blob: 907db4af28061aeb5cfdab0e8e73d8dfdb3bcf26 [file] [log] [blame]
/**
******************************************************************************
* @file stm32f4xx_hal_cryp.c
* @author MCD Application Team
* @brief CRYP HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Cryptography (CRYP) peripheral:
* + Initialization, de-initialization, set config and get config functions
* + DES/TDES, AES processing functions
* + DMA callback functions
* + CRYP IRQ handler management
* + Peripheral State functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The CRYP HAL driver can be used in CRYP or TinyAES IP as follows:
(#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
(##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()or __HAL_RCC_AES_CLK_ENABLE for TinyAES IP
(##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT())
(+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
(+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
(+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
(##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA())
(+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE()
(+++) Configure and enable two DMA streams one for managing data transfer from
memory to peripheral (input stream) and another stream for managing data
transfer from peripheral to memory (output stream)
(+++) Associate the initialized DMA handle to the CRYP DMA handle
using __HAL_LINKDMA()
(+++) Configure the priority and enable the NVIC for the transfer complete
interrupt on the two DMA Streams. The output stream should have higher
priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
(#)Initialize the CRYP according to the specified parameters :
(##) The data type: 1-bit, 8-bit, 16-bit or 32-bit.
(##) The key size: 128, 192 or 256.
(##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR/GCM or CCM.
(##) The initialization vector (counter). It is not used in ECB mode.
(##) The key buffer used for encryption/decryption.
(##) The Header used only in AES GCM and CCM Algorithm for authentication.
(##) The HeaderSize The size of header buffer in word.
(##) The B0 block is the first authentication block used only in AES CCM mode.
(#)Three processing (encryption/decryption) functions are available:
(##) Polling mode: encryption and decryption APIs are blocking functions
i.e. they process the data and wait till the processing is finished,
e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
(##) Interrupt mode: encryption and decryption APIs are not blocking functions
i.e. they process the data under interrupt,
e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
(##) DMA mode: encryption and decryption APIs are not blocking functions
i.e. the data transfer is ensured by DMA,
e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
(#)When the processing function is called at first time after HAL_CRYP_Init()
the CRYP peripheral is configured and processes the buffer in input.
At second call, no need to Initialize the CRYP, user have to get current configuration via
HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set
new parametres, finally user can start encryption/decryption.
(#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
[..]
The cryptographic processor supports following standards:
(#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 IP:
(##)64-bit data block processing
(##) chaining modes supported :
(+++) Electronic Code Book(ECB)
(+++) Cipher Block Chaining (CBC)
(##) keys length supported :64-bit, 128-bit and 192-bit.
(#) The advanced encryption standard (AES) supported by CRYP1 & TinyAES IP:
(##)128-bit data block processing
(##) chaining modes supported :
(+++) Electronic Code Book(ECB)
(+++) Cipher Block Chaining (CBC)
(+++) Counter mode (CTR)
(+++) Galois/counter mode (GCM/GMAC)
(+++) Counter with Cipher Block Chaining-Message(CCM)
(##) keys length Supported :
(+++) for CRYP1 IP: 128-bit, 192-bit and 256-bit.
(+++) for TinyAES IP: 128-bit and 256-bit
[..] This section describes the AES Galois/counter mode (GCM) supported by both CRYP1 IP:
(#) Algorithm supported :
(##) Galois/counter mode (GCM)
(##) Galois message authentication code (GMAC) :is exactly the same as
GCM algorithm composed only by an header.
(#) Four phases are performed in GCM :
(##) Init phase: IP prepares the GCM hash subkey (H) and do the IV processing
(##) Header phase: IP processes the Additional Authenticated Data (AAD), with hash
computation only.
(##) Payload phase: IP processes the plaintext (P) with hash computation + keystream
encryption + data XORing. It works in a similar way for ciphertext (C).
(##) Final phase: IP generates the authenticated tag (T) using the last block of data.
(#) structure of message construction in GCM is defined as below :
(##) 16 bytes Initial Counter Block (ICB)composed of IV and counter
(##) The authenticated header A (also knows as Additional Authentication Data AAD)
this part of the message is only authenticated, not encrypted.
(##) The plaintext message P is both authenticated and encrypted as ciphertext.
GCM standard specifies that ciphertext has same bit length as the plaintext.
(##) The last block is composed of the length of A (on 64 bits) and the length of ciphertext
(on 64 bits)
[..] This section describe The AES Counter with Cipher Block Chaining-Message
Authentication Code (CCM) supported by both CRYP1 IP:
(#) Specific parameters for CCM :
(##) B0 block : According to NIST Special Publication 800-38C,
The first block B0 is formatted as follows, where l(m) is encoded in
most-significant-byte first order(see below table 3)
(+++) Q: a bit string representation of the octet length of P (plaintext)
(+++) q The octet length of the binary representation of the octet length of the payload
(+++) A nonce (N), n The octet length of the where n+q=15.
(+++) Flags: most significant octet containing four flags for control information,
(+++) t The octet length of the MAC.
(##) B1 block (header) : associated data length(a) concatenated with Associated Data (A)
the associated data length expressed in bytes (a) defined as below:
(+++) If 0 < a < 216-28, then it is encoded as [a]16, i.e. two octets
(+++) If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six octets
(+++) If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten octets
(##) CTRx block : control blocks
(+++) Generation of CTR1 from first block B0 information :
equal to B0 with first 5 bits zeroed and most significant bits storing octet
length of P also zeroed, then incremented by one ( see below Table 4)
(+++) Generation of CTR0: same as CTR1 with bit[0] set to zero.
(#) Four phases are performed in CCM for CRYP1 IP:
(##) Init phase: IP prepares the GCM hash subkey (H) and do the IV processing
(##) Header phase: IP processes the Additional Authenticated Data (AAD), with hash
computation only.
(##) Payload phase: IP processes the plaintext (P) with hash computation + keystream
encryption + data XORing. It works in a similar way for ciphertext (C).
(##) Final phase: IP generates the authenticated tag (T) using the last block of data.
*** Callback registration ***
=============================================
The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Functions @ref HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback()
to register an interrupt callback.
Function @ref HAL_CRYP_RegisterCallback() allows to register following callbacks:
(+) InCpltCallback : Input FIFO transfer completed callback.
(+) OutCpltCallback : Output FIFO transfer completed callback.
(+) ErrorCallback : callback for error detection.
(+) MspInitCallback : CRYP MspInit.
(+) MspDeInitCallback : CRYP MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
Use function @ref HAL_CRYP_UnRegisterCallback() to reset a callback to the default
weak function.
@ref HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) InCpltCallback : Input FIFO transfer completed callback.
(+) OutCpltCallback : Output FIFO transfer completed callback.
(+) ErrorCallback : callback for error detection.
(+) MspInitCallback : CRYP MspInit.
(+) MspDeInitCallback : CRYP MspDeInit.
By default, after the @ref HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET
all callbacks are set to the corresponding weak functions :
examples @ref HAL_CRYP_InCpltCallback() , @ref HAL_CRYP_OutCpltCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak function in the @ref HAL_CRYP_Init()/ @ref HAL_CRYP_DeInit() only when
these callbacks are null (not registered beforehand).
if not, MspInit or MspDeInit are not null, the @ref HAL_CRYP_Init() / @ref HAL_CRYP_DeInit()
keep and use the user MspInit/MspDeInit functions (registered beforehand)
Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only.
Exception done MspInit/MspDeInit callbacks that can be registered/unregistered
in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using @ref HAL_CRYP_RegisterCallback() before calling @ref HAL_CRYP_DeInit()
or @ref HAL_CRYP_Init() function.
When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
Table 1. Initial Counter Block (ICB)
+-------------------------------------------------------+
| Initialization vector (IV) | Counter |
|----------------|----------------|-----------|---------|
127 95 63 31 0
Bit Number Register Contents
---------- --------------- -----------
127 ...96 CRYP_IV1R[31:0] ICB[127:96]
95 ...64 CRYP_IV1L[31:0] B0[95:64]
63 ... 32 CRYP_IV0R[31:0] ICB[63:32]
31 ... 0 CRYP_IV0L[31:0] ICB[31:0], where 32-bit counter= 0x2
Table 2. GCM last block definition
+-------------------------------------------------------------------+
| Bit[0] | Bit[32] | Bit[64] | Bit[96] |
|-----------|--------------------|-----------|----------------------|
| 0x0 | Header length[31:0]| 0x0 | Payload length[31:0] |
|-----------|--------------------|-----------|----------------------|
Table 3. B0 block
Octet Number Contents
------------ ---------
0 Flags
1 ... 15-q Nonce N
16-q ... 15 Q
the Flags field is formatted as follows:
Bit Number Contents
---------- ----------------------
7 Reserved (always zero)
6 Adata
5 ... 3 (t-2)/2
2 ... 0 [q-1]3
Table 4. CTRx block
Bit Number Register Contents
---------- --------------- -----------
127 ...96 CRYP_IV1R[31:0] B0[127:96], where Q length bits are set to 0, except for
bit 0 that is set to 1
95 ...64 CRYP_IV1L[31:0] B0[95:64]
63 ... 32 CRYP_IV0R[31:0] B0[63:32]
31 ... 0 CRYP_IV0L[31:0] B0[31:0], where flag bits set to 0
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
#if defined (AES) || defined (CRYP)
/** @defgroup CRYP CRYP
* @brief CRYP HAL module driver.
* @{
*/
#ifdef HAL_CRYP_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup CRYP_Private_Defines
* @{
*/
#define CRYP_TIMEOUT_KEYPREPARATION 82U /*The latency of key preparation operation is 82 clock cycles.*/
#define CRYP_TIMEOUT_GCMCCMINITPHASE 299U /* The latency of GCM/CCM init phase to prepare hash subkey is 299 clock cycles.*/
#define CRYP_TIMEOUT_GCMCCMHEADERPHASE 290U /* The latency of GCM/CCM header phase is 290 clock cycles.*/
#define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */
#define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */
#if defined(AES)
#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode(Mode 1) */
#define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions (Mode 2) */
#define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption (Mode 3) */
#define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions (Mode 4) */
#define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
#define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */
#define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */
#define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */
#else /* CRYP */
#define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
#define CRYP_PHASE_HEADER CRYP_CR_GCM_CCMPH_0 /*!< GCM/GMAC or CCM header phase */
#define CRYP_PHASE_PAYLOAD CRYP_CR_GCM_CCMPH_1 /*!< GCM(/CCM) payload phase */
#define CRYP_PHASE_FINAL CRYP_CR_GCM_CCMPH /*!< GCM/GMAC or CCM final phase */
#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode */
#define CRYP_OPERATINGMODE_DECRYPT CRYP_CR_ALGODIR /*!< Decryption */
#endif /* End CRYP or AES */
/* CTR1 information to use in CCM algorithm */
#define CRYP_CCM_CTR1_0 0x07FFFFFFU
#define CRYP_CCM_CTR1_1 0xFFFFFF00U
#define CRYP_CCM_CTR1_2 0x00000001U
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @addtogroup CRYP_Private_Macros
* @{
*/
#if defined(CRYP)
#define CRYP_SET_PHASE(__HANDLE__, __PHASE__) do{(__HANDLE__)->Instance->CR &= (uint32_t)(~CRYP_CR_GCM_CCMPH);\
(__HANDLE__)->Instance->CR |= (uint32_t)(__PHASE__);\
}while(0)
#define HAL_CRYP_FIFO_FLUSH(__HANDLE__) ((__HANDLE__)->Instance->CR |= CRYP_CR_FFLUSH)
#else /*AES*/
#define CRYP_SET_PHASE(__HANDLE__, __PHASE__) do{(__HANDLE__)->Instance->CR &= (uint32_t)(~AES_CR_GCMPH);\
(__HANDLE__)->Instance->CR |= (uint32_t)(__PHASE__);\
}while(0)
#endif /* End AES or CRYP*/
/**
* @}
*/
/* Private struct -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup CRYP_Private_Functions_prototypes
* @{
*/
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize);
static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp);
#if defined (CRYP_CR_ALGOMODE_AES_GCM)|| defined (AES)
static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp);
static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp);
static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp);
static void CRYP_Workaround(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
static HAL_StatusTypeDef CRYP_AESGCM_Process_IT (CRYP_HandleTypeDef *hcryp);
static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp);
static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
#endif /* AES or GCM CCM defined*/
static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout);
static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp);
static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp);
static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp);
#if defined (CRYP)
static void CRYP_TDES_IT(CRYP_HandleTypeDef *hcryp);
#if defined (CRYP_CR_ALGOMODE_AES_GCM)
static HAL_StatusTypeDef CRYP_WaitOnIFEMFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
#endif /* GCM CCM defined*/
static HAL_StatusTypeDef CRYP_WaitOnBUSYFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
static HAL_StatusTypeDef CRYP_WaitOnOFNEFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
static HAL_StatusTypeDef CRYP_TDES_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
#else /*AES*/
static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
#endif /* End CRYP or AES */
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup CRYP_Exported_Functions CRYP Exported Functions
* @{
*/
/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions.
*
@verbatim
========================================================================================
##### Initialization, de-initialization and Set and Get configuration functions #####
========================================================================================
[..] This section provides functions allowing to:
(+) Initialize the CRYP
(+) DeInitialize the CRYP
(+) Initialize the CRYP MSP
(+) DeInitialize the CRYP MSP
(+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef
Parameters which are configured in This section are :
(+) Key size
(+) Data Type : 32,16, 8 or 1bit
(+) AlgoMode :
- for CRYP1 IP :
ECB and CBC in DES/TDES Standard
ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard.
- for TinyAES2 IP, only ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard are supported.
(+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef
@endverbatim
* @{
*/
/**
* @brief Initializes the CRYP according to the specified
* parameters in the CRYP_ConfigTypeDef and creates the associated handle.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
{
/* Check the CRYP handle allocation */
if(hcryp == NULL)
{
return HAL_ERROR;
}
/* Check parameters */
assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize));
assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm));
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
if(hcryp->State == HAL_CRYP_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hcryp->Lock = HAL_UNLOCKED;
hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
if(hcryp->MspInitCallback == NULL)
{
hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware */
hcryp->MspInitCallback(hcryp);
}
#else
if(hcryp->State == HAL_CRYP_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hcryp->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_CRYP_MspInit(hcryp);
}
#endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */
/* Set the key size(This bit field is don’t care in the DES or TDES modes) data type and Algorithm */
#if defined (CRYP)
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_DATATYPE|CRYP_CR_KEYSIZE|CRYP_CR_ALGOMODE, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
#else /*AES*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE|AES_CR_KEYSIZE|AES_CR_CHMOD, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
#endif /* End AES or CRYP*/
/* Reset Error Code field */
hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Set the default CRYP phase */
hcryp->Phase = CRYP_PHASE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief De-Initializes the CRYP peripheral.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
{
/* Check the CRYP handle allocation */
if(hcryp == NULL)
{
return HAL_ERROR;
}
/* Set the default CRYP phase */
hcryp->Phase = CRYP_PHASE_READY;
/* Reset CrypInCount and CrypOutCount */
hcryp->CrypInCount = 0;
hcryp->CrypOutCount = 0;
hcryp->CrypHeaderCount =0;
/* Disable the CRYP peripheral clock */
__HAL_CRYP_DISABLE(hcryp);
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
if(hcryp->MspDeInitCallback == NULL)
{
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware */
hcryp->MspDeInitCallback(hcryp);
#else
/* DeInit the low level hardware: CLOCK, NVIC.*/
HAL_CRYP_MspDeInit(hcryp);
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Configure the CRYP according to the specified
* parameters in the CRYP_ConfigTypeDef
* @param hcryp: pointer to a CRYP_HandleTypeDef structure
* @param pConf: pointer to a CRYP_ConfigTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf )
{
/* Check the CRYP handle allocation */
if((hcryp == NULL)|| (pConf == NULL) )
{
return HAL_ERROR;
}
/* Check parameters */
assert_param(IS_CRYP_KEYSIZE(pConf->KeySize));
assert_param(IS_CRYP_DATATYPE(pConf->DataType));
assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm));
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Process locked */
__HAL_LOCK(hcryp);
/* Set CRYP parameters */
hcryp->Init.DataType = pConf->DataType;
hcryp->Init.pKey = pConf->pKey;
hcryp->Init.Algorithm = pConf->Algorithm;
hcryp->Init.KeySize = pConf->KeySize;
hcryp->Init.pInitVect = pConf->pInitVect;
hcryp->Init.Header = pConf->Header;
hcryp->Init.HeaderSize = pConf->HeaderSize;
hcryp->Init.B0 = pConf->B0;
hcryp->Init.DataWidthUnit = pConf->DataWidthUnit;
/* Set the key size(This bit field is don’t care in the DES or TDES modes) data type, AlgoMode and operating mode*/
#if defined (CRYP)
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_DATATYPE|CRYP_CR_KEYSIZE|CRYP_CR_ALGOMODE, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
#else /*AES*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE|AES_CR_KEYSIZE|AES_CR_CHMOD, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
/*clear error flags*/
__HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_ERR_CLEAR);
#endif /* End AES or CRYP */
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Reset Error Code field */
hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Set the default CRYP phase */
hcryp->Phase = CRYP_PHASE_READY;
/* Return function status */
return HAL_OK;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Busy error code field */
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
return HAL_ERROR;
}
}
/**
* @brief Get CRYP Configuration parameters in associated handle.
* @param pConf: pointer to a CRYP_ConfigTypeDef structure
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf )
{
/* Check the CRYP handle allocation */
if((hcryp == NULL)|| (pConf == NULL) )
{
return HAL_ERROR;
}
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Process locked */
__HAL_LOCK(hcryp);
/* Get CRYP parameters */
pConf->DataType = hcryp->Init.DataType;
pConf->pKey = hcryp->Init.pKey;
pConf->Algorithm = hcryp->Init.Algorithm;
pConf->KeySize = hcryp->Init.KeySize ;
pConf->pInitVect = hcryp->Init.pInitVect;
pConf->Header = hcryp->Init.Header ;
pConf->HeaderSize = hcryp->Init.HeaderSize;
pConf->B0 = hcryp->Init.B0;
pConf->DataWidthUnit = hcryp->Init.DataWidthUnit;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Return function status */
return HAL_OK;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Busy error code field */
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP MSP.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CRYP_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes CRYP MSP.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CRYP_MspDeInit could be implemented in the user file
*/
}
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User CRYP Callback
* To be used instead of the weak predefined callback
* @param hcryp cryp handle
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
* @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
* @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
* @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval status
*/
HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID, pCRYP_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if(pCallback == NULL)
{
/* Update the error code */
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hcryp);
if(hcryp->State == HAL_CRYP_STATE_READY)
{
switch (CallbackID)
{
case HAL_CRYP_INPUT_COMPLETE_CB_ID :
hcryp->InCpltCallback = pCallback;
break;
case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
hcryp->OutCpltCallback = pCallback;
break;
case HAL_CRYP_ERROR_CB_ID :
hcryp->ErrorCallback = pCallback;
break;
case HAL_CRYP_MSPINIT_CB_ID :
hcryp->MspInitCallback = pCallback;
break;
case HAL_CRYP_MSPDEINIT_CB_ID :
hcryp->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if(hcryp->State == HAL_CRYP_STATE_RESET)
{
switch (CallbackID)
{
case HAL_CRYP_MSPINIT_CB_ID :
hcryp->MspInitCallback = pCallback;
break;
case HAL_CRYP_MSPDEINIT_CB_ID :
hcryp->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hcryp);
return status;
}
/**
* @brief Unregister an CRYP Callback
* CRYP callback is redirected to the weak predefined callback
* @param hcryp cryp handle
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
* @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
* @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
* @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval status
*/
HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hcryp);
if(hcryp->State == HAL_CRYP_STATE_READY)
{
switch (CallbackID)
{
case HAL_CRYP_INPUT_COMPLETE_CB_ID :
hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
break;
case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
break;
case HAL_CRYP_ERROR_CB_ID :
hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
break;
case HAL_CRYP_MSPINIT_CB_ID :
hcryp->MspInitCallback = HAL_CRYP_MspInit;
break;
case HAL_CRYP_MSPDEINIT_CB_ID :
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
break;
default :
/* Update the error code */
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if(hcryp->State == HAL_CRYP_STATE_RESET)
{
switch (CallbackID)
{
case HAL_CRYP_MSPINIT_CB_ID :
hcryp->MspInitCallback = HAL_CRYP_MspInit;
break;
case HAL_CRYP_MSPDEINIT_CB_ID :
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
break;
default :
/* Update the error code */
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hcryp);
return status;
}
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group2 Encrypt Decrypt functions
* @brief processing functions.
*
@verbatim
==============================================================================
##### Encrypt Decrypt functions #####
==============================================================================
[..] This section provides API allowing to Encrypt/Decrypt Data following
Standard DES/TDES or AES, and Algorithm configured by the user:
(+) Standard DES/TDES only supported by CRYP1 IP, below list of Algorithm supported :
- Electronic Code Book(ECB)
- Cipher Block Chaining (CBC)
(+) Standard AES supported by CRYP1 IP & TinyAES, list of Algorithm supported:
- Electronic Code Book(ECB)
- Cipher Block Chaining (CBC)
- Counter mode (CTR)
- Cipher Block Chaining (CBC)
- Counter mode (CTR)
- Galois/counter mode (GCM)
- Counter with Cipher Block Chaining-Message(CCM)
[..] Three processing functions are available:
(+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
(+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
(+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
@endverbatim
* @{
*/
/**
* @brief Encryption mode.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input: Pointer to the input buffer (plaintext)
* @param Size: Length of the plaintext buffer in word.
* @param Output: Pointer to the output buffer(ciphertext)
* @param Timeout: Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, uint32_t Timeout)
{
uint32_t algo;
HAL_StatusTypeDef status;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Change state Busy */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Process locked */
__HAL_LOCK(hcryp);
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
hcryp->pCrypInBuffPtr = Input;
hcryp->pCrypOutBuffPtr = Output;
/* Calculate Size parameter in Byte*/
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
{
hcryp->Size = Size * 4U;
}
else
{
hcryp->Size = Size;
}
#if defined (CRYP)
/* Set Encryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
switch(algo)
{
case CRYP_DES_ECB:
case CRYP_DES_CBC:
case CRYP_TDES_ECB:
case CRYP_TDES_CBC:
/*Set Key */
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
}
/*Set Initialization Vector (IV)*/
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
}
/* Flush FIFO */
HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
/* Statrt DES/TDES encryption process */
status = CRYP_TDES_Process(hcryp,Timeout);
break;
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* AES encryption */
status = CRYP_AES_Encrypt(hcryp, Timeout);
break;
#if defined (CRYP_CR_ALGOMODE_AES_GCM)
case CRYP_AES_GCM:
/* AES GCM encryption */
status = CRYP_AESGCM_Process(hcryp, Timeout);
break;
case CRYP_AES_CCM:
/* AES CCM encryption */
status = CRYP_AESCCM_Process(hcryp,Timeout);
break;
#endif /* GCM CCM defined*/
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
#else /*AES*/
/* Set the operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & AES_CR_CHMOD;
switch(algo)
{
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* AES encryption */
status = CRYP_AES_Encrypt(hcryp, Timeout);
break;
case CRYP_AES_GCM_GMAC:
/* AES GCM encryption */
status = CRYP_AESGCM_Process (hcryp,Timeout) ;
break;
case CRYP_AES_CCM:
/* AES CCM encryption */
status = CRYP_AESCCM_Process(hcryp,Timeout);
break;
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
#endif /*end AES or CRYP */
if (status == HAL_OK)
{
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcryp);
}
}
else
{
/* Busy error code field */
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
return HAL_ERROR;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Decryption mode.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input: Pointer to the input buffer (ciphertext )
* @param Size: Length of the plaintext buffer in word.
* @param Output: Pointer to the output buffer(plaintext)
* @param Timeout: Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, uint32_t Timeout)
{
HAL_StatusTypeDef status;
uint32_t algo;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Change state Busy */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Process locked */
__HAL_LOCK(hcryp);
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
hcryp->pCrypInBuffPtr = Input;
hcryp->pCrypOutBuffPtr = Output;
/* Calculate Size parameter in Byte*/
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
{
hcryp->Size = Size * 4U;
}
else
{
hcryp->Size = Size;
}
#if defined (CRYP)
/* Set Decryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
switch(algo)
{
case CRYP_DES_ECB:
case CRYP_DES_CBC:
case CRYP_TDES_ECB:
case CRYP_TDES_CBC:
/*Set Key */
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
}
/*Set Initialization Vector (IV)*/
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
}
/* Flush FIFO */
HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
/* Start DES/TDES decryption process */
status = CRYP_TDES_Process(hcryp, Timeout);
break;
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* AES decryption */
status = CRYP_AES_Decrypt(hcryp, Timeout);
break;
#if defined (CRYP_CR_ALGOMODE_AES_GCM)
case CRYP_AES_GCM:
/* AES GCM decryption */
status = CRYP_AESGCM_Process (hcryp, Timeout) ;
break;
case CRYP_AES_CCM:
/* AES CCM decryption */
status = CRYP_AESCCM_Process(hcryp, Timeout);
break;
#endif /* GCM CCM defined*/
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
#else /*AES*/
/* Set Decryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & AES_CR_CHMOD;
switch(algo)
{
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* AES decryption */
status = CRYP_AES_Decrypt(hcryp, Timeout);
break;
case CRYP_AES_GCM_GMAC:
/* AES GCM decryption */
status = CRYP_AESGCM_Process (hcryp, Timeout) ;
break;
case CRYP_AES_CCM:
/* AES CCM decryption */
status = CRYP_AESCCM_Process(hcryp, Timeout);
break;
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
#endif /* End AES or CRYP */
if (status == HAL_OK)
{
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcryp);
}
}
else
{
/* Busy error code field */
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
return HAL_ERROR;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Encryption in interrupt mode.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input: Pointer to the input buffer (plaintext)
* @param Size: Length of the plaintext buffer in word
* @param Output: Pointer to the output buffer(ciphertext)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
{
uint32_t algo;
HAL_StatusTypeDef status = HAL_OK;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Change state Busy */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Process locked */
__HAL_LOCK(hcryp);
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
hcryp->pCrypInBuffPtr = Input;
hcryp->pCrypOutBuffPtr = Output;
/* Calculate Size parameter in Byte*/
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
{
hcryp->Size = Size * 4U;
}
else
{
hcryp->Size = Size;
}
#if defined (CRYP)
/* Set encryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
/* algo get algorithm selected */
algo = (hcryp->Instance->CR & CRYP_CR_ALGOMODE);
switch(algo)
{
case CRYP_DES_ECB:
case CRYP_DES_CBC:
case CRYP_TDES_ECB:
case CRYP_TDES_CBC:
/*Set Key */
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
}
/* Set the Initialization Vector*/
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
}
/* Flush FIFO */
HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
/* Enable interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP to start DES/TDES process*/
__HAL_CRYP_ENABLE(hcryp);
break;
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
status = CRYP_AES_Encrypt_IT(hcryp);
break;
#if defined (CRYP_CR_ALGOMODE_AES_GCM)
case CRYP_AES_GCM:
status = CRYP_AESGCM_Process_IT (hcryp) ;
break;
case CRYP_AES_CCM:
status = CRYP_AESCCM_Process_IT(hcryp);
break;
#endif /* GCM CCM defined*/
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
status = HAL_ERROR;
break;
}
#else /* AES */
/* Set encryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & AES_CR_CHMOD;
switch(algo)
{
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* AES encryption */
status = CRYP_AES_Encrypt_IT(hcryp);
break;
case CRYP_AES_GCM_GMAC:
/* AES GCM encryption */
status = CRYP_AESGCM_Process_IT (hcryp) ;
break;
case CRYP_AES_CCM:
/* AES CCM encryption */
status = CRYP_AESCCM_Process_IT(hcryp);
break;
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
status = HAL_ERROR;
break;
}
#endif /*end AES or CRYP*/
}
else
{
/* Busy error code field */
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief Decryption in itnterrupt mode.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input: Pointer to the input buffer (ciphertext )
* @param Size: Length of the plaintext buffer in word.
* @param Output: Pointer to the output buffer(plaintext)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
{
uint32_t algo;
HAL_StatusTypeDef status = HAL_OK;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Change state Busy */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Process locked */
__HAL_LOCK(hcryp);
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
hcryp->pCrypInBuffPtr = Input;
hcryp->pCrypOutBuffPtr = Output;
/* Calculate Size parameter in Byte*/
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
{
hcryp->Size = Size * 4U;
}
else
{
hcryp->Size = Size;
}
#if defined (CRYP)
/* Set decryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR,CRYP_OPERATINGMODE_DECRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
switch(algo)
{
case CRYP_DES_ECB:
case CRYP_DES_CBC:
case CRYP_TDES_ECB:
case CRYP_TDES_CBC:
/*Set Key */
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
}
/* Set the Initialization Vector*/
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
}
/* Flush FIFO */
HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
/* Enable interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP and start DES/TDES process*/
__HAL_CRYP_ENABLE(hcryp);
break;
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* AES decryption */
status = CRYP_AES_Decrypt_IT(hcryp);
break;
#if defined (CRYP_CR_ALGOMODE_AES_GCM)
case CRYP_AES_GCM:
/* AES GCM decryption */
status = CRYP_AESGCM_Process_IT (hcryp) ;
break;
case CRYP_AES_CCM:
/* AES CCMdecryption */
status = CRYP_AESCCM_Process_IT(hcryp);
break;
#endif /* GCM CCM defined*/
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
status = HAL_ERROR;
break;
}
#else /*AES*/
/* Set decryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & AES_CR_CHMOD;
switch(algo)
{
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* AES decryption */
status = CRYP_AES_Decrypt_IT(hcryp);
break;
case CRYP_AES_GCM_GMAC:
/* AES GCM decryption */
status = CRYP_AESGCM_Process_IT (hcryp) ;
break;
case CRYP_AES_CCM:
/* AES CCM decryption */
status = CRYP_AESCCM_Process_IT(hcryp);
break;
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
status = HAL_ERROR;
break;
}
#endif /* End AES or CRYP */
}
else
{
/* Busy error code field */
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief Encryption in DMA mode.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input: Pointer to the input buffer (plaintext)
* @param Size: Length of the plaintext buffer in word.
* @param Output: Pointer to the output buffer(ciphertext)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
{
uint32_t algo;
HAL_StatusTypeDef status = HAL_OK;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Change state Busy */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Process locked */
__HAL_LOCK(hcryp);
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
hcryp->pCrypInBuffPtr = Input;
hcryp->pCrypOutBuffPtr = Output;
/* Calculate Size parameter in Byte*/
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
{
hcryp->Size = Size * 4U;
}
else
{
hcryp->Size = Size;
}
#if defined (CRYP)
/* Set encryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
switch(algo)
{
case CRYP_DES_ECB:
case CRYP_DES_CBC:
case CRYP_TDES_ECB:
case CRYP_TDES_CBC:
/*Set Key */
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
}
/* Set the Initialization Vector*/
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
}
/* Flush FIFO */
HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
/* Start DMA process transfer for DES/TDES */
CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size)/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
break;
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Set the Initialization Vector IV */
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
{
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
}
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
/* Start DMA process transfer for AES */
CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size)/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
break;
#if defined (CRYP_CR_ALGOMODE_AES_GCM)
case CRYP_AES_GCM:
/* AES GCM encryption */
status = CRYP_AESGCM_Process_DMA (hcryp) ;
break;
case CRYP_AES_CCM:
/* AES CCM encryption */
status = CRYP_AESCCM_Process_DMA(hcryp);
break;
#endif /* GCM CCM defined*/
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
status = HAL_ERROR;
break;
}
#else /*AES*/
/* Set encryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & AES_CR_CHMOD;
switch(algo)
{
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Set the Initialization Vector*/
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
{
hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
}
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
/* Start DMA process transfer for AES */
CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), (hcryp->Size/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
break;
case CRYP_AES_GCM_GMAC:
/* AES GCM encryption */
status = CRYP_AESGCM_Process_DMA (hcryp) ;
break;
case CRYP_AES_CCM:
/* AES CCM encryption */
status = CRYP_AESCCM_Process_DMA(hcryp);
break;
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
status = HAL_ERROR;
break;
}
#endif /* End AES or CRYP */
}
else
{
/* Busy error code field */
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief Decryption in DMA mode.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input: Pointer to the input buffer (ciphertext )
* @param Size: Length of the plaintext buffer in word
* @param Output: Pointer to the output buffer(plaintext)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
{
uint32_t algo;
HAL_StatusTypeDef status = HAL_OK;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Change state Busy */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Process locked */
__HAL_LOCK(hcryp);
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
hcryp->pCrypInBuffPtr = Input;
hcryp->pCrypOutBuffPtr = Output;
/* Calculate Size parameter in Byte*/
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
{
hcryp->Size = Size * 4U;
}
else
{
hcryp->Size = Size;
}
#if defined (CRYP)
/* Set decryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
switch(algo)
{
case CRYP_DES_ECB:
case CRYP_DES_CBC:
case CRYP_TDES_ECB:
case CRYP_TDES_CBC:
/*Set Key */
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
}
/* Set the Initialization Vector*/
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
}
/* Flush FIFO */
HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
/* Start DMA process transfer for DES/TDES */
CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size)/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
break;
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* AES decryption */
status = CRYP_AES_Decrypt_DMA(hcryp);
break;
#if defined (CRYP_CR_ALGOMODE_AES_GCM)
case CRYP_AES_GCM:
/* AES GCM decryption */
status = CRYP_AESGCM_Process_DMA (hcryp) ;
break;
case CRYP_AES_CCM:
/* AES CCM decryption */
status = CRYP_AESCCM_Process_DMA(hcryp);
break;
#endif /* GCM CCM defined*/
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
status = HAL_ERROR;
break;
}
#else /*AES*/
/* Set decryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
/* algo get algorithm selected */
algo = hcryp->Instance->CR & AES_CR_CHMOD;
switch(algo)
{
case CRYP_AES_ECB:
case CRYP_AES_CBC:
case CRYP_AES_CTR:
/* AES decryption */
status = CRYP_AES_Decrypt_DMA(hcryp);
break;
case CRYP_AES_GCM_GMAC:
/* AES GCM decryption */
status = CRYP_AESGCM_Process_DMA (hcryp) ;
break;
case CRYP_AES_CCM:
/* AES CCM decryption */
status = CRYP_AESCCM_Process_DMA(hcryp);
break;
default:
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
status = HAL_ERROR;
break;
}
#endif /* End AES or CRYP */
}
else
{
/* Busy error code field */
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management
* @brief CRYP IRQ handler.
*
@verbatim
==============================================================================
##### CRYP IRQ handler management #####
==============================================================================
[..] This section provides CRYP IRQ handler and callback functions.
(+) HAL_CRYP_IRQHandler CRYP interrupt request
(+) HAL_CRYP_InCpltCallback input data transfer complete callback
(+) HAL_CRYP_OutCpltCallback output data transfer complete callback
(+) HAL_CRYP_ErrorCallback CRYP error callback
(+) HAL_CRYP_GetState return the CRYP state
(+) HAL_CRYP_GetError return the CRYP error code
@endverbatim
* @{
*/
/**
* @brief This function handles cryptographic interrupt request.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
{
#if defined (CRYP)
if((__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI) != 0x0U) || (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI) != 0x0U))
{
if ((hcryp->Init.Algorithm == CRYP_DES_ECB)|| (hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
{
CRYP_TDES_IT(hcryp); /* DES or TDES*/
}
else if((hcryp->Init.Algorithm == CRYP_AES_ECB) || (hcryp->Init.Algorithm == CRYP_AES_CBC) || (hcryp->Init.Algorithm == CRYP_AES_CTR))
{
CRYP_AES_IT(hcryp); /*AES*/
}
#if defined (CRYP_CR_ALGOMODE_AES_GCM)
else if((hcryp->Init.Algorithm == CRYP_AES_GCM) ||(hcryp->Init.Algorithm == CRYP_CR_ALGOMODE_AES_CCM) )
{
/* if header phase */
if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER )
{
CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
}
else /* if payload phase */
{
CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
}
}
#endif /* GCM CCM defined*/
else
{
/* Nothing to do */
}
}
#else /*AES*/
if((__HAL_CRYP_GET_FLAG(hcryp,CRYP_IT_CCF) != 0x0U) && (__HAL_CRYP_GET_IT_SOURCE(hcryp,CRYP_IT_CCFIE) != 0x0U))
{
/* Clear computation complete flag */
__HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_CCF_CLEAR);
if(hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
{
/* if header phase */
if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER )
{
CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
}
else /* if payload phase */
{
CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
}
}
else if(hcryp->Init.Algorithm == CRYP_AES_CCM)
{
/* if header phase */
if (hcryp->Init.HeaderSize >= hcryp->CrypHeaderCount )
{
CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
}
else /* if payload phase */
{
CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
}
}
else /* AES Algorithm ECB,CBC or CTR*/
{
CRYP_AES_IT(hcryp);
}
}
/* Check if error occurred */
if (__HAL_CRYP_GET_IT_SOURCE(hcryp,CRYP_IT_ERRIE) != RESET)
{
/* If write Error occurred */
if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_IT_WRERR) != RESET)
{
hcryp->ErrorCode |= HAL_CRYP_ERROR_WRITE;
}
/* If read Error occurred */
if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_IT_RDERR) != RESET)
{
hcryp->ErrorCode |= HAL_CRYP_ERROR_READ;
}
}
#endif /* End AES or CRYP */
}
/**
* @brief Return the CRYP error code.
* @param hcryp : pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for the CRYP IP
* @retval CRYP error code
*/
uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp)
{
return hcryp->ErrorCode;
}
/**
* @brief Returns the CRYP state.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module.
* @retval HAL state
*/
HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
{
return hcryp->State;
}
/**
* @brief Input FIFO transfer completed callback.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module.
* @retval None
*/
__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CRYP_InCpltCallback could be implemented in the user file
*/
}
/**
* @brief Output FIFO transfer completed callback.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module.
* @retval None
*/
__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CRYP_OutCpltCallback could be implemented in the user file
*/
}
/**
* @brief CRYP error callback.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module.
* @retval None
*/
__weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CRYP_ErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup CRYP_Private_Functions
* @{
*/
#if defined (CRYP)
/**
* @brief Encryption in ECB/CBC Algorithm with DES/TDES standard.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Timeout: specify Timeout value
* @retval HAL status
*/
static HAL_StatusTypeDef CRYP_TDES_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
{
uint32_t temp; /* Temporary CrypOutBuff */
uint16_t incount; /* Temporary CrypInCount Value */
uint16_t outcount; /* Temporary CrypOutCount Value */
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/*Temporary CrypOutCount Value*/
outcount = hcryp->CrypOutCount;
/*Start processing*/
while((hcryp->CrypInCount < (hcryp->Size/4U)) && (outcount < (hcryp->Size/4U)))
{
/* Temporary CrypInCount Value */
incount = hcryp->CrypInCount;
/* Write plain data and get cipher data */
if(((hcryp->Instance->SR & CRYP_FLAG_IFNF ) != 0x0U) && (incount < (hcryp->Size/4U)))
{
/* Write the input block in the IN FIFO */
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
}
/* Wait for OFNE flag to be raised */
if(CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
{
/* Disable the CRYP peripheral clock */
__HAL_CRYP_DISABLE(hcryp);
/* Change state & errorCode*/
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
hcryp->State = HAL_CRYP_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcryp);
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
/*Call registered error callback*/
hcryp->ErrorCallback(hcryp);
#else
/*Call legacy weak error callback*/
HAL_CRYP_ErrorCallback(hcryp);
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
}
/*Temporary CrypOutCount Value*/
outcount = hcryp->CrypOutCount;
if(((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U) && (outcount < (hcryp->Size/4U)))
{
/* Read the output block from the Output FIFO and put them in temporary Buffer then get CrypOutBuff from temporary buffer */
temp = hcryp->Instance->DOUT;
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
hcryp->CrypOutCount++;
temp = hcryp->Instance->DOUT;
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
hcryp->CrypOutCount++;
}
/*Temporary CrypOutCount Value*/
outcount = hcryp->CrypOutCount;
}
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief CRYP block input/output data handling under interruption with DES/TDES standard.
* @note The function is called under interruption only, once
* interruptions have been enabled by CRYP_Decrypt_IT() and CRYP_Encrypt_IT().
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module.
* @retval none
*/
static void CRYP_TDES_IT(CRYP_HandleTypeDef *hcryp)
{
uint32_t temp; /* Temporary CrypOutBuff */
if(hcryp->State == HAL_CRYP_STATE_BUSY)
{
if((__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI) != 0x0U) && (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_INRIS) != 0x0U))
{
/* Write input block in the IN FIFO */
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
if(hcryp->CrypInCount == ((uint16_t)(hcryp->Size)/4U))
{
/* Disable interruption */
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the input data transfer complete callback */
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
/*Call registered Input complete callback*/
hcryp->InCpltCallback(hcryp);
#else
/*Call legacy weak Input complete callback*/
HAL_CRYP_InCpltCallback(hcryp);
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
}
}
if((__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI) != 0x0U)&& (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_OUTRIS) != 0x0U))
{
/* Read the output block from the Output FIFO and put them in temporary Buffer then get CrypOutBuff from temporary buffer */
temp = hcryp->Instance->DOUT;
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
hcryp->CrypOutCount++;
temp = hcryp->Instance->DOUT;
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
hcryp->CrypOutCount++;
if(hcryp->CrypOutCount == ((uint16_t)(hcryp->Size)/4U))
{
/* Disable interruption */
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Process unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call output transfer complete callback */
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
/*Call registered Output complete callback*/
hcryp->OutCpltCallback(hcryp);
#else
/*Call legacy weak Output complete callback*/
HAL_CRYP_OutCpltCallback(hcryp);
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
}
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hcryp);
/* Busy error code field */
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
/*Call registered error callback*/
hcryp->ErrorCallback(hcryp);
#else
/*Call legacy weak error callback*/
HAL_CRYP_ErrorCallback(hcryp);
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
}
}
#endif /* CRYP */
/**
* @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard
* @param hcryp: pointer to a CRYP_HandleTypeDef structure
* @param Timeout: specify Timeout value
* @retval HAL status
*/
static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
{
uint16_t outcount; /* Temporary CrypOutCount Value */
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
{
/* Set the Initialization Vector*/
#if defined (AES)
hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
#else /* CRYP */
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
#endif /* End AES or CRYP */
}
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/*Temporary CrypOutCount Value*/
outcount = hcryp->CrypOutCount;
while((hcryp->CrypInCount < (hcryp->Size/4U)) && (outcount < (hcryp->Size/4U)))
{
/* Write plain Ddta and get cipher data */
CRYP_AES_ProcessData(hcryp,Timeout);
/*Temporary CrypOutCount Value*/
outcount = hcryp->CrypOutCount;
}
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp)
{
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
{
/* Set the Initialization Vector*/
#if defined (AES)
hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
#else /* CRYP */
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
#endif /* End AES or CRYP */
}
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
if(hcryp->Size != 0U)
{
#if defined (AES)
/* Enable computation complete flag and error interrupts */
__HAL_CRYP_ENABLE_IT(hcryp,CRYP_IT_CCFIE | CRYP_IT_ERRIE);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Write the input block in the IN FIFO */
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
#else /* CRYP */
/* Enable interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
#endif /* End AES or CRYP */
}
else
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcryp);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Decryption in ECB/CBC & CTR mode with AES Standard
* @param hcryp: pointer to a CRYP_HandleTypeDef structure
* @param Timeout: Specify Timeout value
* @retval HAL status
*/
static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout )
{
uint16_t outcount; /* Temporary CrypOutCount Value */
/* Key preparation for ECB/CBC */
if (hcryp->Init.Algorithm != CRYP_AES_CTR)
{
#if defined (AES)
if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
{
/* Set key preparation for decryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Wait for CCF flag to be raised */
if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
{
/* Disable the CRYP peripheral clock */
__HAL_CRYP_DISABLE(hcryp);
/* Change state & error code*/
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
hcryp->State = HAL_CRYP_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
/* Clear CCF Flag */
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
/* Return to decryption operating mode(Mode 3)*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
}
else /*Mode 4 : decryption & Key preparation*/
{
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Set decryption & Key preparation operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
}
#else /* CRYP */
/* change ALGOMODE to key preparation for decryption*/
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY );
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Wait for BUSY flag to be raised */
if(CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
{
/* Disable the CRYP peripheral clock */
__HAL_CRYP_DISABLE(hcryp);
/* Change state */
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
hcryp->State = HAL_CRYP_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
/* Turn back to ALGOMODE of the configuration */
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm );
#endif /* End AES or CRYP */
}
else /*Algorithm CTR */
{
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
}
/* Set IV */
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
{
/* Set the Initialization Vector*/
#if defined (AES)
hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
#else /* CRYP */
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
#endif /* End AES or CRYP */
}
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/*Temporary CrypOutCount Value*/
outcount = hcryp->CrypOutCount;
while((hcryp->CrypInCount < (hcryp->Size/4U)) && (outcount < (hcryp->Size/4U)))
{
/* Write plain data and get cipher data */
CRYP_AES_ProcessData(hcryp,Timeout);
/*Temporary CrypOutCount Value*/
outcount = hcryp->CrypOutCount;
}
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp)
{
__IO uint32_t count = 0U;
/* Key preparation for ECB/CBC */
if (hcryp->Init.Algorithm != CRYP_AES_CTR)
{
#if defined (AES)
if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
{
/* Set key preparation for decryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Wait for CCF flag to be raised */
count = CRYP_TIMEOUT_KEYPREPARATION;
do
{
count-- ;
if(count == 0U)
{
/* Disable the CRYP peripheral clock */
__HAL_CRYP_DISABLE(hcryp);
/* Change state */
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
hcryp->State = HAL_CRYP_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
}
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
/* Clear CCF Flag */
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
/* Return to decryption operating mode(Mode 3)*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
}
else /*Mode 4 : decryption & key preparation*/
{
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Set decryption & key preparation operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
}
#else /* CRYP */
/* change ALGOMODE to key preparation for decryption*/
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY );
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Wait for BUSY flag to be raised */
count = CRYP_TIMEOUT_KEYPREPARATION;
do
{
count-- ;
if(count == 0U)
{
/* Change state */
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
hcryp->State = HAL_CRYP_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
}
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
/* Turn back to ALGOMODE of the configuration */
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm );
#endif /* End AES or CRYP */
}
else /*Algorithm CTR */
{
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
}
/* Set IV */
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
{
/* Set the Initialization Vector*/
#if defined (AES)
hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
#else /* CRYP */
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
#endif /* End AES or CRYP */
}
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
if(hcryp->Size != 0U)
{
#if defined (AES)
/* Enable computation complete flag and error interrupts */
__HAL_CRYP_ENABLE_IT(hcryp,CRYP_IT_CCFIE | CRYP_IT_ERRIE);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Write the input block in the IN FIFO */
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
hcryp->CrypInCount++;
#else /* CRYP */
/* Enable interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
#endif /* End AES or CRYP */
}
else
{
/* Process locked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp)
{
__IO uint32_t count = 0U;
/* Key preparation for ECB/CBC */
if (hcryp->Init.Algorithm != CRYP_AES_CTR)
{
#if defined (AES)
if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 key preparation*/
{
/* Set key preparation for decryption operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Wait for CCF flag to be raised */
count = CRYP_TIMEOUT_KEYPREPARATION;
do
{
count-- ;
if(count == 0U)
{
/* Disable the CRYP peripheral clock */
__HAL_CRYP_DISABLE(hcryp);
/* Change state */
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
hcryp->State = HAL_CRYP_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
}
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
/* Clear CCF Flag */
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
/* Return to decryption operating mode(Mode 3)*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
}
else /*Mode 4 : decryption & key preparation*/
{
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Set decryption & Key preparation operating mode*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
}
#else /* CRYP */
/* change ALGOMODE to key preparation for decryption*/
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY );
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Wait for BUSY flag to be raised */
count = CRYP_TIMEOUT_KEYPREPARATION;
do
{
count-- ;
if(count == 0U)
{
/* Disable the CRYP peripheral clock */
__HAL_CRYP_DISABLE(hcryp);
/* Change state */
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
hcryp->State = HAL_CRYP_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
}
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
/* Turn back to ALGOMODE of the configuration */
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm );
#endif /* End AES or CRYP */
}
else /*Algorithm CTR */
{
/* Set the Key*/
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
}
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
{
/* Set the Initialization Vector*/
#if defined (AES)
hcryp->Instance->IVR3 = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IVR2 = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IVR1 = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IVR0 = *(uint32_t*)(hcryp->Init.pInitVect+3);
#else /* CRYP */
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
#endif /* End AES or CRYP */
}
/* Set the phase */
hcryp->Phase = CRYP_PHASE_PROCESS;
if(hcryp->Size != 0U)
{
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), (hcryp->Size/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief DMA CRYP input data process complete callback.
* @param hdma: DMA handle
* @retval None
*/
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
/* Disable the DMA transfer for input FIFO request by resetting the DIEN bit
in the DMACR register */
#if defined (CRYP)
hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
#else /* AES */
CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
/* TinyAES2, No output on CCM AES, unlock should be done when input data process complete */
if((hcryp->Init.Algorithm & CRYP_AES_CCM) == CRYP_AES_CCM)
{
/* Clear CCF flag */
__HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_CCF_CLEAR);
/* Change the CRYP state to ready */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
}
#endif /* End AES or CRYP */
/* Call input data transfer complete callback */
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
/*Call registered Input complete callback*/
hcryp->InCpltCallback(hcryp);
#else
/*Call legacy weak Input complete callback*/
HAL_CRYP_InCpltCallback(hcryp);
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
}
/**
* @brief DMA CRYP output data process complete callback.
* @param hdma: DMA handle
* @retval None
*/
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
/* Disable the DMA transfer for output FIFO request by resetting
the DOEN bit in the DMACR register */
#if defined (CRYP)
hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
#if defined (CRYP_CR_ALGOMODE_AES_GCM)
if((hcryp->Init.Algorithm & CRYP_AES_GCM) != CRYP_AES_GCM)
{
/* Disable CRYP (not allowed in GCM)*/
__HAL_CRYP_DISABLE(hcryp);
}
#else /*NO GCM CCM */
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
#endif /* GCM CCM defined*/
#else /* AES */
CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);