blob: 99004f4785af876a44db74ed57d66fdda7458bab [file] [log] [blame]
/**
******************************************************************************
* @file stm32f4xx_hal_tim.c
* @author MCD Application Team
* @brief TIM HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Timer (TIM) peripheral:
* + TIM Time Base Initialization
* + TIM Time Base Start
* + TIM Time Base Start Interruption
* + TIM Time Base Start DMA
* + TIM Output Compare/PWM Initialization
* + TIM Output Compare/PWM Channel Configuration
* + TIM Output Compare/PWM Start
* + TIM Output Compare/PWM Start Interruption
* + TIM Output Compare/PWM Start DMA
* + TIM Input Capture Initialization
* + TIM Input Capture Channel Configuration
* + TIM Input Capture Start
* + TIM Input Capture Start Interruption
* + TIM Input Capture Start DMA
* + TIM One Pulse Initialization
* + TIM One Pulse Channel Configuration
* + TIM One Pulse Start
* + TIM Encoder Interface Initialization
* + TIM Encoder Interface Start
* + TIM Encoder Interface Start Interruption
* + TIM Encoder Interface Start DMA
* + Commutation Event configuration with Interruption and DMA
* + TIM OCRef clear configuration
* + TIM External Clock configuration
@verbatim
==============================================================================
##### TIMER Generic features #####
==============================================================================
[..] The Timer features include:
(#) 16-bit up, down, up/down auto-reload counter.
(#) 16-bit programmable prescaler allowing dividing (also on the fly) the
counter clock frequency either by any factor between 1 and 65536.
(#) Up to 4 independent channels for:
(++) Input Capture
(++) Output Compare
(++) PWM generation (Edge and Center-aligned Mode)
(++) One-pulse mode output
(#) Synchronization circuit to control the timer with external signals and to interconnect
several timers together.
(#) Supports incremental encoder for positioning purposes
##### How to use this driver #####
==============================================================================
[..]
(#) Initialize the TIM low level resources by implementing the following functions
depending on the selected feature:
(++) Time Base : HAL_TIM_Base_MspInit()
(++) Input Capture : HAL_TIM_IC_MspInit()
(++) Output Compare : HAL_TIM_OC_MspInit()
(++) PWM generation : HAL_TIM_PWM_MspInit()
(++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
(++) Encoder mode output : HAL_TIM_Encoder_MspInit()
(#) Initialize the TIM low level resources :
(##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
(##) TIM pins configuration
(+++) Enable the clock for the TIM GPIOs using the following function:
__HAL_RCC_GPIOx_CLK_ENABLE();
(+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
(#) The external Clock can be configured, if needed (the default clock is the
internal clock from the APBx), using the following function:
HAL_TIM_ConfigClockSource, the clock configuration should be done before
any start function.
(#) Configure the TIM in the desired functioning mode using one of the
Initialization function of this driver:
(++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
(++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
Output Compare signal.
(++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
PWM signal.
(++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
external signal.
(++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
in One Pulse Mode.
(++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
(#) Activate the TIM peripheral using one of the start functions depending from the feature used:
(++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
(++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
(++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
(++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
(++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
(++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
(#) The DMA Burst is managed with the two following functions:
HAL_TIM_DMABurst_WriteStart()
HAL_TIM_DMABurst_ReadStart()
*** Callback registration ***
=============================================
The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Function @ref HAL_TIM_RegisterCallback() to register a callback.
@ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
the Callback ID and a pointer to the user callback function.
Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default
weak function.
@ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
These functions allow to register/unregister following callbacks:
(+) Base_MspInitCallback : TIM Base Msp Init Callback.
(+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback.
(+) IC_MspInitCallback : TIM IC Msp Init Callback.
(+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback.
(+) OC_MspInitCallback : TIM OC Msp Init Callback.
(+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback.
(+) PWM_MspInitCallback : TIM PWM Msp Init Callback.
(+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback.
(+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback.
(+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback.
(+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback.
(+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback.
(+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback.
(+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback.
(+) PeriodElapsedCallback : TIM Period Elapsed Callback.
(+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback.
(+) TriggerCallback : TIM Trigger Callback.
(+) TriggerHalfCpltCallback : TIM Trigger half complete Callback.
(+) IC_CaptureCallback : TIM Input Capture Callback.
(+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback.
(+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback.
(+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback.
(+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
(+) ErrorCallback : TIM Error Callback.
(+) CommutationCallback : TIM Commutation Callback.
(+) CommutationHalfCpltCallback : TIM Commutation half complete Callback.
(+) BreakCallback : TIM Break Callback.
By default, after the Init and when the state is HAL_TIM_STATE_RESET
all interrupt callbacks are set to the corresponding weak functions:
examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback().
Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
functionalities in the Init / DeInit only when these callbacks are null
(not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
Exception done MspInit / MspDeInit that can be registered / unregistered
in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function.
When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup TIM TIM
* @brief TIM HAL module driver
* @{
*/
#ifdef HAL_TIM_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup TIM_Private_Functions
* @{
*/
static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
uint32_t TIM_ICFilter);
static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
uint32_t TIM_ICFilter);
static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
uint32_t TIM_ICFilter);
static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
TIM_SlaveConfigTypeDef *sSlaveConfig);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup TIM_Exported_Functions TIM Exported Functions
* @{
*/
/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
* @brief Time Base functions
*
@verbatim
==============================================================================
##### Time Base functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM base.
(+) De-initialize the TIM base.
(+) Start the Time Base.
(+) Stop the Time Base.
(+) Start the Time Base and enable interrupt.
(+) Stop the Time Base and disable interrupt.
(+) Start the Time Base and enable DMA transfer.
(+) Stop the Time Base and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Time base Unit according to the specified
* parameters in the TIM_HandleTypeDef and initialize the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
{
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->Base_MspInitCallback == NULL)
{
htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->Base_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC */
HAL_TIM_Base_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Set the Time Base configuration */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM Base peripheral
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->Base_MspDeInitCallback == NULL)
{
htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
}
/* DeInit the low level hardware */
htim->Base_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIM_Base_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM Base MSP.
* @param htim TIM Base handle
* @retval None
*/
__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Base_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Base MSP.
* @param htim TIM Base handle
* @retval None
*/
__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Base_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Base generation.
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Change the TIM state*/
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Base generation.
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Change the TIM state*/
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Base generation in interrupt mode.
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
/* Enable the TIM Update interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Base generation in interrupt mode.
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
/* Disable the TIM Update interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Base generation in DMA mode.
* @param htim TIM Base handle
* @param pData The source Buffer address.
* @param Length The length of data to be transferred from memory to peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
if ((htim->State == HAL_TIM_STATE_BUSY))
{
return HAL_BUSY;
}
else if ((htim->State == HAL_TIM_STATE_READY))
{
if ((pData == NULL) && (Length > 0U))
{
return HAL_ERROR;
}
else
{
htim->State = HAL_TIM_STATE_BUSY;
}
}
else
{
/* nothing to do */
}
/* Set the DMA Period elapsed callbacks */
htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Update DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Base generation in DMA mode.
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
/* Disable the TIM Update DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
* @brief TIM Output Compare functions
*
@verbatim
==============================================================================
##### TIM Output Compare functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM Output Compare.
(+) De-initialize the TIM Output Compare.
(+) Start the TIM Output Compare.
(+) Stop the TIM Output Compare.
(+) Start the TIM Output Compare and enable interrupt.
(+) Stop the TIM Output Compare and disable interrupt.
(+) Start the TIM Output Compare and enable DMA transfer.
(+) Stop the TIM Output Compare and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Output Compare according to the specified
* parameters in the TIM_HandleTypeDef and initializes the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
* @param htim TIM Output Compare handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
{
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->OC_MspInitCallback == NULL)
{
htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->OC_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_OC_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Init the base time for the Output Compare */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM peripheral
* @param htim TIM Output Compare handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->OC_MspDeInitCallback == NULL)
{
htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
}
/* DeInit the low level hardware */
htim->OC_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
HAL_TIM_OC_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM Output Compare MSP.
* @param htim TIM Output Compare handle
* @retval None
*/
__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OC_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Output Compare MSP.
* @param htim TIM Output Compare handle
* @retval None
*/
__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OC_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Output Compare signal generation.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
/* Enable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Output Compare signal generation.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
/* Disable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Output Compare signal generation in interrupt mode.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
break;
}
/* Enable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Output Compare signal generation in interrupt mode.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
break;
}
/* Disable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Output Compare signal generation in DMA mode.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @param pData The source Buffer address.
* @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
if ((htim->State == HAL_TIM_STATE_BUSY))
{
return HAL_BUSY;
}
else if ((htim->State == HAL_TIM_STATE_READY))
{
if ((pData == NULL) && (Length > 0U))
{
return HAL_ERROR;
}
else
{
htim->State = HAL_TIM_STATE_BUSY;
}
}
else
{
/* nothing to do */
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
break;
}
default:
break;
}
/* Enable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Output Compare signal generation in DMA mode.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
break;
}
default:
break;
}
/* Disable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
* @brief TIM PWM functions
*
@verbatim
==============================================================================
##### TIM PWM functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM PWM.
(+) De-initialize the TIM PWM.
(+) Start the TIM PWM.
(+) Stop the TIM PWM.
(+) Start the TIM PWM and enable interrupt.
(+) Stop the TIM PWM and disable interrupt.
(+) Start the TIM PWM and enable DMA transfer.
(+) Stop the TIM PWM and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM PWM Time Base according to the specified
* parameters in the TIM_HandleTypeDef and initializes the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
* @param htim TIM PWM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
{
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->PWM_MspInitCallback == NULL)
{
htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->PWM_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_PWM_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Init the base time for the PWM */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM peripheral
* @param htim TIM PWM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->PWM_MspDeInitCallback == NULL)
{
htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
}
/* DeInit the low level hardware */
htim->PWM_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
HAL_TIM_PWM_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM PWM MSP.
* @param htim TIM PWM handle
* @retval None
*/
__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_PWM_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM PWM MSP.
* @param htim TIM PWM handle
* @retval None
*/
__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_PWM_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the PWM signal generation.
* @param htim TIM handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the PWM signal generation.
* @param htim TIM PWM handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
/* Disable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the PWM signal generation in interrupt mode.
* @param htim TIM PWM handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
break;
}
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the PWM signal generation in interrupt mode.
* @param htim TIM PWM handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
break;
}
/* Disable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM PWM signal generation in DMA mode.
* @param htim TIM PWM handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @param pData The source Buffer address.
* @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
if ((htim->State == HAL_TIM_STATE_BUSY))
{
return HAL_BUSY;
}
else if ((htim->State == HAL_TIM_STATE_READY))
{
if ((pData == NULL) && (Length > 0U))
{
return HAL_ERROR;
}
else
{
htim->State = HAL_TIM_STATE_BUSY;
}
}
else
{
/* nothing to do */
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Output Capture/Compare 3 request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
break;
}
default:
break;
}
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM PWM signal generation in DMA mode.
* @param htim TIM PWM handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
break;
}
default:
break;
}
/* Disable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
* @brief TIM Input Capture functions
*
@verbatim
==============================================================================
##### TIM Input Capture functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM Input Capture.
(+) De-initialize the TIM Input Capture.
(+) Start the TIM Input Capture.
(+) Stop the TIM Input Capture.
(+) Start the TIM Input Capture and enable interrupt.
(+) Stop the TIM Input Capture and disable interrupt.
(+) Start the TIM Input Capture and enable DMA transfer.
(+) Stop the TIM Input Capture and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Input Capture Time base according to the specified
* parameters in the TIM_HandleTypeDef and initializes the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
* @param htim TIM Input Capture handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
{
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->IC_MspInitCallback == NULL)
{
htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->IC_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_IC_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Init the base time for the input capture */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM peripheral
* @param htim TIM Input Capture handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->IC_MspDeInitCallback == NULL)
{
htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
}
/* DeInit the low level hardware */
htim->IC_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
HAL_TIM_IC_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM Input Capture MSP.
* @param htim TIM Input Capture handle
* @retval None
*/
__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_IC_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Input Capture MSP.
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_IC_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Input Capture measurement.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
/* Enable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Input Capture measurement.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
/* Disable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Input Capture measurement in interrupt mode.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
break;
}
/* Enable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Input Capture measurement in interrupt mode.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
break;
}
/* Disable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Input Capture measurement in DMA mode.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @param pData The destination Buffer address.
* @param Length The length of data to be transferred from TIM peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
if ((htim->State == HAL_TIM_STATE_BUSY))
{
return HAL_BUSY;
}
else if ((htim->State == HAL_TIM_STATE_READY))
{
if ((pData == NULL) && (Length > 0U))
{
return HAL_ERROR;
}
else
{
htim->State = HAL_TIM_STATE_BUSY;
}
}
else
{
/* nothing to do */
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
break;
}
default:
break;
}
/* Enable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Input Capture measurement in DMA mode.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
break;
}
default:
break;
}
/* Disable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
* @brief TIM One Pulse functions
*
@verbatim
==============================================================================
##### TIM One Pulse functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM One Pulse.
(+) De-initialize the TIM One Pulse.
(+) Start the TIM One Pulse.
(+) Stop the TIM One Pulse.
(+) Start the TIM One Pulse and enable interrupt.
(+) Stop the TIM One Pulse and disable interrupt.
(+) Start the TIM One Pulse and enable DMA transfer.
(+) Stop the TIM One Pulse and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM One Pulse Time Base according to the specified
* parameters in the TIM_HandleTypeDef and initializes the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
* @param htim TIM One Pulse handle
* @param OnePulseMode Select the One pulse mode.
* This parameter can be one of the following values:
* @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
* @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
{
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_OPM_MODE(OnePulseMode));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->OnePulse_MspInitCallback == NULL)
{
htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->OnePulse_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_OnePulse_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Configure the Time base in the One Pulse Mode */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Reset the OPM Bit */
htim->Instance->CR1 &= ~TIM_CR1_OPM;
/* Configure the OPM Mode */
htim->Instance->CR1 |= OnePulseMode;
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM One Pulse
* @param htim TIM One Pulse handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->OnePulse_MspDeInitCallback == NULL)
{
htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
}
/* DeInit the low level hardware */
htim->OnePulse_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIM_OnePulse_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM One Pulse MSP.
* @param htim TIM One Pulse handle
* @retval None
*/
__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OnePulse_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM One Pulse MSP.
* @param htim TIM One Pulse handle
* @retval None
*/
__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM One Pulse signal generation.
* @param htim TIM One Pulse handle
* @param OutputChannel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(OutputChannel);
/* Enable the Capture compare and the Input Capture channels
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
No need to enable the counter, it's enabled automatically by hardware
(the counter starts in response to a stimulus and generate a pulse */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM One Pulse signal generation.
* @param htim TIM One Pulse handle
* @param OutputChannel TIM Channels to be disable
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(OutputChannel);
/* Disable the Capture compare and the Input Capture channels
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM One Pulse signal generation in interrupt mode.
* @param htim TIM One Pulse handle
* @param OutputChannel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(OutputChannel);
/* Enable the Capture compare and the Input Capture channels
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
No need to enable the counter, it's enabled automatically by hardware
(the counter starts in response to a stimulus and generate a pulse */
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM One Pulse signal generation in interrupt mode.
* @param htim TIM One Pulse handle
* @param OutputChannel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(OutputChannel);
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
/* Disable the Capture compare and the Input Capture channels
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
* @brief TIM Encoder functions
*
@verbatim
==============================================================================
##### TIM Encoder functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM Encoder.
(+) De-initialize the TIM Encoder.
(+) Start the TIM Encoder.
(+) Stop the TIM Encoder.
(+) Start the TIM Encoder and enable interrupt.
(+) Stop the TIM Encoder and disable interrupt.
(+) Start the TIM Encoder and enable DMA transfer.
(+) Stop the TIM Encoder and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Encoder Interface and initialize the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
* @note Encoder mode and External clock mode 2 are not compatible and must not be selected together
* Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
* using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
* @param htim TIM Encoder Interface handle
* @param sConfig TIM Encoder Interface configuration structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig)
{
uint32_t tmpsmcr;
uint32_t tmpccmr1;
uint32_t tmpccer;
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
assert_param(IS_TIM_IC_POLARITY(sConfig->IC2Polarity));
assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->Encoder_MspInitCallback == NULL)
{
htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->Encoder_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_Encoder_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Reset the SMS and ECE bits */
htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
/* Configure the Time base in the Encoder Mode */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Get the TIMx SMCR register value */
tmpsmcr = htim->Instance->SMCR;
/* Get the TIMx CCMR1 register value */
tmpccmr1 = htim->Instance->CCMR1;
/* Get the TIMx CCER register value */
tmpccer = htim->Instance->CCER;
/* Set the encoder Mode */
tmpsmcr |= sConfig->EncoderMode;
/* Select the Capture Compare 1 and the Capture Compare 2 as input */
tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
/* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
/* Set the TI1 and the TI2 Polarities */
tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
/* Write to TIMx SMCR */
htim->Instance->SMCR = tmpsmcr;
/* Write to TIMx CCMR1 */
htim->Instance->CCMR1 = tmpccmr1;
/* Write to TIMx CCER */
htim->Instance->CCER = tmpccer;
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM Encoder interface
* @param htim TIM Encoder Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->Encoder_MspDeInitCallback == NULL)
{
htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
}
/* DeInit the low level hardware */
htim->Encoder_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIM_Encoder_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM Encoder Interface MSP.
* @param htim TIM Encoder Interface handle
* @retval None
*/
__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Encoder_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Encoder Interface MSP.
* @param htim TIM Encoder Interface handle
* @retval None
*/
__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Encoder Interface.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
/* Enable the encoder interface channels */
switch (Channel)
{
case TIM_CHANNEL_1:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
break;
}
case TIM_CHANNEL_2:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
break;
}
default :
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
break;
}
}
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Encoder Interface.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1 and 2
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
switch (Channel)
{
case TIM_CHANNEL_1:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
break;
}
case TIM_CHANNEL_2:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
break;
}
default :
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
break;
}
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Encoder Interface in interrupt mode.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
/* Enable the encoder interface channels */
/* Enable the capture compare Interrupts 1 and/or 2 */
switch (Channel)
{
case TIM_CHANNEL_1:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
default :
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
}
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Encoder Interface in interrupt mode.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1 and 2
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
if (Channel == TIM_CHANNEL_1)
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts 1 */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
}
else if (Channel == TIM_CHANNEL_2)
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts 2 */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
}
else
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts 1 and 2 */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Encoder Interface in DMA mode.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @param pData1 The destination Buffer address for IC1.
* @param pData2 The destination Buffer address for IC2.
* @param Length The length of data to be transferred from TIM peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length)
{
/* Check the parameters */
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
if ((htim->State == HAL_TIM_STATE_BUSY))
{
return HAL_BUSY;
}
else if ((htim->State == HAL_TIM_STATE_READY))
{
if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U))
{
return HAL_ERROR;
}
else
{
htim->State = HAL_TIM_STATE_BUSY;
}
}
else
{
/* nothing to do */
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
break;
}
case TIM_CHANNEL_2:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
break;
}
case TIM_CHANNEL_ALL:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA stream */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK)
{
return HAL_ERROR;
}
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
break;
}
default:
break;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Encoder Interface in DMA mode.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1 and 2
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
if (Channel == TIM_CHANNEL_1)
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the capture compare DMA Request 1 */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
}
else if (Channel == TIM_CHANNEL_2)
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
/* Disable the capture compare DMA Request 2 */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
}
else
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
/* Disable the capture compare DMA Request 1 and 2 */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
* @brief TIM IRQ handler management
*
@verbatim
==============================================================================
##### IRQ handler management #####