*/
if (SPI_InitStruct->CRCCalculation == LL_SPI_CRCCALCULATION_ENABLE)
{
assert_param(IS_LL_SPI_CRC_POLYNOMIAL(SPI_InitStruct->CRCPoly));
LL_SPI_SetCRCPolynomial(SPIx, SPI_InitStruct->CRCPoly);
}
status = SUCCESS;
}
/* Activate the SPI mode (Reset I2SMOD bit in I2SCFGR register) */
CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD);
return status;
}
/**
* @brief Set each @ref LL_SPI_InitTypeDef field to default value.
* @param SPI_InitStruct pointer to a @ref LL_SPI_InitTypeDef structure
* whose fields will be set to default values.
* @retval None
*/
void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct)
{
/* Set SPI_InitStruct fields to default values */
SPI_InitStruct->TransferDirection = LL_SPI_FULL_DUPLEX;
SPI_InitStruct->Mode = LL_SPI_MODE_SLAVE;
SPI_InitStruct->DataWidth = LL_SPI_DATAWIDTH_8BIT;
SPI_InitStruct->ClockPolarity = LL_SPI_POLARITY_LOW;
SPI_InitStruct->ClockPhase = LL_SPI_PHASE_1EDGE;
SPI_InitStruct->NSS = LL_SPI_NSS_HARD_INPUT;
SPI_InitStruct->BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV2;
SPI_InitStruct->BitOrder = LL_SPI_MSB_FIRST;
SPI_InitStruct->CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE;
SPI_InitStruct->CRCPoly = 7U;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/** @addtogroup I2S_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup I2S_LL_Private_Constants I2S Private Constants
* @{
*/
/* I2S registers Masks */
#define I2S_I2SCFGR_CLEAR_MASK (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | \
SPI_I2SCFGR_CKPOL | SPI_I2SCFGR_I2SSTD | \
SPI_I2SCFGR_I2SCFG | SPI_I2SCFGR_I2SMOD )
#define I2S_I2SPR_CLEAR_MASK 0x0002U
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup I2S_LL_Private_Macros I2S Private Macros
* @{
*/
#define IS_LL_I2S_DATAFORMAT(__VALUE__) (((__VALUE__) == LL_I2S_DATAFORMAT_16B) \
|| ((__VALUE__) == LL_I2S_DATAFORMAT_16B_EXTENDED) \
|| ((__VALUE__) == LL_I2S_DATAFORMAT_24B) \
|| ((__VALUE__) == LL_I2S_DATAFORMAT_32B))
#define IS_LL_I2S_CPOL(__VALUE__) (((__VALUE__) == LL_I2S_POLARITY_LOW) \
|| ((__VALUE__) == LL_I2S_POLARITY_HIGH))
#define IS_LL_I2S_STANDARD(__VALUE__) (((__VALUE__) == LL_I2S_STANDARD_PHILIPS) \
|| ((__VALUE__) == LL_I2S_STANDARD_MSB) \
|| ((__VALUE__) == LL_I2S_STANDARD_LSB) \
|| ((__VALUE__) == LL_I2S_STANDARD_PCM_SHORT) \
|| ((__VALUE__) == LL_I2S_STANDARD_PCM_LONG))
#define IS_LL_I2S_MODE(__VALUE__) (((__VALUE__) == LL_I2S_MODE_SLAVE_TX) \
|| ((__VALUE__) == LL_I2S_MODE_SLAVE_RX) \
|| ((__VALUE__) == LL_I2S_MODE_MASTER_TX) \
|| ((__VALUE__) == LL_I2S_MODE_MASTER_RX))
#define IS_LL_I2S_MCLK_OUTPUT(__VALUE__) (((__VALUE__) == LL_I2S_MCLK_OUTPUT_ENABLE) \
|| ((__VALUE__) == LL_I2S_MCLK_OUTPUT_DISABLE))
#define IS_LL_I2S_AUDIO_FREQ(__VALUE__) ((((__VALUE__) >= LL_I2S_AUDIOFREQ_8K) \
&& ((__VALUE__) <= LL_I2S_AUDIOFREQ_192K)) \
|| ((__VALUE__) == LL_I2S_AUDIOFREQ_DEFAULT))
#define IS_LL_I2S_PRESCALER_LINEAR(__VALUE__) ((__VALUE__) >= 0x2U)
#define IS_LL_I2S_PRESCALER_PARITY(__VALUE__) (((__VALUE__) == LL_I2S_PRESCALER_PARITY_EVEN) \
|| ((__VALUE__) == LL_I2S_PRESCALER_PARITY_ODD))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup I2S_LL_Exported_Functions
* @{
*/
/** @addtogroup I2S_LL_EF_Init
* @{
*/
/**
* @brief De-initialize the SPI/I2S registers to their default reset values.
* @param SPIx SPI Instance
* @retval An ErrorStatus enumeration value:
* - SUCCESS: SPI registers are de-initialized
* - ERROR: SPI registers are not de-initialized
*/
ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx)
{
return LL_SPI_DeInit(SPIx);
}
/**
* @brief Initializes the SPI/I2S registers according to the specified parameters in I2S_InitStruct.
* @note As some bits in SPI configuration registers can only be written when the SPI is disabled (SPI_CR1_SPE bit =0),
* SPI peripheral should be in disabled state prior calling this function. Otherwise, ERROR result will be returned.
* @param SPIx SPI Instance
* @param I2S_InitStruct pointer to a @ref LL_I2S_InitTypeDef structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: SPI registers are Initialized
* - ERROR: SPI registers are not Initialized
*/
ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct)
{
uint32_t i2sdiv = 2U;
uint32_t i2sodd = 0U;
uint32_t packetlength = 1U;
uint32_t tmp;
uint32_t sourceclock;
ErrorStatus status = ERROR;
/* Check the I2S parameters */
assert_param(IS_I2S_ALL_INSTANCE(SPIx));
assert_param(IS_LL_I2S_MODE(I2S_InitStruct->Mode));
assert_param(IS_LL_I2S_STANDARD(I2S_InitStruct->Standard));
assert_param(IS_LL_I2S_DATAFORMAT(I2S_InitStruct->DataFormat));
assert_param(IS_LL_I2S_MCLK_OUTPUT(I2S_InitStruct->MCLKOutput));
assert_param(IS_LL_I2S_AUDIO_FREQ(I2S_InitStruct->AudioFreq));
assert_param(IS_LL_I2S_CPOL(I2S_InitStruct->ClockPolarity));
if (LL_I2S_IsEnabled(SPIx) == 0x00000000U)
{
/*---------------------------- SPIx I2SCFGR Configuration --------------------
* Configure SPIx I2SCFGR with parameters:
* - Mode: SPI_I2SCFGR_I2SCFG[1:0] bit
* - Standard: SPI_I2SCFGR_I2SSTD[1:0] and SPI_I2SCFGR_PCMSYNC bits
* - DataFormat: SPI_I2SCFGR_CHLEN and SPI_I2SCFGR_DATLEN bits
* - ClockPolarity: SPI_I2SCFGR_CKPOL bit
*/
/* Write to SPIx I2SCFGR */
MODIFY_REG(SPIx->I2SCFGR,
I2S_I2SCFGR_CLEAR_MASK,
I2S_InitStruct->Mode | I2S_InitStruct->Standard |
I2S_InitStruct->DataFormat | I2S_InitStruct->ClockPolarity |
SPI_I2SCFGR_I2SMOD);
/*---------------------------- SPIx I2SPR Configuration ----------------------
* Configure SPIx I2SPR with parameters:
* - MCLKOutput: SPI_I2SPR_MCKOE bit
* - AudioFreq: SPI_I2SPR_I2SDIV[7:0] and SPI_I2SPR_ODD bits
*/
/* If the requested audio frequency is not the default, compute the prescaler (i2sodd, i2sdiv)
* else, default values are used: i2sodd = 0U, i2sdiv = 2U.
*/
if (I2S_InitStruct->AudioFreq != LL_I2S_AUDIOFREQ_DEFAULT)
{
/* Check the frame length (For the Prescaler computing)
* Default value: LL_I2S_DATAFORMAT_16B (packetlength = 1U).
*/
if (I2S_InitStruct->DataFormat != LL_I2S_DATAFORMAT_16B)
{
/* Packet length is 32 bits */
packetlength = 2U;
}
/* If an external I2S clock has to be used, the specific define should be set
in the project configuration or in the stm32f4xx_ll_rcc.h file */
/* Get the I2S source clock value */
sourceclock = LL_RCC_GetI2SClockFreq(LL_RCC_I2S1_CLKSOURCE);
/* Compute the Real divider depending on the MCLK output state with a floating point */
if (I2S_InitStruct->MCLKOutput == LL_I2S_MCLK_OUTPUT_ENABLE)
{
/* MCLK output is enabled */
tmp = (((((sourceclock / 256U) * 10U) / I2S_InitStruct->AudioFreq)) + 5U);
}
else
{
/* MCLK output is disabled */
tmp = (((((sourceclock / (32U * packetlength)) * 10U) / I2S_InitStruct->AudioFreq)) + 5U);
}
/* Remove the floating point */
tmp = tmp / 10U;
/* Check the parity of the divider */
i2sodd = (tmp & (uint16_t)0x0001U);
/* Compute the i2sdiv prescaler */
i2sdiv = ((tmp - i2sodd) / 2U);
/* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
i2sodd = (i2sodd << 8U);
}
/* Test if the divider is 1 or 0 or greater than 0xFF */
if ((i2sdiv < 2U) || (i2sdiv > 0xFFU))
{
/* Set the default values */
i2sdiv = 2U;
i2sodd = 0U;
}
/* Write to SPIx I2SPR register the computed value */
WRITE_REG(SPIx->I2SPR, i2sdiv | i2sodd | I2S_InitStruct->MCLKOutput);
status = SUCCESS;
}
return status;
}
/**
* @brief Set each @ref LL_I2S_InitTypeDef field to default value.
* @param I2S_InitStruct pointer to a @ref LL_I2S_InitTypeDef structure
* whose fields will be set to default values.
* @retval None
*/
void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct)
{
/*--------------- Reset I2S init structure parameters values -----------------*/
I2S_InitStruct->Mode = LL_I2S_MODE_SLAVE_TX;
I2S_InitStruct->Standard = LL_I2S_STANDARD_PHILIPS;
I2S_InitStruct->DataFormat = LL_I2S_DATAFORMAT_16B;
I2S_InitStruct->MCLKOutput = LL_I2S_MCLK_OUTPUT_DISABLE;
I2S_InitStruct->AudioFreq = LL_I2S_AUDIOFREQ_DEFAULT;
I2S_InitStruct->ClockPolarity = LL_I2S_POLARITY_LOW;
}
/**
* @brief Set linear and parity prescaler.
* @note To calculate value of PrescalerLinear(I2SDIV[7:0] bits) and PrescalerParity(ODD bit)\n
* Check Audio frequency table and formulas inside Reference Manual (SPI/I2S).
* @param SPIx SPI Instance
* @param PrescalerLinear value Min_Data=0x02 and Max_Data=0xFF.
* @param PrescalerParity This parameter can be one of the following values:
* @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
* @arg @ref LL_I2S_PRESCALER_PARITY_ODD
* @retval None
*/
void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity)
{
/* Check the I2S parameters */
assert_param(IS_I2S_ALL_INSTANCE(SPIx));
assert_param(IS_LL_I2S_PRESCALER_LINEAR(PrescalerLinear));
assert_param(IS_LL_I2S_PRESCALER_PARITY(PrescalerParity));
/* Write to SPIx I2SPR */
MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV | SPI_I2SPR_ODD, PrescalerLinear | (PrescalerParity << 8U));
}
#if defined (SPI_I2S_FULLDUPLEX_SUPPORT)
/**
* @brief Configures the full duplex mode for the I2Sx peripheral using its extension
* I2Sxext according to the specified parameters in the I2S_InitStruct.
* @note The structure pointed by I2S_InitStruct parameter should be the same
* used for the master I2S peripheral. In this case, if the master is
* configured as transmitter, the slave will be receiver and vice versa.
* Or you can force a different mode by modifying the field I2S_Mode to the
* value I2S_SlaveRx or I2S_SlaveTx independently of the master configuration.
* @param I2Sxext SPI Instance
* @param I2S_InitStruct pointer to a @ref LL_I2S_InitTypeDef structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: I2Sxext registers are Initialized
* - ERROR: I2Sxext registers are not Initialized
*/
ErrorStatus LL_I2S_InitFullDuplex(SPI_TypeDef *I2Sxext, LL_I2S_InitTypeDef *I2S_InitStruct)
{
uint32_t mode = 0U;
ErrorStatus status = ERROR;
/* Check the I2S parameters */
assert_param(IS_I2S_EXT_ALL_INSTANCE(I2Sxext));
assert_param(IS_LL_I2S_MODE(I2S_InitStruct->Mode));
assert_param(IS_LL_I2S_STANDARD(I2S_InitStruct->Standard));
assert_param(IS_LL_I2S_DATAFORMAT(I2S_InitStruct->DataFormat));
assert_param(IS_LL_I2S_CPOL(I2S_InitStruct->ClockPolarity));
if (LL_I2S_IsEnabled(I2Sxext) == 0x00000000U)
{
/*---------------------------- SPIx I2SCFGR Configuration --------------------
* Configure SPIx I2SCFGR with parameters:
* - Mode: SPI_I2SCFGR_I2SCFG[1:0] bit
* - Standard: SPI_I2SCFGR_I2SSTD[1:0] and SPI_I2SCFGR_PCMSYNC bits
* - DataFormat: SPI_I2SCFGR_CHLEN and SPI_I2SCFGR_DATLEN bits
* - ClockPolarity: SPI_I2SCFGR_CKPOL bit
*/
/* Reset I2SPR registers */
WRITE_REG(I2Sxext->I2SPR, I2S_I2SPR_CLEAR_MASK);
/* Get the mode to be configured for the extended I2S */
if ((I2S_InitStruct->Mode == LL_I2S_MODE_MASTER_TX) || (I2S_InitStruct->Mode == LL_I2S_MODE_SLAVE_TX))
{
mode = LL_I2S_MODE_SLAVE_RX;
}
else
{
if ((I2S_InitStruct->Mode == LL_I2S_MODE_MASTER_RX) || (I2S_InitStruct->Mode == LL_I2S_MODE_SLAVE_RX))
{
mode = LL_I2S_MODE_SLAVE_TX;
}
}
/* Write to SPIx I2SCFGR */
MODIFY_REG(I2Sxext->I2SCFGR,
I2S_I2SCFGR_CLEAR_MASK,
I2S_InitStruct->Standard |
I2S_InitStruct->DataFormat | I2S_InitStruct->ClockPolarity |
SPI_I2SCFGR_I2SMOD | mode);
status = SUCCESS;
}
return status;
}
#endif /* SPI_I2S_FULLDUPLEX_SUPPORT */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */