blob: fcdfd6e461f751fd58a4b33e358c054c28e38d27 [file] [log] [blame]
/**
******************************************************************************
* @file stm32f4xx_ll_tim.h
* @author MCD Application Team
* @brief Header file of TIM LL module.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_LL_TIM_H
#define __STM32F4xx_LL_TIM_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx.h"
/** @addtogroup STM32F4xx_LL_Driver
* @{
*/
#if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14)
/** @defgroup TIM_LL TIM
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Variables TIM Private Variables
* @{
*/
static const uint8_t OFFSET_TAB_CCMRx[] =
{
0x00U, /* 0: TIMx_CH1 */
0x00U, /* 1: TIMx_CH1N */
0x00U, /* 2: TIMx_CH2 */
0x00U, /* 3: TIMx_CH2N */
0x04U, /* 4: TIMx_CH3 */
0x04U, /* 5: TIMx_CH3N */
0x04U /* 6: TIMx_CH4 */
};
static const uint8_t SHIFT_TAB_OCxx[] =
{
0U, /* 0: OC1M, OC1FE, OC1PE */
0U, /* 1: - NA */
8U, /* 2: OC2M, OC2FE, OC2PE */
0U, /* 3: - NA */
0U, /* 4: OC3M, OC3FE, OC3PE */
0U, /* 5: - NA */
8U /* 6: OC4M, OC4FE, OC4PE */
};
static const uint8_t SHIFT_TAB_ICxx[] =
{
0U, /* 0: CC1S, IC1PSC, IC1F */
0U, /* 1: - NA */
8U, /* 2: CC2S, IC2PSC, IC2F */
0U, /* 3: - NA */
0U, /* 4: CC3S, IC3PSC, IC3F */
0U, /* 5: - NA */
8U /* 6: CC4S, IC4PSC, IC4F */
};
static const uint8_t SHIFT_TAB_CCxP[] =
{
0U, /* 0: CC1P */
2U, /* 1: CC1NP */
4U, /* 2: CC2P */
6U, /* 3: CC2NP */
8U, /* 4: CC3P */
10U, /* 5: CC3NP */
12U /* 6: CC4P */
};
static const uint8_t SHIFT_TAB_OISx[] =
{
0U, /* 0: OIS1 */
1U, /* 1: OIS1N */
2U, /* 2: OIS2 */
3U, /* 3: OIS2N */
4U, /* 4: OIS3 */
5U, /* 5: OIS3N */
6U /* 6: OIS4 */
};
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Constants TIM Private Constants
* @{
*/
/* Remap mask definitions */
#define TIMx_OR_RMP_SHIFT 16U
#define TIMx_OR_RMP_MASK 0x0000FFFFU
#define TIM2_OR_RMP_MASK (TIM_OR_ITR1_RMP << TIMx_OR_RMP_SHIFT)
#define TIM5_OR_RMP_MASK (TIM_OR_TI4_RMP << TIMx_OR_RMP_SHIFT)
#define TIM11_OR_RMP_MASK (TIM_OR_TI1_RMP << TIMx_OR_RMP_SHIFT)
/* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
#define DT_DELAY_1 ((uint8_t)0x7F)
#define DT_DELAY_2 ((uint8_t)0x3F)
#define DT_DELAY_3 ((uint8_t)0x1F)
#define DT_DELAY_4 ((uint8_t)0x1F)
/* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
#define DT_RANGE_1 ((uint8_t)0x00)
#define DT_RANGE_2 ((uint8_t)0x80)
#define DT_RANGE_3 ((uint8_t)0xC0)
#define DT_RANGE_4 ((uint8_t)0xE0)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Macros TIM Private Macros
* @{
*/
/** @brief Convert channel id into channel index.
* @param __CHANNEL__ This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval none
*/
#define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
(((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U : 6U)
/** @brief Calculate the deadtime sampling period(in ps).
* @param __TIMCLK__ timer input clock frequency (in Hz).
* @param __CKD__ This parameter can be one of the following values:
* @arg @ref LL_TIM_CLOCKDIVISION_DIV1
* @arg @ref LL_TIM_CLOCKDIVISION_DIV2
* @arg @ref LL_TIM_CLOCKDIVISION_DIV4
* @retval none
*/
#define TIM_CALC_DTS(__TIMCLK__, __CKD__) \
(((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__)) : \
((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
* @{
*/
/**
* @brief TIM Time Base configuration structure definition.
*/
typedef struct
{
uint16_t Prescaler; /*!< Specifies the prescaler value used to divide the TIM clock.
This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
This feature can be modified afterwards using unitary function @ref LL_TIM_SetPrescaler().*/
uint32_t CounterMode; /*!< Specifies the counter mode.
This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
This feature can be modified afterwards using unitary function @ref LL_TIM_SetCounterMode().*/
uint32_t Autoreload; /*!< Specifies the auto reload value to be loaded into the active
Auto-Reload Register at the next update event.
This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
Some timer instances may support 32 bits counters. In that case this parameter must be a number between 0x0000 and 0xFFFFFFFF.
This feature can be modified afterwards using unitary function @ref LL_TIM_SetAutoReload().*/
uint32_t ClockDivision; /*!< Specifies the clock division.
This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
This feature can be modified afterwards using unitary function @ref LL_TIM_SetClockDivision().*/
uint8_t RepetitionCounter; /*!< Specifies the repetition counter value. Each time the RCR downcounter
reaches zero, an update event is generated and counting restarts
from the RCR value (N).
This means in PWM mode that (N+1) corresponds to:
- the number of PWM periods in edge-aligned mode
- the number of half PWM period in center-aligned mode
This parameter must be a number between 0x00 and 0xFF.
This feature can be modified afterwards using unitary function @ref LL_TIM_SetRepetitionCounter().*/
} LL_TIM_InitTypeDef;
/**
* @brief TIM Output Compare configuration structure definition.
*/
typedef struct
{
uint32_t OCMode; /*!< Specifies the output mode.
This parameter can be a value of @ref TIM_LL_EC_OCMODE.
This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetMode().*/
uint32_t OCState; /*!< Specifies the TIM Output Compare state.
This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
This feature can be modified afterwards using unitary functions @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
uint32_t OCNState; /*!< Specifies the TIM complementary Output Compare state.
This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
This feature can be modified afterwards using unitary functions @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
uint32_t CompareValue; /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
This feature can be modified afterwards using unitary function LL_TIM_OC_SetCompareCHx (x=1..6).*/
uint32_t OCPolarity; /*!< Specifies the output polarity.
This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetPolarity().*/
uint32_t OCNPolarity; /*!< Specifies the complementary output polarity.
This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetPolarity().*/
uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetIdleState().*/
uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetIdleState().*/
} LL_TIM_OC_InitTypeDef;
/**
* @brief TIM Input Capture configuration structure definition.
*/
typedef struct
{
uint32_t ICPolarity; /*!< Specifies the active edge of the input signal.
This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
uint32_t ICActiveInput; /*!< Specifies the input.
This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/
uint32_t ICPrescaler; /*!< Specifies the Input Capture Prescaler.
This parameter can be a value of @ref TIM_LL_EC_ICPSC.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
uint32_t ICFilter; /*!< Specifies the input capture filter.
This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
} LL_TIM_IC_InitTypeDef;
/**
* @brief TIM Encoder interface configuration structure definition.
*/
typedef struct
{
uint32_t EncoderMode; /*!< Specifies the encoder resolution (x2 or x4).
This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
This feature can be modified afterwards using unitary function @ref LL_TIM_SetEncoderMode().*/
uint32_t IC1Polarity; /*!< Specifies the active edge of TI1 input.
This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
uint32_t IC1ActiveInput; /*!< Specifies the TI1 input source
This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/
uint32_t IC1Prescaler; /*!< Specifies the TI1 input prescaler value.
This parameter can be a value of @ref TIM_LL_EC_ICPSC.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
uint32_t IC1Filter; /*!< Specifies the TI1 input filter.
This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
uint32_t IC2Polarity; /*!< Specifies the active edge of TI2 input.
This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
uint32_t IC2ActiveInput; /*!< Specifies the TI2 input source
This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/
uint32_t IC2Prescaler; /*!< Specifies the TI2 input prescaler value.
This parameter can be a value of @ref TIM_LL_EC_ICPSC.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
uint32_t IC2Filter; /*!< Specifies the TI2 input filter.
This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
} LL_TIM_ENCODER_InitTypeDef;
/**
* @brief TIM Hall sensor interface configuration structure definition.
*/
typedef struct
{
uint32_t IC1Polarity; /*!< Specifies the active edge of TI1 input.
This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
uint32_t IC1Prescaler; /*!< Specifies the TI1 input prescaler value.
Prescaler must be set to get a maximum counter period longer than the
time interval between 2 consecutive changes on the Hall inputs.
This parameter can be a value of @ref TIM_LL_EC_ICPSC.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
uint32_t IC1Filter; /*!< Specifies the TI1 input filter.
This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
uint32_t CommutationDelay; /*!< Specifies the compare value to be loaded into the Capture Compare Register.
A positive pulse (TRGO event) is generated with a programmable delay every time
a change occurs on the Hall inputs.
This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetCompareCH2().*/
} LL_TIM_HALLSENSOR_InitTypeDef;
/**
* @brief BDTR (Break and Dead Time) structure definition
*/
typedef struct
{
uint32_t OSSRState; /*!< Specifies the Off-State selection used in Run mode.
This parameter can be a value of @ref TIM_LL_EC_OSSR
This feature can be modified afterwards using unitary function @ref LL_TIM_SetOffStates()
@note This bit-field cannot be modified as long as LOCK level 2 has been programmed. */
uint32_t OSSIState; /*!< Specifies the Off-State used in Idle state.
This parameter can be a value of @ref TIM_LL_EC_OSSI
This feature can be modified afterwards using unitary function @ref LL_TIM_SetOffStates()
@note This bit-field cannot be modified as long as LOCK level 2 has been programmed. */
uint32_t LockLevel; /*!< Specifies the LOCK level parameters.
This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
@note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register
has been written, their content is frozen until the next reset.*/
uint8_t DeadTime; /*!< Specifies the delay time between the switching-off and the
switching-on of the outputs.
This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetDeadTime()
@note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed. */
uint16_t BreakState; /*!< Specifies whether the TIM Break input is enabled or not.
This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
This feature can be modified afterwards using unitary functions @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
@note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
uint32_t BreakPolarity; /*!< Specifies the TIM Break Input pin polarity.
This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
This feature can be modified afterwards using unitary function @ref LL_TIM_ConfigBRK()
@note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
uint32_t AutomaticOutput; /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
This feature can be modified afterwards using unitary functions @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
@note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
} LL_TIM_BDTR_InitTypeDef;
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
* @{
*/
/** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_TIM_ReadReg function.
* @{
*/
#define LL_TIM_SR_UIF TIM_SR_UIF /*!< Update interrupt flag */
#define LL_TIM_SR_CC1IF TIM_SR_CC1IF /*!< Capture/compare 1 interrupt flag */
#define LL_TIM_SR_CC2IF TIM_SR_CC2IF /*!< Capture/compare 2 interrupt flag */
#define LL_TIM_SR_CC3IF TIM_SR_CC3IF /*!< Capture/compare 3 interrupt flag */
#define LL_TIM_SR_CC4IF TIM_SR_CC4IF /*!< Capture/compare 4 interrupt flag */
#define LL_TIM_SR_COMIF TIM_SR_COMIF /*!< COM interrupt flag */
#define LL_TIM_SR_TIF TIM_SR_TIF /*!< Trigger interrupt flag */
#define LL_TIM_SR_BIF TIM_SR_BIF /*!< Break interrupt flag */
#define LL_TIM_SR_CC1OF TIM_SR_CC1OF /*!< Capture/Compare 1 overcapture flag */
#define LL_TIM_SR_CC2OF TIM_SR_CC2OF /*!< Capture/Compare 2 overcapture flag */
#define LL_TIM_SR_CC3OF TIM_SR_CC3OF /*!< Capture/Compare 3 overcapture flag */
#define LL_TIM_SR_CC4OF TIM_SR_CC4OF /*!< Capture/Compare 4 overcapture flag */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
* @{
*/
#define LL_TIM_BREAK_DISABLE 0x00000000U /*!< Break function disabled */
#define LL_TIM_BREAK_ENABLE TIM_BDTR_BKE /*!< Break function enabled */
/**
* @}
*/
/** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
* @{
*/
#define LL_TIM_AUTOMATICOUTPUT_DISABLE 0x00000000U /*!< MOE can be set only by software */
#define LL_TIM_AUTOMATICOUTPUT_ENABLE TIM_BDTR_AOE /*!< MOE can be set by software or automatically at the next update event */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/** @defgroup TIM_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_TIM_ReadReg and LL_TIM_WriteReg functions.
* @{
*/
#define LL_TIM_DIER_UIE TIM_DIER_UIE /*!< Update interrupt enable */
#define LL_TIM_DIER_CC1IE TIM_DIER_CC1IE /*!< Capture/compare 1 interrupt enable */
#define LL_TIM_DIER_CC2IE TIM_DIER_CC2IE /*!< Capture/compare 2 interrupt enable */
#define LL_TIM_DIER_CC3IE TIM_DIER_CC3IE /*!< Capture/compare 3 interrupt enable */
#define LL_TIM_DIER_CC4IE TIM_DIER_CC4IE /*!< Capture/compare 4 interrupt enable */
#define LL_TIM_DIER_COMIE TIM_DIER_COMIE /*!< COM interrupt enable */
#define LL_TIM_DIER_TIE TIM_DIER_TIE /*!< Trigger interrupt enable */
#define LL_TIM_DIER_BIE TIM_DIER_BIE /*!< Break interrupt enable */
/**
* @}
*/
/** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
* @{
*/
#define LL_TIM_UPDATESOURCE_REGULAR 0x00000000U /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
#define LL_TIM_UPDATESOURCE_COUNTER TIM_CR1_URS /*!< Only counter overflow/underflow generates an update request */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
* @{
*/
#define LL_TIM_ONEPULSEMODE_SINGLE TIM_CR1_OPM /*!< Counter is not stopped at update event */
#define LL_TIM_ONEPULSEMODE_REPETITIVE 0x00000000U /*!< Counter stops counting at the next update event */
/**
* @}
*/
/** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
* @{
*/
#define LL_TIM_COUNTERMODE_UP 0x00000000U /*!<Counter used as upcounter */
#define LL_TIM_COUNTERMODE_DOWN TIM_CR1_DIR /*!< Counter used as downcounter */
#define LL_TIM_COUNTERMODE_CENTER_UP TIM_CR1_CMS_0 /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting down. */
#define LL_TIM_COUNTERMODE_CENTER_DOWN TIM_CR1_CMS_1 /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting up */
#define LL_TIM_COUNTERMODE_CENTER_UP_DOWN TIM_CR1_CMS /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting up or down. */
/**
* @}
*/
/** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
* @{
*/
#define LL_TIM_CLOCKDIVISION_DIV1 0x00000000U /*!< tDTS=tCK_INT */
#define LL_TIM_CLOCKDIVISION_DIV2 TIM_CR1_CKD_0 /*!< tDTS=2*tCK_INT */
#define LL_TIM_CLOCKDIVISION_DIV4 TIM_CR1_CKD_1 /*!< tDTS=4*tCK_INT */
/**
* @}
*/
/** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
* @{
*/
#define LL_TIM_COUNTERDIRECTION_UP 0x00000000U /*!< Timer counter counts up */
#define LL_TIM_COUNTERDIRECTION_DOWN TIM_CR1_DIR /*!< Timer counter counts down */
/**
* @}
*/
/** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare Update Source
* @{
*/
#define LL_TIM_CCUPDATESOURCE_COMG_ONLY 0x00000000U /*!< Capture/compare control bits are updated by setting the COMG bit only */
#define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI TIM_CR2_CCUS /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
/**
* @}
*/
/** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
* @{
*/
#define LL_TIM_CCDMAREQUEST_CC 0x00000000U /*!< CCx DMA request sent when CCx event occurs */
#define LL_TIM_CCDMAREQUEST_UPDATE TIM_CR2_CCDS /*!< CCx DMA requests sent when update event occurs */
/**
* @}
*/
/** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
* @{
*/
#define LL_TIM_LOCKLEVEL_OFF 0x00000000U /*!< LOCK OFF - No bit is write protected */
#define LL_TIM_LOCKLEVEL_1 TIM_BDTR_LOCK_0 /*!< LOCK Level 1 */
#define LL_TIM_LOCKLEVEL_2 TIM_BDTR_LOCK_1 /*!< LOCK Level 2 */
#define LL_TIM_LOCKLEVEL_3 TIM_BDTR_LOCK /*!< LOCK Level 3 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_CHANNEL Channel
* @{
*/
#define LL_TIM_CHANNEL_CH1 TIM_CCER_CC1E /*!< Timer input/output channel 1 */
#define LL_TIM_CHANNEL_CH1N TIM_CCER_CC1NE /*!< Timer complementary output channel 1 */
#define LL_TIM_CHANNEL_CH2 TIM_CCER_CC2E /*!< Timer input/output channel 2 */
#define LL_TIM_CHANNEL_CH2N TIM_CCER_CC2NE /*!< Timer complementary output channel 2 */
#define LL_TIM_CHANNEL_CH3 TIM_CCER_CC3E /*!< Timer input/output channel 3 */
#define LL_TIM_CHANNEL_CH3N TIM_CCER_CC3NE /*!< Timer complementary output channel 3 */
#define LL_TIM_CHANNEL_CH4 TIM_CCER_CC4E /*!< Timer input/output channel 4 */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
* @{
*/
#define LL_TIM_OCSTATE_DISABLE 0x00000000U /*!< OCx is not active */
#define LL_TIM_OCSTATE_ENABLE TIM_CCER_CC1E /*!< OCx signal is output on the corresponding output pin */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
* @{
*/
#define LL_TIM_OCMODE_FROZEN 0x00000000U /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
#define LL_TIM_OCMODE_ACTIVE TIM_CCMR1_OC1M_0 /*!<OCyREF is forced high on compare match*/
#define LL_TIM_OCMODE_INACTIVE TIM_CCMR1_OC1M_1 /*!<OCyREF is forced low on compare match*/
#define LL_TIM_OCMODE_TOGGLE (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<OCyREF toggles on compare match*/
#define LL_TIM_OCMODE_FORCED_INACTIVE TIM_CCMR1_OC1M_2 /*!<OCyREF is forced low*/
#define LL_TIM_OCMODE_FORCED_ACTIVE (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0) /*!<OCyREF is forced high*/
#define LL_TIM_OCMODE_PWM1 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1) /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive. In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
#define LL_TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active. In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
/**
* @}
*/
/** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
* @{
*/
#define LL_TIM_OCPOLARITY_HIGH 0x00000000U /*!< OCxactive high*/
#define LL_TIM_OCPOLARITY_LOW TIM_CCER_CC1P /*!< OCxactive low*/
/**
* @}
*/
/** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
* @{
*/
#define LL_TIM_OCIDLESTATE_LOW 0x00000000U /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
#define LL_TIM_OCIDLESTATE_HIGH TIM_CR2_OIS1 /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
/**
* @}
*/
/** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
* @{
*/
#define LL_TIM_ACTIVEINPUT_DIRECTTI (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
#define LL_TIM_ACTIVEINPUT_INDIRECTTI (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
#define LL_TIM_ACTIVEINPUT_TRC (TIM_CCMR1_CC1S << 16U) /*!< ICx is mapped on TRC */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
* @{
*/
#define LL_TIM_ICPSC_DIV1 0x00000000U /*!< No prescaler, capture is done each time an edge is detected on the capture input */
#define LL_TIM_ICPSC_DIV2 (TIM_CCMR1_IC1PSC_0 << 16U) /*!< Capture is done once every 2 events */
#define LL_TIM_ICPSC_DIV4 (TIM_CCMR1_IC1PSC_1 << 16U) /*!< Capture is done once every 4 events */
#define LL_TIM_ICPSC_DIV8 (TIM_CCMR1_IC1PSC << 16U) /*!< Capture is done once every 8 events */
/**
* @}
*/
/** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
* @{
*/
#define LL_TIM_IC_FILTER_FDIV1 0x00000000U /*!< No filter, sampling is done at fDTS */
#define LL_TIM_IC_FILTER_FDIV1_N2 (TIM_CCMR1_IC1F_0 << 16U) /*!< fSAMPLING=fCK_INT, N=2 */
#define LL_TIM_IC_FILTER_FDIV1_N4 (TIM_CCMR1_IC1F_1 << 16U) /*!< fSAMPLING=fCK_INT, N=4 */
#define LL_TIM_IC_FILTER_FDIV1_N8 ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fCK_INT, N=8 */
#define LL_TIM_IC_FILTER_FDIV2_N6 (TIM_CCMR1_IC1F_2 << 16U) /*!< fSAMPLING=fDTS/2, N=6 */
#define LL_TIM_IC_FILTER_FDIV2_N8 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/2, N=8 */
#define LL_TIM_IC_FILTER_FDIV4_N6 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/4, N=6 */
#define LL_TIM_IC_FILTER_FDIV4_N8 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/4, N=8 */
#define LL_TIM_IC_FILTER_FDIV8_N6 (TIM_CCMR1_IC1F_3 << 16U) /*!< fSAMPLING=fDTS/8, N=6 */
#define LL_TIM_IC_FILTER_FDIV8_N8 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/8, N=8 */
#define LL_TIM_IC_FILTER_FDIV16_N5 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_IC_FILTER_FDIV16_N6 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/16, N=6 */
#define LL_TIM_IC_FILTER_FDIV16_N8 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U) /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_IC_FILTER_FDIV32_N5 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/32, N=5 */
#define LL_TIM_IC_FILTER_FDIV32_N6 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/32, N=6 */
#define LL_TIM_IC_FILTER_FDIV32_N8 (TIM_CCMR1_IC1F << 16U) /*!< fSAMPLING=fDTS/32, N=8 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
* @{
*/
#define LL_TIM_IC_POLARITY_RISING 0x00000000U /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
#define LL_TIM_IC_POLARITY_FALLING TIM_CCER_CC1P /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
#define LL_TIM_IC_POLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
/**
* @}
*/
/** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
* @{
*/
#define LL_TIM_CLOCKSOURCE_INTERNAL 0x00000000U /*!< The timer is clocked by the internal clock provided from the RCC */
#define LL_TIM_CLOCKSOURCE_EXT_MODE1 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Counter counts at each rising or falling edge on a selected input*/
#define LL_TIM_CLOCKSOURCE_EXT_MODE2 TIM_SMCR_ECE /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
* @{
*/
#define LL_TIM_ENCODERMODE_X2_TI1 TIM_SMCR_SMS_0 /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
#define LL_TIM_ENCODERMODE_X2_TI2 TIM_SMCR_SMS_1 /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
#define LL_TIM_ENCODERMODE_X4_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TRGO Trigger Output
* @{
*/
#define LL_TIM_TRGO_RESET 0x00000000U /*!< UG bit from the TIMx_EGR register is used as trigger output */
#define LL_TIM_TRGO_ENABLE TIM_CR2_MMS_0 /*!< Counter Enable signal (CNT_EN) is used as trigger output */
#define LL_TIM_TRGO_UPDATE TIM_CR2_MMS_1 /*!< Update event is used as trigger output */
#define LL_TIM_TRGO_CC1IF (TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< CC1 capture or a compare match is used as trigger output */
#define LL_TIM_TRGO_OC1REF TIM_CR2_MMS_2 /*!< OC1REF signal is used as trigger output */
#define LL_TIM_TRGO_OC2REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_0) /*!< OC2REF signal is used as trigger output */
#define LL_TIM_TRGO_OC3REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1) /*!< OC3REF signal is used as trigger output */
#define LL_TIM_TRGO_OC4REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
/**
* @}
*/
/** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
* @{
*/
#define LL_TIM_SLAVEMODE_DISABLED 0x00000000U /*!< Slave mode disabled */
#define LL_TIM_SLAVEMODE_RESET TIM_SMCR_SMS_2 /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
#define LL_TIM_SLAVEMODE_GATED (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0) /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
#define LL_TIM_SLAVEMODE_TRIGGER (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1) /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TS Trigger Selection
* @{
*/
#define LL_TIM_TS_ITR0 0x00000000U /*!< Internal Trigger 0 (ITR0) is used as trigger input */
#define LL_TIM_TS_ITR1 TIM_SMCR_TS_0 /*!< Internal Trigger 1 (ITR1) is used as trigger input */
#define LL_TIM_TS_ITR2 TIM_SMCR_TS_1 /*!< Internal Trigger 2 (ITR2) is used as trigger input */
#define LL_TIM_TS_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1) /*!< Internal Trigger 3 (ITR3) is used as trigger input */
#define LL_TIM_TS_TI1F_ED TIM_SMCR_TS_2 /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
#define LL_TIM_TS_TI1FP1 (TIM_SMCR_TS_2 | TIM_SMCR_TS_0) /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
#define LL_TIM_TS_TI2FP2 (TIM_SMCR_TS_2 | TIM_SMCR_TS_1) /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
#define LL_TIM_TS_ETRF (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0) /*!< Filtered external Trigger (ETRF) is used as trigger input */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
* @{
*/
#define LL_TIM_ETR_POLARITY_NONINVERTED 0x00000000U /*!< ETR is non-inverted, active at high level or rising edge */
#define LL_TIM_ETR_POLARITY_INVERTED TIM_SMCR_ETP /*!< ETR is inverted, active at low level or falling edge */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
* @{
*/
#define LL_TIM_ETR_PRESCALER_DIV1 0x00000000U /*!< ETR prescaler OFF */
#define LL_TIM_ETR_PRESCALER_DIV2 TIM_SMCR_ETPS_0 /*!< ETR frequency is divided by 2 */
#define LL_TIM_ETR_PRESCALER_DIV4 TIM_SMCR_ETPS_1 /*!< ETR frequency is divided by 4 */
#define LL_TIM_ETR_PRESCALER_DIV8 TIM_SMCR_ETPS /*!< ETR frequency is divided by 8 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
* @{
*/
#define LL_TIM_ETR_FILTER_FDIV1 0x00000000U /*!< No filter, sampling is done at fDTS */
#define LL_TIM_ETR_FILTER_FDIV1_N2 TIM_SMCR_ETF_0 /*!< fSAMPLING=fCK_INT, N=2 */
#define LL_TIM_ETR_FILTER_FDIV1_N4 TIM_SMCR_ETF_1 /*!< fSAMPLING=fCK_INT, N=4 */
#define LL_TIM_ETR_FILTER_FDIV1_N8 (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fCK_INT, N=8 */
#define LL_TIM_ETR_FILTER_FDIV2_N6 TIM_SMCR_ETF_2 /*!< fSAMPLING=fDTS/2, N=6 */
#define LL_TIM_ETR_FILTER_FDIV2_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/2, N=8 */
#define LL_TIM_ETR_FILTER_FDIV4_N6 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/4, N=6 */
#define LL_TIM_ETR_FILTER_FDIV4_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/4, N=8 */
#define LL_TIM_ETR_FILTER_FDIV8_N6 TIM_SMCR_ETF_3 /*!< fSAMPLING=fDTS/8, N=8 */
#define LL_TIM_ETR_FILTER_FDIV8_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_ETR_FILTER_FDIV16_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/16, N=6 */
#define LL_TIM_ETR_FILTER_FDIV16_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_ETR_FILTER_FDIV16_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2) /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_ETR_FILTER_FDIV32_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/32, N=5 */
#define LL_TIM_ETR_FILTER_FDIV32_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/32, N=6 */
#define LL_TIM_ETR_FILTER_FDIV32_N8 TIM_SMCR_ETF /*!< fSAMPLING=fDTS/32, N=8 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
* @{
*/
#define LL_TIM_BREAK_POLARITY_LOW 0x00000000U /*!< Break input BRK is active low */
#define LL_TIM_BREAK_POLARITY_HIGH TIM_BDTR_BKP /*!< Break input BRK is active high */
/**
* @}
*/
/** @defgroup TIM_LL_EC_OSSI OSSI
* @{
*/
#define LL_TIM_OSSI_DISABLE 0x00000000U /*!< When inactive, OCx/OCxN outputs are disabled */
#define LL_TIM_OSSI_ENABLE TIM_BDTR_OSSI /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
/**
* @}
*/
/** @defgroup TIM_LL_EC_OSSR OSSR
* @{
*/
#define LL_TIM_OSSR_DISABLE 0x00000000U /*!< When inactive, OCx/OCxN outputs are disabled */
#define LL_TIM_OSSR_ENABLE TIM_BDTR_OSSR /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
/**
* @}
*/
/** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
* @{
*/
#define LL_TIM_DMABURST_BASEADDR_CR1 0x00000000U /*!< TIMx_CR1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CR2 TIM_DCR_DBA_0 /*!< TIMx_CR2 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_SMCR TIM_DCR_DBA_1 /*!< TIMx_SMCR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_DIER (TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_DIER register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_SR TIM_DCR_DBA_2 /*!< TIMx_SR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_EGR (TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_EGR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCMR1 (TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCMR2 (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCER TIM_DCR_DBA_3 /*!< TIMx_CCER register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CNT (TIM_DCR_DBA_3 | TIM_DCR_DBA_0) /*!< TIMx_CNT register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_PSC (TIM_DCR_DBA_3 | TIM_DCR_DBA_1) /*!< TIMx_PSC register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_ARR (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_ARR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_RCR (TIM_DCR_DBA_3 | TIM_DCR_DBA_2) /*!< TIMx_RCR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR1 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR2 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR3 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR4 TIM_DCR_DBA_4 /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_BDTR (TIM_DCR_DBA_4 | TIM_DCR_DBA_0) /*!< TIMx_BDTR register is the DMA base address for DMA burst */
/**
* @}
*/
/** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
* @{
*/
#define LL_TIM_DMABURST_LENGTH_1TRANSFER 0x00000000U /*!< Transfer is done to 1 register starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_2TRANSFERS TIM_DCR_DBL_0 /*!< Transfer is done to 2 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_3TRANSFERS TIM_DCR_DBL_1 /*!< Transfer is done to 3 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_4TRANSFERS (TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 4 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_5TRANSFERS TIM_DCR_DBL_2 /*!< Transfer is done to 5 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_6TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_0) /*!< Transfer is done to 6 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_7TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_1) /*!< Transfer is done to 7 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_8TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 1 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_9TRANSFERS TIM_DCR_DBL_3 /*!< Transfer is done to 9 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_10TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_0) /*!< Transfer is done to 10 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_11TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_1) /*!< Transfer is done to 11 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_12TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 12 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_13TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2) /*!< Transfer is done to 13 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_14TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0) /*!< Transfer is done to 14 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_15TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1) /*!< Transfer is done to 15 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_16TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_17TRANSFERS TIM_DCR_DBL_4 /*!< Transfer is done to 17 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_18TRANSFERS (TIM_DCR_DBL_4 | TIM_DCR_DBL_0) /*!< Transfer is done to 18 registers starting from the DMA burst base address */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM2_ITR1_RMP_TIM8 TIM2 Internal Trigger1 Remap TIM8
* @{
*/
#define LL_TIM_TIM2_ITR1_RMP_TIM8_TRGO TIM2_OR_RMP_MASK /*!< TIM2_ITR1 is connected to TIM8_TRGO */
#define LL_TIM_TIM2_ITR1_RMP_OTG_FS_SOF (TIM_OR_ITR1_RMP_1 | TIM2_OR_RMP_MASK) /*!< TIM2_ITR1 is connected to OTG_FS SOF */
#define LL_TIM_TIM2_ITR1_RMP_OTG_HS_SOF (TIM_OR_ITR1_RMP | TIM2_OR_RMP_MASK) /*!< TIM2_ITR1 is connected to OTG_HS SOF */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM5_TI4_RMP TIM5 External Input Ch4 Remap
* @{
*/
#define LL_TIM_TIM5_TI4_RMP_GPIO TIM5_OR_RMP_MASK /*!< TIM5 channel 4 is connected to GPIO */
#define LL_TIM_TIM5_TI4_RMP_LSI (TIM_OR_TI4_RMP_0 | TIM5_OR_RMP_MASK) /*!< TIM5 channel 4 is connected to LSI internal clock */
#define LL_TIM_TIM5_TI4_RMP_LSE (TIM_OR_TI4_RMP_1 | TIM5_OR_RMP_MASK) /*!< TIM5 channel 4 is connected to LSE */
#define LL_TIM_TIM5_TI4_RMP_RTC (TIM_OR_TI4_RMP | TIM5_OR_RMP_MASK) /*!< TIM5 channel 4 is connected to RTC wakeup interrupt */
/**
* @}
*/
/** @defgroup TIM_LL_EC_TIM11_TI1_RMP TIM11 External Input Capture 1 Remap
* @{
*/
#define LL_TIM_TIM11_TI1_RMP_GPIO TIM11_OR_RMP_MASK /*!< TIM11 channel 1 is connected to GPIO */
#define LL_TIM_TIM11_TI1_RMP_GPIO1 (TIM_OR_TI1_RMP_0 | TIM11_OR_RMP_MASK) /*!< TIM11 channel 1 is connected to GPIO */
#define LL_TIM_TIM11_TI1_RMP_GPIO2 (TIM_OR_TI1_RMP | TIM11_OR_RMP_MASK) /*!< TIM11 channel 1 is connected to GPIO */
#define LL_TIM_TIM11_TI1_RMP_HSE_RTC (TIM_OR_TI1_RMP_1 | TIM11_OR_RMP_MASK) /*!< TIM11 channel 1 is connected to HSE_RTC */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
* @{
*/
/** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in TIM register.
* @param __INSTANCE__ TIM Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
/**
* @brief Read a value in TIM register.
* @param __INSTANCE__ TIM Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
/**
* @}
*/
/** @defgroup TIM_LL_EM_Exported_Macros Exported_Macros
* @{
*/
/**
* @brief HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
* @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
* @param __TIMCLK__ timer input clock frequency (in Hz)
* @param __CKD__ This parameter can be one of the following values:
* @arg @ref LL_TIM_CLOCKDIVISION_DIV1
* @arg @ref LL_TIM_CLOCKDIVISION_DIV2
* @arg @ref LL_TIM_CLOCKDIVISION_DIV4
* @param __DT__ deadtime duration (in ns)
* @retval DTG[0:7]
*/
#define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__) \
( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__))) & DT_DELAY_1) : \
(((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
(((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
(((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
0U)
/**
* @brief HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
* @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
* @param __TIMCLK__ timer input clock frequency (in Hz)
* @param __CNTCLK__ counter clock frequency (in Hz)
* @retval Prescaler value (between Min_Data=0 and Max_Data=65535)
*/
#define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__) \
(((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)(((__TIMCLK__)/(__CNTCLK__)) - 1U) : 0U)
/**
* @brief HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
* @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
* @param __TIMCLK__ timer input clock frequency (in Hz)
* @param __PSC__ prescaler
* @param __FREQ__ output signal frequency (in Hz)
* @retval Auto-reload value (between Min_Data=0 and Max_Data=65535)
*/
#define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
/**
* @brief HELPER macro calculating the compare value required to achieve the required timer output compare active/inactive delay.
* @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
* @param __TIMCLK__ timer input clock frequency (in Hz)
* @param __PSC__ prescaler
* @param __DELAY__ timer output compare active/inactive delay (in us)
* @retval Compare value (between Min_Data=0 and Max_Data=65535)
*/
#define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__) \
((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
/ ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
/**
* @brief HELPER macro calculating the auto-reload value to achieve the required pulse duration (when the timer operates in one pulse mode).
* @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
* @param __TIMCLK__ timer input clock frequency (in Hz)
* @param __PSC__ prescaler
* @param __DELAY__ timer output compare active/inactive delay (in us)
* @param __PULSE__ pulse duration (in us)
* @retval Auto-reload value (between Min_Data=0 and Max_Data=65535)
*/
#define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__) \
((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
+ __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
/**
* @brief HELPER macro retrieving the ratio of the input capture prescaler
* @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
* @param __ICPSC__ This parameter can be one of the following values:
* @arg @ref LL_TIM_ICPSC_DIV1
* @arg @ref LL_TIM_ICPSC_DIV2
* @arg @ref LL_TIM_ICPSC_DIV4
* @arg @ref LL_TIM_ICPSC_DIV8
* @retval Input capture prescaler ratio (1, 2, 4 or 8)
*/
#define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__) \
((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
* @{
*/
/** @defgroup TIM_LL_EF_Time_Base Time Base configuration
* @{
*/
/**
* @brief Enable timer counter.
* @rmtoll CR1 CEN LL_TIM_EnableCounter
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR1, TIM_CR1_CEN);
}
/**
* @brief Disable timer counter.
* @rmtoll CR1 CEN LL_TIM_DisableCounter
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
}
/**
* @brief Indicates whether the timer counter is enabled.
* @rmtoll CR1 CEN LL_TIM_IsEnabledCounter
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
}
/**
* @brief Enable update event generation.
* @rmtoll CR1 UDIS LL_TIM_EnableUpdateEvent
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
}
/**
* @brief Disable update event generation.
* @rmtoll CR1 UDIS LL_TIM_DisableUpdateEvent
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
}
/**
* @brief Indicates whether update event generation is enabled.
* @rmtoll CR1 UDIS LL_TIM_IsEnabledUpdateEvent
* @param TIMx Timer instance
* @retval Inverted state of bit (0 or 1).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
}
/**
* @brief Set update event source
* @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
* generate an update interrupt or DMA request if enabled:
* - Counter overflow/underflow
* - Setting the UG bit
* - Update generation through the slave mode controller
* @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
* overflow/underflow generates an update interrupt or DMA request if enabled.
* @rmtoll CR1 URS LL_TIM_SetUpdateSource
* @param TIMx Timer instance
* @param UpdateSource This parameter can be one of the following values:
* @arg @ref LL_TIM_UPDATESOURCE_REGULAR
* @arg @ref LL_TIM_UPDATESOURCE_COUNTER
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
{
MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
}
/**
* @brief Get actual event update source
* @rmtoll CR1 URS LL_TIM_GetUpdateSource
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_UPDATESOURCE_REGULAR
* @arg @ref LL_TIM_UPDATESOURCE_COUNTER
*/
__STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
}
/**
* @brief Set one pulse mode (one shot v.s. repetitive).
* @rmtoll CR1 OPM LL_TIM_SetOnePulseMode
* @param TIMx Timer instance
* @param OnePulseMode This parameter can be one of the following values:
* @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
* @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
{
MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
}
/**
* @brief Get actual one pulse mode.
* @rmtoll CR1 OPM LL_TIM_GetOnePulseMode
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
* @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
*/
__STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
}
/**
* @brief Set the timer counter counting mode.
* @note Macro @ref IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
* check whether or not the counter mode selection feature is supported
* by a timer instance.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* @rmtoll CR1 DIR LL_TIM_SetCounterMode\n
* CR1 CMS LL_TIM_SetCounterMode
* @param TIMx Timer instance
* @param CounterMode This parameter can be one of the following values:
* @arg @ref LL_TIM_COUNTERMODE_UP
* @arg @ref LL_TIM_COUNTERMODE_DOWN
* @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
* @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
* @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
{
MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
}
/**
* @brief Get actual counter mode.
* @note Macro @ref IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
* check whether or not the counter mode selection feature is supported
* by a timer instance.
* @rmtoll CR1 DIR LL_TIM_GetCounterMode\n
* CR1 CMS LL_TIM_GetCounterMode
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_COUNTERMODE_UP
* @arg @ref LL_TIM_COUNTERMODE_DOWN
* @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
* @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
* @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
*/
__STATIC_INLINE uint32_t LL_TIM_GetCounterMode(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR | TIM_CR1_CMS));
}
/**
* @brief Enable auto-reload (ARR) preload.
* @rmtoll CR1 ARPE LL_TIM_EnableARRPreload
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
}
/**
* @brief Disable auto-reload (ARR) preload.
* @rmtoll CR1 ARPE LL_TIM_DisableARRPreload
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR1,TIM_CR1_ARPE);
}
/**
* @brief Indicates whether auto-reload (ARR) preload is enabled.
* @rmtoll CR1 ARPE LL_TIM_IsEnabledARRPreload
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
}
/**
* @brief Set the division ratio between the timer clock and the sampling clock used by the dead-time generators (when supported) and the digital filters.
* @note Macro @ref IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
* whether or not the clock division feature is supported by the timer
* instance.
* @rmtoll CR1 CKD LL_TIM_SetClockDivision
* @param TIMx Timer instance
* @param ClockDivision This parameter can be one of the following values:
* @arg @ref LL_TIM_CLOCKDIVISION_DIV1
* @arg @ref LL_TIM_CLOCKDIVISION_DIV2
* @arg @ref LL_TIM_CLOCKDIVISION_DIV4
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
{
MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
}
/**
* @brief Get the actual division ratio between the timer clock and the sampling clock used by the dead-time generators (when supported) and the digital filters.
* @note Macro @ref IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
* whether or not the clock division feature is supported by the timer
* instance.
* @rmtoll CR1 CKD LL_TIM_GetClockDivision
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_CLOCKDIVISION_DIV1
* @arg @ref LL_TIM_CLOCKDIVISION_DIV2
* @arg @ref LL_TIM_CLOCKDIVISION_DIV4
*/
__STATIC_INLINE uint32_t LL_TIM_GetClockDivision(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
}
/**
* @brief Set the counter value.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @rmtoll CNT CNT LL_TIM_SetCounter
* @param TIMx Timer instance
* @param Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
{
WRITE_REG(TIMx->CNT, Counter);
}
/**
* @brief Get the counter value.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @rmtoll CNT CNT LL_TIM_GetCounter
* @param TIMx Timer instance
* @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
*/
__STATIC_INLINE uint32_t LL_TIM_GetCounter(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CNT));
}
/**
* @brief Get the current direction of the counter
* @rmtoll CR1 DIR LL_TIM_GetDirection
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_COUNTERDIRECTION_UP
* @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
*/
__STATIC_INLINE uint32_t LL_TIM_GetDirection(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
}
/**
* @brief Set the prescaler value.
* @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
* @note The prescaler can be changed on the fly as this control register is buffered. The new
* prescaler ratio is taken into account at the next update event.
* @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
* @rmtoll PSC PSC LL_TIM_SetPrescaler
* @param TIMx Timer instance
* @param Prescaler between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
{
WRITE_REG(TIMx->PSC, Prescaler);
}
/**
* @brief Get the prescaler value.
* @rmtoll PSC PSC LL_TIM_GetPrescaler
* @param TIMx Timer instance
* @retval Prescaler value between Min_Data=0 and Max_Data=65535
*/
__STATIC_INLINE uint32_t LL_TIM_GetPrescaler(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->PSC));
}
/**
* @brief Set the auto-reload value.
* @note The counter is blocked while the auto-reload value is null.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
* @rmtoll ARR ARR LL_TIM_SetAutoReload
* @param TIMx Timer instance
* @param AutoReload between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
{
WRITE_REG(TIMx->ARR, AutoReload);
}
/**
* @brief Get the auto-reload value.
* @rmtoll ARR ARR LL_TIM_GetAutoReload
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @param TIMx Timer instance
* @retval Auto-reload value
*/
__STATIC_INLINE uint32_t LL_TIM_GetAutoReload(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->ARR));
}
/**
* @brief Set the repetition counter value.
* @note Macro @ref IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a repetition counter.
* @rmtoll RCR REP LL_TIM_SetRepetitionCounter
* @param TIMx Timer instance
* @param RepetitionCounter between Min_Data=0 and Max_Data=255
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
{
WRITE_REG(TIMx->RCR, RepetitionCounter);
}
/**
* @brief Get the repetition counter value.
* @note Macro @ref IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a repetition counter.
* @rmtoll RCR REP LL_TIM_GetRepetitionCounter
* @param TIMx Timer instance
* @retval Repetition counter value
*/
__STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->RCR));
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
* @{
*/
/**
* @brief Enable the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
* @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
* they are updated only when a commutation event (COM) occurs.
* @note Only on channels that have a complementary output.
* @note Macro @ref IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
* whether or not a timer instance is able to generate a commutation event.
* @rmtoll CR2 CCPC LL_TIM_CC_EnablePreload
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
}
/**
* @brief Disable the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
* @note Macro @ref IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
* whether or not a timer instance is able to generate a commutation event.
* @rmtoll CR2 CCPC LL_TIM_CC_DisablePreload
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
}
/**
* @brief Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
* @note Macro @ref IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
* whether or not a timer instance is able to generate a commutation event.
* @rmtoll CR2 CCUS LL_TIM_CC_SetUpdate
* @param TIMx Timer instance
* @param CCUpdateSource This parameter can be one of the following values:
* @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
* @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
{
MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
}
/**
* @brief Set the trigger of the capture/compare DMA request.
* @rmtoll CR2 CCDS LL_TIM_CC_SetDMAReqTrigger
* @param TIMx Timer instance
* @param DMAReqTrigger This parameter can be one of the following values:
* @arg @ref LL_TIM_CCDMAREQUEST_CC
* @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
{
MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
}
/**
* @brief Get actual trigger of the capture/compare DMA request.
* @rmtoll CR2 CCDS LL_TIM_CC_GetDMAReqTrigger
* @param TIMx Timer instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_CCDMAREQUEST_CC
* @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
*/
__STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
}
/**
* @brief Set the lock level to freeze the
* configuration of several capture/compare parameters.
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* the lock mechanism is supported by a timer instance.
* @rmtoll BDTR LOCK LL_TIM_CC_SetLockLevel
* @param TIMx Timer instance
* @param LockLevel This parameter can be one of the following values:
* @arg @ref LL_TIM_LOCKLEVEL_OFF
* @arg @ref LL_TIM_LOCKLEVEL_1
* @arg @ref LL_TIM_LOCKLEVEL_2
* @arg @ref LL_TIM_LOCKLEVEL_3
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
{
MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
}
/**
* @brief Enable capture/compare channels.
* @rmtoll CCER CC1E LL_TIM_CC_EnableChannel\n
* CCER CC1NE LL_TIM_CC_EnableChannel\n
* CCER CC2E LL_TIM_CC_EnableChannel\n
* CCER CC2NE LL_TIM_CC_EnableChannel\n
* CCER CC3E LL_TIM_CC_EnableChannel\n
* CCER CC3NE LL_TIM_CC_EnableChannel\n
* CCER CC4E LL_TIM_CC_EnableChannel
* @param TIMx Timer instance
* @param Channels This parameter can be a combination of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
{
SET_BIT(TIMx->CCER, Channels);
}
/**
* @brief Disable capture/compare channels.
* @rmtoll CCER CC1E LL_TIM_CC_DisableChannel\n
* CCER CC1NE LL_TIM_CC_DisableChannel\n
* CCER CC2E LL_TIM_CC_DisableChannel\n
* CCER CC2NE LL_TIM_CC_DisableChannel\n
* CCER CC3E LL_TIM_CC_DisableChannel\n
* CCER CC3NE LL_TIM_CC_DisableChannel\n
* CCER CC4E LL_TIM_CC_DisableChannel
* @param TIMx Timer instance
* @param Channels This parameter can be a combination of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval None
*/
__STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
{
CLEAR_BIT(TIMx->CCER, Channels);
}
/**
* @brief Indicate whether channel(s) is(are) enabled.
* @rmtoll CCER CC1E LL_TIM_CC_IsEnabledChannel\n
* CCER CC1NE LL_TIM_CC_IsEnabledChannel\n
* CCER CC2E LL_TIM_CC_IsEnabledChannel\n
* CCER CC2NE LL_TIM_CC_IsEnabledChannel\n
* CCER CC3E LL_TIM_CC_IsEnabledChannel\n
* CCER CC3NE LL_TIM_CC_IsEnabledChannel\n
* CCER CC4E LL_TIM_CC_IsEnabledChannel
* @param TIMx Timer instance
* @param Channels This parameter can be a combination of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(TIM_TypeDef *TIMx, uint32_t Channels)
{
return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
* @{
*/
/**
* @brief Configure an output channel.
* @rmtoll CCMR1 CC1S LL_TIM_OC_ConfigOutput\n
* CCMR1 CC2S LL_TIM_OC_ConfigOutput\n
* CCMR2 CC3S LL_TIM_OC_ConfigOutput\n
* CCMR2 CC4S LL_TIM_OC_ConfigOutput\n
* CCER CC1P LL_TIM_OC_ConfigOutput\n
* CCER CC2P LL_TIM_OC_ConfigOutput\n
* CCER CC3P LL_TIM_OC_ConfigOutput\n
* CCER CC4P LL_TIM_OC_ConfigOutput\n
* CR2 OIS1 LL_TIM_OC_ConfigOutput\n
* CR2 OIS2 LL_TIM_OC_ConfigOutput\n
* CR2 OIS3 LL_TIM_OC_ConfigOutput\n
* CR2 OIS4 LL_TIM_OC_ConfigOutput
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param Configuration This parameter must be a combination of all the following values:
* @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
* @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
(Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
(Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
}
/**
* @brief Define the behavior of the output reference signal OCxREF from which
* OCx and OCxN (when relevant) are derived.
* @rmtoll CCMR1 OC1M LL_TIM_OC_SetMode\n
* CCMR1 OC2M LL_TIM_OC_SetMode\n
* CCMR2 OC3M LL_TIM_OC_SetMode\n
* CCMR2 OC4M LL_TIM_OC_SetMode
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param Mode This parameter can be one of the following values:
* @arg @ref LL_TIM_OCMODE_FROZEN
* @arg @ref LL_TIM_OCMODE_ACTIVE
* @arg @ref LL_TIM_OCMODE_INACTIVE
* @arg @ref LL_TIM_OCMODE_TOGGLE
* @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
* @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
* @arg @ref LL_TIM_OCMODE_PWM1
* @arg @ref LL_TIM_OCMODE_PWM2
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
}
/**
* @brief Get the output compare mode of an output channel.
* @rmtoll CCMR1 OC1M LL_TIM_OC_GetMode\n
* CCMR1 OC2M LL_TIM_OC_GetMode\n
* CCMR2 OC3M LL_TIM_OC_GetMode\n
* CCMR2 OC4M LL_TIM_OC_GetMode
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_OCMODE_FROZEN
* @arg @ref LL_TIM_OCMODE_ACTIVE
* @arg @ref LL_TIM_OCMODE_INACTIVE
* @arg @ref LL_TIM_OCMODE_TOGGLE
* @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
* @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
* @arg @ref LL_TIM_OCMODE_PWM1
* @arg @ref LL_TIM_OCMODE_PWM2
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetMode(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
}
/**
* @brief Set the polarity of an output channel.
* @rmtoll CCER CC1P LL_TIM_OC_SetPolarity\n
* CCER CC1NP LL_TIM_OC_SetPolarity\n
* CCER CC2P LL_TIM_OC_SetPolarity\n
* CCER CC2NP LL_TIM_OC_SetPolarity\n
* CCER CC3P LL_TIM_OC_SetPolarity\n
* CCER CC3NP LL_TIM_OC_SetPolarity\n
* CCER CC4P LL_TIM_OC_SetPolarity
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @param Polarity This parameter can be one of the following values:
* @arg @ref LL_TIM_OCPOLARITY_HIGH
* @arg @ref LL_TIM_OCPOLARITY_LOW
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]), Polarity << SHIFT_TAB_CCxP[iChannel]);
}
/**
* @brief Get the polarity of an output channel.
* @rmtoll CCER CC1P LL_TIM_OC_GetPolarity\n
* CCER CC1NP LL_TIM_OC_GetPolarity\n
* CCER CC2P LL_TIM_OC_GetPolarity\n
* CCER CC2NP LL_TIM_OC_GetPolarity\n
* CCER CC3P LL_TIM_OC_GetPolarity\n
* CCER CC3NP LL_TIM_OC_GetPolarity\n
* CCER CC4P LL_TIM_OC_GetPolarity
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_OCPOLARITY_HIGH
* @arg @ref LL_TIM_OCPOLARITY_LOW
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
}
/**
* @brief Set the IDLE state of an output channel
* @note This function is significant only for the timer instances
* supporting the break feature. Macro @ref IS_TIM_BREAK_INSTANCE(TIMx)
* can be used to check whether or not a timer instance provides
* a break input.
* @rmtoll CR2 OIS1 LL_TIM_OC_SetIdleState\n
* CR2 OIS1N LL_TIM_OC_SetIdleState\n
* CR2 OIS2 LL_TIM_OC_SetIdleState\n
* CR2 OIS2N LL_TIM_OC_SetIdleState\n
* CR2 OIS3 LL_TIM_OC_SetIdleState\n
* CR2 OIS3N LL_TIM_OC_SetIdleState\n
* CR2 OIS4 LL_TIM_OC_SetIdleState
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @param IdleState This parameter can be one of the following values:
* @arg @ref LL_TIM_OCIDLESTATE_LOW
* @arg @ref LL_TIM_OCIDLESTATE_HIGH
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]), IdleState << SHIFT_TAB_OISx[iChannel]);
}
/**
* @brief Get the IDLE state of an output channel
* @rmtoll CR2 OIS1 LL_TIM_OC_GetIdleState\n
* CR2 OIS1N LL_TIM_OC_GetIdleState\n
* CR2 OIS2 LL_TIM_OC_GetIdleState\n
* CR2 OIS2N LL_TIM_OC_GetIdleState\n
* CR2 OIS3 LL_TIM_OC_GetIdleState\n
* CR2 OIS3N LL_TIM_OC_GetIdleState\n
* CR2 OIS4 LL_TIM_OC_GetIdleState
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH1N
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH2N
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH3N
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_OCIDLESTATE_LOW
* @arg @ref LL_TIM_OCIDLESTATE_HIGH
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
}
/**
* @brief Enable fast mode for the output channel.
* @note Acts only if the channel is configured in PWM1 or PWM2 mode.
* @rmtoll CCMR1 OC1FE LL_TIM_OC_EnableFast\n
* CCMR1 OC2FE LL_TIM_OC_EnableFast\n
* CCMR2 OC3FE LL_TIM_OC_EnableFast\n
* CCMR2 OC4FE LL_TIM_OC_EnableFast
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Disable fast mode for the output channel.
* @rmtoll CCMR1 OC1FE LL_TIM_OC_DisableFast\n
* CCMR1 OC2FE LL_TIM_OC_DisableFast\n
* CCMR2 OC3FE LL_TIM_OC_DisableFast\n
* CCMR2 OC4FE LL_TIM_OC_DisableFast
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Indicates whether fast mode is enabled for the output channel.
* @rmtoll CCMR1 OC1FE LL_TIM_OC_IsEnabledFast\n
* CCMR1 OC2FE LL_TIM_OC_IsEnabledFast\n
* CCMR2 OC3FE LL_TIM_OC_IsEnabledFast\n
* CCMR2 OC4FE LL_TIM_OC_IsEnabledFast\n
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
register uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
}
/**
* @brief Enable compare register (TIMx_CCRx) preload for the output channel.
* @rmtoll CCMR1 OC1PE LL_TIM_OC_EnablePreload\n
* CCMR1 OC2PE LL_TIM_OC_EnablePreload\n
* CCMR2 OC3PE LL_TIM_OC_EnablePreload\n
* CCMR2 OC4PE LL_TIM_OC_EnablePreload
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Disable compare register (TIMx_CCRx) preload for the output channel.
* @rmtoll CCMR1 OC1PE LL_TIM_OC_DisablePreload\n
* CCMR1 OC2PE LL_TIM_OC_DisablePreload\n
* CCMR2 OC3PE LL_TIM_OC_DisablePreload\n
* CCMR2 OC4PE LL_TIM_OC_DisablePreload
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
* @rmtoll CCMR1 OC1PE LL_TIM_OC_IsEnabledPreload\n
* CCMR1 OC2PE LL_TIM_OC_IsEnabledPreload\n
* CCMR2 OC3PE LL_TIM_OC_IsEnabledPreload\n
* CCMR2 OC4PE LL_TIM_OC_IsEnabledPreload\n
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
register uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
}
/**
* @brief Enable clearing the output channel on an external event.
* @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
* @note Macro @ref IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
* or not a timer instance can clear the OCxREF signal on an external event.
* @rmtoll CCMR1 OC1CE LL_TIM_OC_EnableClear\n
* CCMR1 OC2CE LL_TIM_OC_EnableClear\n
* CCMR2 OC3CE LL_TIM_OC_EnableClear\n
* CCMR2 OC4CE LL_TIM_OC_EnableClear
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Disable clearing the output channel on an external event.
* @note Macro @ref IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
* or not a timer instance can clear the OCxREF signal on an external event.
* @rmtoll CCMR1 OC1CE LL_TIM_OC_DisableClear\n
* CCMR1 OC2CE LL_TIM_OC_DisableClear\n
* CCMR2 OC3CE LL_TIM_OC_DisableClear\n
* CCMR2 OC4CE LL_TIM_OC_DisableClear
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
}
/**
* @brief Indicates clearing the output channel on an external event is enabled for the output channel.
* @note This function enables clearing the output channel on an external event.
* @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
* @note Macro @ref IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
* or not a timer instance can clear the OCxREF signal on an external event.
* @rmtoll CCMR1 OC1CE LL_TIM_OC_IsEnabledClear\n
* CCMR1 OC2CE LL_TIM_OC_IsEnabledClear\n
* CCMR2 OC3CE LL_TIM_OC_IsEnabledClear\n
* CCMR2 OC4CE LL_TIM_OC_IsEnabledClear\n
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
register uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
}
/**
* @brief Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of the Ocx and OCxN signals).
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* dead-time insertion feature is supported by a timer instance.
* @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
* @rmtoll BDTR DTG LL_TIM_OC_SetDeadTime
* @param TIMx Timer instance
* @param DeadTime between Min_Data=0 and Max_Data=255
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
{
MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
}
/**
* @brief Set compare value for output channel 1 (TIMx_CCR1).
* @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
* output channel 1 is supported by a timer instance.
* @rmtoll CCR1 CCR1 LL_TIM_OC_SetCompareCH1
* @param TIMx Timer instance
* @param CompareValue between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
WRITE_REG(TIMx->CCR1, CompareValue);
}
/**
* @brief Set compare value for output channel 2 (TIMx_CCR2).
* @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
* output channel 2 is supported by a timer instance.
* @rmtoll CCR2 CCR2 LL_TIM_OC_SetCompareCH2
* @param TIMx Timer instance
* @param CompareValue between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
WRITE_REG(TIMx->CCR2, CompareValue);
}
/**
* @brief Set compare value for output channel 3 (TIMx_CCR3).
* @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
* output channel is supported by a timer instance.
* @rmtoll CCR3 CCR3 LL_TIM_OC_SetCompareCH3
* @param TIMx Timer instance
* @param CompareValue between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
WRITE_REG(TIMx->CCR3, CompareValue);
}
/**
* @brief Set compare value for output channel 4 (TIMx_CCR4).
* @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
* output channel 4 is supported by a timer instance.
* @rmtoll CCR4 CCR4 LL_TIM_OC_SetCompareCH4
* @param TIMx Timer instance
* @param CompareValue between Min_Data=0 and Max_Data=65535
* @retval None
*/
__STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
WRITE_REG(TIMx->CCR4, CompareValue);
}
/**
* @brief Get compare value (TIMx_CCR1) set for output channel 1.
* @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
* output channel 1 is supported by a timer instance.
* @rmtoll CCR1 CCR1 LL_TIM_OC_GetCompareCH1
* @param TIMx Timer instance
* @retval CompareValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR1));
}
/**
* @brief Get compare value (TIMx_CCR2) set for output channel 2.
* @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
* output channel 2 is supported by a timer instance.
* @rmtoll CCR2 CCR2 LL_TIM_OC_GetCompareCH2
* @param TIMx Timer instance
* @retval CompareValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR2));
}
/**
* @brief Get compare value (TIMx_CCR3) set for output channel 3.
* @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
* output channel 3 is supported by a timer instance.
* @rmtoll CCR3 CCR3 LL_TIM_OC_GetCompareCH3
* @param TIMx Timer instance
* @retval CompareValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR3));
}
/**
* @brief Get compare value (TIMx_CCR4) set for output channel 4.
* @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
* output channel 4 is supported by a timer instance.
* @rmtoll CCR4 CCR4 LL_TIM_OC_GetCompareCH4
* @param TIMx Timer instance
* @retval CompareValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR4));
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
* @{
*/
/**
* @brief Configure input channel.
* @rmtoll CCMR1 CC1S LL_TIM_IC_Config\n
* CCMR1 IC1PSC LL_TIM_IC_Config\n
* CCMR1 IC1F LL_TIM_IC_Config\n
* CCMR1 CC2S LL_TIM_IC_Config\n
* CCMR1 IC2PSC LL_TIM_IC_Config\n
* CCMR1 IC2F LL_TIM_IC_Config\n
* CCMR2 CC3S LL_TIM_IC_Config\n
* CCMR2 IC3PSC LL_TIM_IC_Config\n
* CCMR2 IC3F LL_TIM_IC_Config\n
* CCMR2 CC4S LL_TIM_IC_Config\n
* CCMR2 IC4PSC LL_TIM_IC_Config\n
* CCMR2 IC4F LL_TIM_IC_Config\n
* CCER CC1P LL_TIM_IC_Config\n
* CCER CC1NP LL_TIM_IC_Config\n
* CCER CC2P LL_TIM_IC_Config\n
* CCER CC2NP LL_TIM_IC_Config\n
* CCER CC3P LL_TIM_IC_Config\n
* CCER CC3NP LL_TIM_IC_Config\n
* CCER CC4P LL_TIM_IC_Config\n
* CCER CC4NP LL_TIM_IC_Config
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param Configuration This parameter must be a combination of all the following values:
* @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
* @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
* @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
* @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S)) << SHIFT_TAB_ICxx[iChannel]);
MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
(Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
}
/**
* @brief Set the active input.
* @rmtoll CCMR1 CC1S LL_TIM_IC_SetActiveInput\n
* CCMR1 CC2S LL_TIM_IC_SetActiveInput\n
* CCMR2 CC3S LL_TIM_IC_SetActiveInput\n
* CCMR2 CC4S LL_TIM_IC_SetActiveInput
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param ICActiveInput This parameter can be one of the following values:
* @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
* @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
* @arg @ref LL_TIM_ACTIVEINPUT_TRC
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
}
/**
* @brief Get the current active input.
* @rmtoll CCMR1 CC1S LL_TIM_IC_GetActiveInput\n
* CCMR1 CC2S LL_TIM_IC_GetActiveInput\n
* CCMR2 CC3S LL_TIM_IC_GetActiveInput\n
* CCMR2 CC4S LL_TIM_IC_GetActiveInput
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
* @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
* @arg @ref LL_TIM_ACTIVEINPUT_TRC
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
}
/**
* @brief Set the prescaler of input channel.
* @rmtoll CCMR1 IC1PSC LL_TIM_IC_SetPrescaler\n
* CCMR1 IC2PSC LL_TIM_IC_SetPrescaler\n
* CCMR2 IC3PSC LL_TIM_IC_SetPrescaler\n
* CCMR2 IC4PSC LL_TIM_IC_SetPrescaler
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param ICPrescaler This parameter can be one of the following values:
* @arg @ref LL_TIM_ICPSC_DIV1
* @arg @ref LL_TIM_ICPSC_DIV2
* @arg @ref LL_TIM_ICPSC_DIV4
* @arg @ref LL_TIM_ICPSC_DIV8
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
}
/**
* @brief Get the current prescaler value acting on an input channel.
* @rmtoll CCMR1 IC1PSC LL_TIM_IC_GetPrescaler\n
* CCMR1 IC2PSC LL_TIM_IC_GetPrescaler\n
* CCMR2 IC3PSC LL_TIM_IC_GetPrescaler\n
* CCMR2 IC4PSC LL_TIM_IC_GetPrescaler
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_ICPSC_DIV1
* @arg @ref LL_TIM_ICPSC_DIV2
* @arg @ref LL_TIM_ICPSC_DIV4
* @arg @ref LL_TIM_ICPSC_DIV8
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
}
/**
* @brief Set the input filter duration.
* @rmtoll CCMR1 IC1F LL_TIM_IC_SetFilter\n
* CCMR1 IC2F LL_TIM_IC_SetFilter\n
* CCMR2 IC3F LL_TIM_IC_SetFilter\n
* CCMR2 IC4F LL_TIM_IC_SetFilter
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param ICFilter This parameter can be one of the following values:
* @arg @ref LL_TIM_IC_FILTER_FDIV1
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
}
/**
* @brief Get the input filter duration.
* @rmtoll CCMR1 IC1F LL_TIM_IC_GetFilter\n
* CCMR1 IC2F LL_TIM_IC_GetFilter\n
* CCMR2 IC3F LL_TIM_IC_GetFilter\n
* CCMR2 IC4F LL_TIM_IC_GetFilter
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_IC_FILTER_FDIV1
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
* @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
* @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
}
/**
* @brief Set the input channel polarity.
* @rmtoll CCER CC1P LL_TIM_IC_SetPolarity\n
* CCER CC1NP LL_TIM_IC_SetPolarity\n
* CCER CC2P LL_TIM_IC_SetPolarity\n
* CCER CC2NP LL_TIM_IC_SetPolarity\n
* CCER CC3P LL_TIM_IC_SetPolarity\n
* CCER CC3NP LL_TIM_IC_SetPolarity\n
* CCER CC4P LL_TIM_IC_SetPolarity\n
* CCER CC4NP LL_TIM_IC_SetPolarity
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param ICPolarity This parameter can be one of the following values:
* @arg @ref LL_TIM_IC_POLARITY_RISING
* @arg @ref LL_TIM_IC_POLARITY_FALLING
* @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
ICPolarity << SHIFT_TAB_CCxP[iChannel]);
}
/**
* @brief Get the current input channel polarity.
* @rmtoll CCER CC1P LL_TIM_IC_GetPolarity\n
* CCER CC1NP LL_TIM_IC_GetPolarity\n
* CCER CC2P LL_TIM_IC_GetPolarity\n
* CCER CC2NP LL_TIM_IC_GetPolarity\n
* CCER CC3P LL_TIM_IC_GetPolarity\n
* CCER CC3NP LL_TIM_IC_GetPolarity\n
* CCER CC4P LL_TIM_IC_GetPolarity\n
* CCER CC4NP LL_TIM_IC_GetPolarity
* @param TIMx Timer instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_IC_POLARITY_RISING
* @arg @ref LL_TIM_IC_POLARITY_FALLING
* @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel)
{
register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
SHIFT_TAB_CCxP[iChannel]);
}
/**
* @brief Connect the TIMx_CH1, CH2 and CH3 pins to the TI1 input (XOR combination).
* @note Macro @ref IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides an XOR input.
* @rmtoll CR2 TI1S LL_TIM_IC_EnableXORCombination
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
}
/**
* @brief Disconnect the TIMx_CH1, CH2 and CH3 pins from the TI1 input.
* @note Macro @ref IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides an XOR input.
* @rmtoll CR2 TI1S LL_TIM_IC_DisableXORCombination
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
}
/**
* @brief Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
* @note Macro @ref IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides an XOR input.
* @rmtoll CR2 TI1S LL_TIM_IC_IsEnabledXORCombination
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
}
/**
* @brief Get captured value for input channel 1.
* @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
* input channel 1 is supported by a timer instance.
* @rmtoll CCR1 CCR1 LL_TIM_IC_GetCaptureCH1
* @param TIMx Timer instance
* @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR1));
}
/**
* @brief Get captured value for input channel 2.
* @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
* input channel 2 is supported by a timer instance.
* @rmtoll CCR2 CCR2 LL_TIM_IC_GetCaptureCH2
* @param TIMx Timer instance
* @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR2));
}
/**
* @brief Get captured value for input channel 3.
* @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
* input channel 3 is supported by a timer instance.
* @rmtoll CCR3 CCR3 LL_TIM_IC_GetCaptureCH3
* @param TIMx Timer instance
* @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR3));
}
/**
* @brief Get captured value for input channel 4.
* @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
* @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports a 32 bits counter.
* @note Macro @ref IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
* input channel 4 is supported by a timer instance.
* @rmtoll CCR4 CCR4 LL_TIM_IC_GetCaptureCH4
* @param TIMx Timer instance
* @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
*/
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(TIM_TypeDef *TIMx)
{
return (uint32_t)(READ_REG(TIMx->CCR4));
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
* @{
*/
/**
* @brief Enable external clock mode 2.
* @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
* @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports external clock mode2.
* @rmtoll SMCR ECE LL_TIM_EnableExternalClock
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
}
/**
* @brief Disable external clock mode 2.
* @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports external clock mode2.
* @rmtoll SMCR ECE LL_TIM_DisableExternalClock
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
}
/**
* @brief Indicate whether external clock mode 2 is enabled.
* @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports external clock mode2.
* @rmtoll SMCR ECE LL_TIM_IsEnabledExternalClock
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
}
/**
* @brief Set the clock source of the counter clock.
* @note when selected clock source is external clock mode 1, the timer input
* the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
* function. This timer input must be configured by calling
* the @ref LL_TIM_IC_Config() function.
* @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports external clock mode1.
* @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports external clock mode2.
* @rmtoll SMCR SMS LL_TIM_SetClockSource\n
* SMCR ECE LL_TIM_SetClockSource
* @param TIMx Timer instance
* @param ClockSource This parameter can be one of the following values:
* @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
* @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
* @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
{
MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
}
/**
* @brief Set the encoder interface mode.
* @note Macro @ref IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
* whether or not a timer instance supports the encoder mode.
* @rmtoll SMCR SMS LL_TIM_SetEncoderMode
* @param TIMx Timer instance
* @param EncoderMode This parameter can be one of the following values:
* @arg @ref LL_TIM_ENCODERMODE_X2_TI1
* @arg @ref LL_TIM_ENCODERMODE_X2_TI2
* @arg @ref LL_TIM_ENCODERMODE_X4_TI12
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
{
MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
* @{
*/
/**
* @brief Set the trigger output (TRGO) used for timer synchronization .
* @note Macro @ref IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
* whether or not a timer instance can operate as a master timer.
* @rmtoll CR2 MMS LL_TIM_SetTriggerOutput
* @param TIMx Timer instance
* @param TimerSynchronization This parameter can be one of the following values:
* @arg @ref LL_TIM_TRGO_RESET
* @arg @ref LL_TIM_TRGO_ENABLE
* @arg @ref LL_TIM_TRGO_UPDATE
* @arg @ref LL_TIM_TRGO_CC1IF
* @arg @ref LL_TIM_TRGO_OC1REF
* @arg @ref LL_TIM_TRGO_OC2REF
* @arg @ref LL_TIM_TRGO_OC3REF
* @arg @ref LL_TIM_TRGO_OC4REF
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
{
MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
}
/**
* @brief Set the synchronization mode of a slave timer.
* @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
* a timer instance can operate as a slave timer.
* @rmtoll SMCR SMS LL_TIM_SetSlaveMode
* @param TIMx Timer instance
* @param SlaveMode This parameter can be one of the following values:
* @arg @ref LL_TIM_SLAVEMODE_DISABLED
* @arg @ref LL_TIM_SLAVEMODE_RESET
* @arg @ref LL_TIM_SLAVEMODE_GATED
* @arg @ref LL_TIM_SLAVEMODE_TRIGGER
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
{
MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
}
/**
* @brief Set the selects the trigger input to be used to synchronize the counter.
* @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
* a timer instance can operate as a slave timer.
* @rmtoll SMCR TS LL_TIM_SetTriggerInput
* @param TIMx Timer instance
* @param TriggerInput This parameter can be one of the following values:
* @arg @ref LL_TIM_TS_ITR0
* @arg @ref LL_TIM_TS_ITR1
* @arg @ref LL_TIM_TS_ITR2
* @arg @ref LL_TIM_TS_ITR3
* @arg @ref LL_TIM_TS_TI1F_ED
* @arg @ref LL_TIM_TS_TI1FP1
* @arg @ref LL_TIM_TS_TI2FP2
* @arg @ref LL_TIM_TS_ETRF
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
{
MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
}
/**
* @brief Enable the Master/Slave mode.
* @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
* a timer instance can operate as a slave timer.
* @rmtoll SMCR MSM LL_TIM_EnableMasterSlaveMode
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
}
/**
* @brief Disable the Master/Slave mode.
* @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
* a timer instance can operate as a slave timer.
* @rmtoll SMCR MSM LL_TIM_DisableMasterSlaveMode
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
}
/**
* @brief Indicates whether the Master/Slave mode is enabled.
* @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
* a timer instance can operate as a slave timer.
* @rmtoll SMCR MSM LL_TIM_IsEnabledMasterSlaveMode
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
}
/**
* @brief Configure the external trigger (ETR) input.
* @note Macro @ref IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides an external trigger input.
* @rmtoll SMCR ETP LL_TIM_ConfigETR\n
* SMCR ETPS LL_TIM_ConfigETR\n
* SMCR ETF LL_TIM_ConfigETR
* @param TIMx Timer instance
* @param ETRPolarity This parameter can be one of the following values:
* @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
* @arg @ref LL_TIM_ETR_POLARITY_INVERTED
* @param ETRPrescaler This parameter can be one of the following values:
* @arg @ref LL_TIM_ETR_PRESCALER_DIV1
* @arg @ref LL_TIM_ETR_PRESCALER_DIV2
* @arg @ref LL_TIM_ETR_PRESCALER_DIV4
* @arg @ref LL_TIM_ETR_PRESCALER_DIV8
* @param ETRFilter This parameter can be one of the following values:
* @arg @ref LL_TIM_ETR_FILTER_FDIV1
* @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
* @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
* @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
* @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
* @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
* @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
* @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
* @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
* @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
* @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
* @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
* @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
* @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
* @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
* @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
* @retval None
*/
__STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
uint32_t ETRFilter)
{
MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Break_Function Break function configuration
* @{
*/
/**
* @brief Enable the break function.
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR BKE LL_TIM_EnableBRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
{
__IO uint32_t tmpreg;
SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
/* Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. */
tmpreg = READ_REG(TIMx->BDTR);
(void)(tmpreg);
}
/**
* @brief Disable the break function.
* @rmtoll BDTR BKE LL_TIM_DisableBRK
* @param TIMx Timer instance
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
{
__IO uint32_t tmpreg;
CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
/* Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. */
tmpreg = READ_REG(TIMx->BDTR);
(void)(tmpreg);
}
/**
* @brief Configure the break input.
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR BKP LL_TIM_ConfigBRK
* @param TIMx Timer instance
* @param BreakPolarity This parameter can be one of the following values:
* @arg @ref LL_TIM_BREAK_POLARITY_LOW
* @arg @ref LL_TIM_BREAK_POLARITY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity)
{
__IO uint32_t tmpreg;
MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP, BreakPolarity);
/* Note: Any write operation to BKP bit takes a delay of 1 APB clock cycle to become effective. */
tmpreg = READ_REG(TIMx->BDTR);
(void)(tmpreg);
}
/**
* @brief Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR OSSI LL_TIM_SetOffStates\n
* BDTR OSSR LL_TIM_SetOffStates
* @param TIMx Timer instance
* @param OffStateIdle This parameter can be one of the following values:
* @arg @ref LL_TIM_OSSI_DISABLE
* @arg @ref LL_TIM_OSSI_ENABLE
* @param OffStateRun This parameter can be one of the following values:
* @arg @ref LL_TIM_OSSR_DISABLE
* @arg @ref LL_TIM_OSSR_ENABLE
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
{
MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
}
/**
* @brief Enable automatic output (MOE can be set by software or automatically when a break input is active).
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR AOE LL_TIM_EnableAutomaticOutput
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
}
/**
* @brief Disable automatic output (MOE can be set only by software).
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR AOE LL_TIM_DisableAutomaticOutput
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
}
/**
* @brief Indicate whether automatic output is enabled.
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR AOE LL_TIM_IsEnabledAutomaticOutput
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
}
/**
* @brief Enable the outputs (set the MOE bit in TIMx_BDTR register).
* @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
* software and is reset in case of break or break2 event
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR MOE LL_TIM_EnableAllOutputs
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
}
/**
* @brief Disable the outputs (reset the MOE bit in TIMx_BDTR register).
* @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
* software and is reset in case of break or break2 event.
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR MOE LL_TIM_DisableAllOutputs
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
}
/**
* @brief Indicates whether outputs are enabled.
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @rmtoll BDTR MOE LL_TIM_IsEnabledAllOutputs
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
* @{
*/
/**
* @brief Configures the timer DMA burst feature.
* @note Macro @ref IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
* not a timer instance supports the DMA burst mode.
* @rmtoll DCR DBL LL_TIM_ConfigDMABurst\n
* DCR DBA LL_TIM_ConfigDMABurst
* @param TIMx Timer instance
* @param DMABurstBaseAddress This parameter can be one of the following values:
* @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
* @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
* @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
* @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
* @arg @ref LL_TIM_DMABURST_BASEADDR_SR
* @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
* @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
* @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
* @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
* @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
* @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
* @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
* @param DMABurstLength This parameter can be one of the following values:
* @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
* @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
* @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
* @retval None
*/
__STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
{
MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
* @{
*/
/**
* @brief Remap TIM inputs (input channel, internal/external triggers).
* @note Macro @ref IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
* a some timer inputs can be remapped.
* @rmtoll TIM2_OR ITR1_RMP LL_TIM_SetRemap\n
* TIM5_OR TI4_RMP LL_TIM_SetRemap\n
* TIM11_OR TI1_RMP LL_TIM_SetRemap
* @param TIMx Timer instance
* @param Remap Remap param depends on the TIMx. Description available only
* in CHM version of the User Manual (not in .pdf).
* Otherwise see Reference Manual description of OR registers.
*
* Below description summarizes "Timer Instance" and "Remap" param combinations:
*
* TIM2: one of the following values
*
* ITR1_RMP can be one of the following values
* @arg @ref LL_TIM_TIM2_ITR1_RMP_TIM8_TRGO
* @arg @ref LL_TIM_TIM2_ITR1_RMP_OTG_FS_SOF
* @arg @ref LL_TIM_TIM2_ITR1_RMP_OTG_HS_SOF
*
* TIM5: one of the following values
*
* @arg @ref LL_TIM_TIM5_TI4_RMP_GPIO
* @arg @ref LL_TIM_TIM5_TI4_RMP_LSI
* @arg @ref LL_TIM_TIM5_TI4_RMP_LSE
* @arg @ref LL_TIM_TIM5_TI4_RMP_RTC
*
* TIM11: one of the following values
*
* @arg @ref LL_TIM_TIM11_TI1_RMP_GPIO
* @arg @ref LL_TIM_TIM11_TI1_RMP_GPIO1
* @arg @ref LL_TIM_TIM11_TI1_RMP_HSE_RTC
* @arg @ref LL_TIM_TIM11_TI1_RMP_GPIO2
*
* @retval None
*/
__STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
{
MODIFY_REG(TIMx->OR, (Remap >> TIMx_OR_RMP_SHIFT), (Remap & TIMx_OR_RMP_MASK));
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
* @{
*/
/**
* @brief Clear the update interrupt flag (UIF).
* @rmtoll SR UIF LL_TIM_ClearFlag_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
}
/**
* @brief Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
* @rmtoll SR UIF LL_TIM_IsActiveFlag_UPDATE
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 1 interrupt flag (CC1F).
* @rmtoll SR CC1IF LL_TIM_ClearFlag_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
}
/**
* @brief Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
* @rmtoll SR CC1IF LL_TIM_IsActiveFlag_CC1
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 2 interrupt flag (CC2F).
* @rmtoll SR CC2IF LL_TIM_ClearFlag_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
}
/**
* @brief Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
* @rmtoll SR CC2IF LL_TIM_IsActiveFlag_CC2
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 3 interrupt flag (CC3F).
* @rmtoll SR CC3IF LL_TIM_ClearFlag_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
}
/**
* @brief Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
* @rmtoll SR CC3IF LL_TIM_IsActiveFlag_CC3
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 4 interrupt flag (CC4F).
* @rmtoll SR CC4IF LL_TIM_ClearFlag_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
}
/**
* @brief Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
* @rmtoll SR CC4IF LL_TIM_IsActiveFlag_CC4
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
}
/**
* @brief Clear the commutation interrupt flag (COMIF).
* @rmtoll SR COMIF LL_TIM_ClearFlag_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
}
/**
* @brief Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
* @rmtoll SR COMIF LL_TIM_IsActiveFlag_COM
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
}
/**
* @brief Clear the trigger interrupt flag (TIF).
* @rmtoll SR TIF LL_TIM_ClearFlag_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
}
/**
* @brief Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
* @rmtoll SR TIF LL_TIM_IsActiveFlag_TRIG
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
}
/**
* @brief Clear the break interrupt flag (BIF).
* @rmtoll SR BIF LL_TIM_ClearFlag_BRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
}
/**
* @brief Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
* @rmtoll SR BIF LL_TIM_IsActiveFlag_BRK
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
* @rmtoll SR CC1OF LL_TIM_ClearFlag_CC1OVR
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
}
/**
* @brief Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set (Capture/Compare 1 interrupt is pending).
* @rmtoll SR CC1OF LL_TIM_IsActiveFlag_CC1OVR
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
* @rmtoll SR CC2OF LL_TIM_ClearFlag_CC2OVR
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
}
/**
* @brief Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set (Capture/Compare 2 over-capture interrupt is pending).
* @rmtoll SR CC2OF LL_TIM_IsActiveFlag_CC2OVR
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
* @rmtoll SR CC3OF LL_TIM_ClearFlag_CC3OVR
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
}
/**
* @brief Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set (Capture/Compare 3 over-capture interrupt is pending).
* @rmtoll SR CC3OF LL_TIM_IsActiveFlag_CC3OVR
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
}
/**
* @brief Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
* @rmtoll SR CC4OF LL_TIM_ClearFlag_CC4OVR
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
{
WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
}
/**
* @brief Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set (Capture/Compare 4 over-capture interrupt is pending).
* @rmtoll SR CC4OF LL_TIM_IsActiveFlag_CC4OVR
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_IT_Management IT-Management
* @{
*/
/**
* @brief Enable update interrupt (UIE).
* @rmtoll DIER UIE LL_TIM_EnableIT_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_UIE);
}
/**
* @brief Disable update interrupt (UIE).
* @rmtoll DIER UIE LL_TIM_DisableIT_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
}
/**
* @brief Indicates whether the update interrupt (UIE) is enabled.
* @rmtoll DIER UIE LL_TIM_IsEnabledIT_UPDATE
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 1 interrupt (CC1IE).
* @rmtoll DIER CC1IE LL_TIM_EnableIT_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
}
/**
* @brief Disable capture/compare 1 interrupt (CC1IE).
* @rmtoll DIER CC1IE LL_TIM_DisableIT_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
}
/**
* @brief Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
* @rmtoll DIER CC1IE LL_TIM_IsEnabledIT_CC1
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 2 interrupt (CC2IE).
* @rmtoll DIER CC2IE LL_TIM_EnableIT_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
}
/**
* @brief Disable capture/compare 2 interrupt (CC2IE).
* @rmtoll DIER CC2IE LL_TIM_DisableIT_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
}
/**
* @brief Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
* @rmtoll DIER CC2IE LL_TIM_IsEnabledIT_CC2
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 3 interrupt (CC3IE).
* @rmtoll DIER CC3IE LL_TIM_EnableIT_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
}
/**
* @brief Disable capture/compare 3 interrupt (CC3IE).
* @rmtoll DIER CC3IE LL_TIM_DisableIT_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
}
/**
* @brief Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
* @rmtoll DIER CC3IE LL_TIM_IsEnabledIT_CC3
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 4 interrupt (CC4IE).
* @rmtoll DIER CC4IE LL_TIM_EnableIT_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
}
/**
* @brief Disable capture/compare 4 interrupt (CC4IE).
* @rmtoll DIER CC4IE LL_TIM_DisableIT_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
}
/**
* @brief Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
* @rmtoll DIER CC4IE LL_TIM_IsEnabledIT_CC4
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
}
/**
* @brief Enable commutation interrupt (COMIE).
* @rmtoll DIER COMIE LL_TIM_EnableIT_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
}
/**
* @brief Disable commutation interrupt (COMIE).
* @rmtoll DIER COMIE LL_TIM_DisableIT_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
}
/**
* @brief Indicates whether the commutation interrupt (COMIE) is enabled.
* @rmtoll DIER COMIE LL_TIM_IsEnabledIT_COM
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
}
/**
* @brief Enable trigger interrupt (TIE).
* @rmtoll DIER TIE LL_TIM_EnableIT_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_TIE);
}
/**
* @brief Disable trigger interrupt (TIE).
* @rmtoll DIER TIE LL_TIM_DisableIT_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
}
/**
* @brief Indicates whether the trigger interrupt (TIE) is enabled.
* @rmtoll DIER TIE LL_TIM_IsEnabledIT_TRIG
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
}
/**
* @brief Enable break interrupt (BIE).
* @rmtoll DIER BIE LL_TIM_EnableIT_BRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_BIE);
}
/**
* @brief Disable break interrupt (BIE).
* @rmtoll DIER BIE LL_TIM_DisableIT_BRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
}
/**
* @brief Indicates whether the break interrupt (BIE) is enabled.
* @rmtoll DIER BIE LL_TIM_IsEnabledIT_BRK
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_DMA_Management DMA-Management
* @{
*/
/**
* @brief Enable update DMA request (UDE).
* @rmtoll DIER UDE LL_TIM_EnableDMAReq_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_UDE);
}
/**
* @brief Disable update DMA request (UDE).
* @rmtoll DIER UDE LL_TIM_DisableDMAReq_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
}
/**
* @brief Indicates whether the update DMA request (UDE) is enabled.
* @rmtoll DIER UDE LL_TIM_IsEnabledDMAReq_UPDATE
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 1 DMA request (CC1DE).
* @rmtoll DIER CC1DE LL_TIM_EnableDMAReq_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
}
/**
* @brief Disable capture/compare 1 DMA request (CC1DE).
* @rmtoll DIER CC1DE LL_TIM_DisableDMAReq_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
}
/**
* @brief Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
* @rmtoll DIER CC1DE LL_TIM_IsEnabledDMAReq_CC1
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 2 DMA request (CC2DE).
* @rmtoll DIER CC2DE LL_TIM_EnableDMAReq_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
}
/**
* @brief Disable capture/compare 2 DMA request (CC2DE).
* @rmtoll DIER CC2DE LL_TIM_DisableDMAReq_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
}
/**
* @brief Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
* @rmtoll DIER CC2DE LL_TIM_IsEnabledDMAReq_CC2
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 3 DMA request (CC3DE).
* @rmtoll DIER CC3DE LL_TIM_EnableDMAReq_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
}
/**
* @brief Disable capture/compare 3 DMA request (CC3DE).
* @rmtoll DIER CC3DE LL_TIM_DisableDMAReq_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
}
/**
* @brief Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
* @rmtoll DIER CC3DE LL_TIM_IsEnabledDMAReq_CC3
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
}
/**
* @brief Enable capture/compare 4 DMA request (CC4DE).
* @rmtoll DIER CC4DE LL_TIM_EnableDMAReq_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
}
/**
* @brief Disable capture/compare 4 DMA request (CC4DE).
* @rmtoll DIER CC4DE LL_TIM_DisableDMAReq_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
}
/**
* @brief Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
* @rmtoll DIER CC4DE LL_TIM_IsEnabledDMAReq_CC4
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
}
/**
* @brief Enable commutation DMA request (COMDE).
* @rmtoll DIER COMDE LL_TIM_EnableDMAReq_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
}
/**
* @brief Disable commutation DMA request (COMDE).
* @rmtoll DIER COMDE LL_TIM_DisableDMAReq_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
}
/**
* @brief Indicates whether the commutation DMA request (COMDE) is enabled.
* @rmtoll DIER COMDE LL_TIM_IsEnabledDMAReq_COM
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
}
/**
* @brief Enable trigger interrupt (TDE).
* @rmtoll DIER TDE LL_TIM_EnableDMAReq_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->DIER, TIM_DIER_TDE);
}
/**
* @brief Disable trigger interrupt (TDE).
* @rmtoll DIER TDE LL_TIM_DisableDMAReq_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
{
CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
}
/**
* @brief Indicates whether the trigger interrupt (TDE) is enabled.
* @rmtoll DIER TDE LL_TIM_IsEnabledDMAReq_TRIG
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
* @{
*/
/**
* @brief Generate an update event.
* @rmtoll EGR UG LL_TIM_GenerateEvent_UPDATE
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_UG);
}
/**
* @brief Generate Capture/Compare 1 event.
* @rmtoll EGR CC1G LL_TIM_GenerateEvent_CC1
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
}
/**
* @brief Generate Capture/Compare 2 event.
* @rmtoll EGR CC2G LL_TIM_GenerateEvent_CC2
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
}
/**
* @brief Generate Capture/Compare 3 event.
* @rmtoll EGR CC3G LL_TIM_GenerateEvent_CC3
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
}
/**
* @brief Generate Capture/Compare 4 event.
* @rmtoll EGR CC4G LL_TIM_GenerateEvent_CC4
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
}
/**
* @brief Generate commutation event.
* @rmtoll EGR COMG LL_TIM_GenerateEvent_COM
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_COMG);
}
/**
* @brief Generate trigger event.
* @rmtoll EGR TG LL_TIM_GenerateEvent_TRIG
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_TG);
}
/**
* @brief Generate break event.
* @rmtoll EGR BG LL_TIM_GenerateEvent_BRK
* @param TIMx Timer instance
* @retval None
*/
__STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
{
SET_BIT(TIMx->EGR, TIM_EGR_BG);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
* @{
*/
ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx);
void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct);
void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F4xx_LL_TIM_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/