| /** |
| ****************************************************************************** |
| * @file stm32g4xx_hal_adc.c |
| * @author MCD Application Team |
| * @brief This file provides firmware functions to manage the following |
| * functionalities of the Analog to Digital Convertor (ADC) |
| * peripheral: |
| * + Initialization and de-initialization functions |
| * ++ Initialization and Configuration of ADC |
| * + Operation functions |
| * ++ Start, stop, get result of conversions of regular |
| * group, using 3 possible modes: polling, interruption or DMA. |
| * + Control functions |
| * ++ Channels configuration on regular group |
| * ++ Analog Watchdog configuration |
| * + State functions |
| * ++ ADC state machine management |
| * ++ Interrupts and flags management |
| * Other functions (extended functions) are available in file |
| * "stm32g4xx_hal_adc_ex.c". |
| * |
| @verbatim |
| ============================================================================== |
| ##### ADC peripheral features ##### |
| ============================================================================== |
| [..] |
| (+) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution. |
| |
| (+) Interrupt generation at the end of regular conversion and in case of |
| analog watchdog or overrun events. |
| |
| (+) Single and continuous conversion modes. |
| |
| (+) Scan mode for conversion of several channels sequentially. |
| |
| (+) Data alignment with in-built data coherency. |
| |
| (+) Programmable sampling time (channel wise) |
| |
| (+) External trigger (timer or EXTI) with configurable polarity |
| |
| (+) DMA request generation for transfer of conversions data of regular group. |
| |
| (+) Configurable delay between conversions in Dual interleaved mode. |
| |
| (+) ADC channels selectable single/differential input. |
| |
| (+) ADC offset shared on 4 offset instances. |
| (+) ADC gain compensation |
| |
| (+) ADC calibration |
| |
| (+) ADC conversion of regular group. |
| |
| (+) ADC supply requirements: 1.62 V to 3.6 V. |
| |
| (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to |
| Vdda or to an external voltage reference). |
| |
| |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| |
| *** Configuration of top level parameters related to ADC *** |
| ============================================================ |
| [..] |
| |
| (#) Enable the ADC interface |
| (++) As prerequisite, ADC clock must be configured at RCC top level. |
| |
| (++) Two clock settings are mandatory: |
| (+++) ADC clock (core clock, also possibly conversion clock). |
| |
| (+++) ADC clock (conversions clock). |
| Two possible clock sources: synchronous clock derived from AHB clock |
| or asynchronous clock derived from system clock or PLL (output divider P) |
| running up to 75MHz. |
| |
| (+++) Example: |
| Into HAL_ADC_MspInit() (recommended code location) or with |
| other device clock parameters configuration: |
| (+++) __HAL_RCC_ADC_CLK_ENABLE(); (mandatory) |
| |
| RCC_ADCCLKSOURCE_PLL enable: (optional: if asynchronous clock selected) |
| (+++) RCC_PeriphClkInitTypeDef RCC_PeriphClkInit; |
| (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; |
| (+++) PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLL; |
| (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); |
| |
| (++) ADC clock source and clock prescaler are configured at ADC level with |
| parameter "ClockPrescaler" using function HAL_ADC_Init(). |
| |
| (#) ADC pins configuration |
| (++) Enable the clock for the ADC GPIOs |
| using macro __HAL_RCC_GPIOx_CLK_ENABLE() |
| (++) Configure these ADC pins in analog mode |
| using function HAL_GPIO_Init() |
| |
| (#) Optionally, in case of usage of ADC with interruptions: |
| (++) Configure the NVIC for ADC |
| using function HAL_NVIC_EnableIRQ(ADCx_IRQn) |
| (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() |
| into the function of corresponding ADC interruption vector |
| ADCx_IRQHandler(). |
| |
| (#) Optionally, in case of usage of DMA: |
| (++) Configure the DMA (DMA channel, mode normal or circular, ...) |
| using function HAL_DMA_Init(). |
| (++) Configure the NVIC for DMA |
| using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) |
| (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() |
| into the function of corresponding DMA interruption vector |
| DMAx_Channelx_IRQHandler(). |
| |
| *** Configuration of ADC, group regular, channels parameters *** |
| ================================================================ |
| [..] |
| |
| (#) Configure the ADC parameters (resolution, data alignment, ...) |
| and regular group parameters (conversion trigger, sequencer, ...) |
| using function HAL_ADC_Init(). |
| |
| (#) Configure the channels for regular group parameters (channel number, |
| channel rank into sequencer, ..., into regular group) |
| using function HAL_ADC_ConfigChannel(). |
| |
| (#) Optionally, configure the analog watchdog parameters (channels |
| monitored, thresholds, ...) |
| using function HAL_ADC_AnalogWDGConfig(). |
| |
| *** Execution of ADC conversions *** |
| ==================================== |
| [..] |
| |
| (#) Optionally, perform an automatic ADC calibration to improve the |
| conversion accuracy |
| using function HAL_ADCEx_Calibration_Start(). |
| |
| (#) ADC driver can be used among three modes: polling, interruption, |
| transfer by DMA. |
| |
| (++) ADC conversion by polling: |
| (+++) Activate the ADC peripheral and start conversions |
| using function HAL_ADC_Start() |
| (+++) Wait for ADC conversion completion |
| using function HAL_ADC_PollForConversion() |
| (+++) Retrieve conversion results |
| using function HAL_ADC_GetValue() |
| (+++) Stop conversion and disable the ADC peripheral |
| using function HAL_ADC_Stop() |
| |
| (++) ADC conversion by interruption: |
| (+++) Activate the ADC peripheral and start conversions |
| using function HAL_ADC_Start_IT() |
| (+++) Wait for ADC conversion completion by call of function |
| HAL_ADC_ConvCpltCallback() |
| (this function must be implemented in user program) |
| (+++) Retrieve conversion results |
| using function HAL_ADC_GetValue() |
| (+++) Stop conversion and disable the ADC peripheral |
| using function HAL_ADC_Stop_IT() |
| |
| (++) ADC conversion with transfer by DMA: |
| (+++) Activate the ADC peripheral and start conversions |
| using function HAL_ADC_Start_DMA() |
| (+++) Wait for ADC conversion completion by call of function |
| HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() |
| (these functions must be implemented in user program) |
| (+++) Conversion results are automatically transferred by DMA into |
| destination variable address. |
| (+++) Stop conversion and disable the ADC peripheral |
| using function HAL_ADC_Stop_DMA() |
| |
| [..] |
| |
| (@) Callback functions must be implemented in user program: |
| (+@) HAL_ADC_ErrorCallback() |
| (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog) |
| (+@) HAL_ADC_ConvCpltCallback() |
| (+@) HAL_ADC_ConvHalfCpltCallback |
| |
| *** Deinitialization of ADC *** |
| ============================================================ |
| [..] |
| |
| (#) Disable the ADC interface |
| (++) ADC clock can be hard reset and disabled at RCC top level. |
| (++) Hard reset of ADC peripherals |
| using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET(). |
| (++) ADC clock disable |
| using the equivalent macro/functions as configuration step. |
| (+++) Example: |
| Into HAL_ADC_MspDeInit() (recommended code location) or with |
| other device clock parameters configuration: |
| (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14; |
| (+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_OFF; (if not used for system clock) |
| (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); |
| |
| (#) ADC pins configuration |
| (++) Disable the clock for the ADC GPIOs |
| using macro __HAL_RCC_GPIOx_CLK_DISABLE() |
| |
| (#) Optionally, in case of usage of ADC with interruptions: |
| (++) Disable the NVIC for ADC |
| using function HAL_NVIC_EnableIRQ(ADCx_IRQn) |
| |
| (#) Optionally, in case of usage of DMA: |
| (++) Deinitialize the DMA |
| using function HAL_DMA_Init(). |
| (++) Disable the NVIC for DMA |
| using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) |
| |
| [..] |
| |
| *** Callback registration *** |
| ============================================= |
| [..] |
| |
| The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1, |
| allows the user to configure dynamically the driver callbacks. |
| Use Functions @ref HAL_ADC_RegisterCallback() |
| to register an interrupt callback. |
| [..] |
| |
| Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks: |
| (+) ConvCpltCallback : ADC conversion complete callback |
| (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback |
| (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback |
| (+) ErrorCallback : ADC error callback |
| (+) InjectedConvCpltCallback : ADC group injected conversion complete callback |
| (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback |
| (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback |
| (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback |
| (+) EndOfSamplingCallback : ADC end of sampling callback |
| (+) MspInitCallback : ADC Msp Init callback |
| (+) MspDeInitCallback : ADC Msp DeInit callback |
| This function takes as parameters the HAL peripheral handle, the Callback ID |
| and a pointer to the user callback function. |
| [..] |
| |
| Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default |
| weak function. |
| [..] |
| |
| @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle, |
| and the Callback ID. |
| This function allows to reset following callbacks: |
| (+) ConvCpltCallback : ADC conversion complete callback |
| (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback |
| (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback |
| (+) ErrorCallback : ADC error callback |
| (+) InjectedConvCpltCallback : ADC group injected conversion complete callback |
| (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback |
| (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback |
| (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback |
| (+) EndOfSamplingCallback : ADC end of sampling callback |
| (+) MspInitCallback : ADC Msp Init callback |
| (+) MspDeInitCallback : ADC Msp DeInit callback |
| [..] |
| |
| By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET |
| all callbacks are set to the corresponding weak functions: |
| examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback(). |
| Exception done for MspInit and MspDeInit functions that are |
| reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when |
| these callbacks are null (not registered beforehand). |
| [..] |
| |
| If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() |
| keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. |
| [..] |
| |
| Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only. |
| Exception done MspInit/MspDeInit functions that can be registered/unregistered |
| in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state, |
| thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. |
| [..] |
| |
| Then, the user first registers the MspInit/MspDeInit user callbacks |
| using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit() |
| or @ref HAL_ADC_Init() function. |
| [..] |
| |
| When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registration feature is not available and all callbacks |
| are set to the corresponding weak functions. |
| |
| @endverbatim |
| ****************************************************************************** |
| * @attention |
| * |
| * <h2><center>© Copyright (c) 2019 STMicroelectronics. |
| * All rights reserved.</center></h2> |
| * |
| * This software component is licensed by ST under BSD 3-Clause license, |
| * the "License"; You may not use this file except in compliance with the |
| * License. You may obtain a copy of the License at: |
| * opensource.org/licenses/BSD-3-Clause |
| * |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32g4xx_hal.h" |
| |
| /** @addtogroup STM32G4xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup ADC ADC |
| * @brief ADC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_ADC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| |
| /** @defgroup ADC_Private_Constants ADC Private Constants |
| * @{ |
| */ |
| |
| #define ADC_CFGR_FIELDS_1 ((ADC_CFGR_RES | ADC_CFGR_ALIGN |\ |
| ADC_CFGR_CONT | ADC_CFGR_OVRMOD |\ |
| ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\ |
| ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL)) /*!< ADC_CFGR fields of parameters that can be updated |
| when no regular conversion is on-going */ |
| |
| /* Timeout values for ADC operations (enable settling time, */ |
| /* disable settling time, ...). */ |
| /* Values defined to be higher than worst cases: low clock frequency, */ |
| /* maximum prescalers. */ |
| #define ADC_ENABLE_TIMEOUT (2UL) /*!< ADC enable time-out value */ |
| #define ADC_DISABLE_TIMEOUT (2UL) /*!< ADC disable time-out value */ |
| |
| /* Timeout to wait for current conversion on going to be completed. */ |
| /* Timeout fixed to longest ADC conversion possible, for 1 channel: */ |
| /* - maximum sampling time (640.5 adc_clk) */ |
| /* - ADC resolution (Tsar 12 bits= 12.5 adc_clk) */ |
| /* - System clock / ADC clock <= 4096 (hypothesis of maximum clock ratio) */ |
| /* - ADC oversampling ratio 256 */ |
| /* Calculation: 653 * 4096 * 256 CPU clock cycles max */ |
| /* Unit: cycles of CPU clock. */ |
| #define ADC_CONVERSION_TIME_MAX_CPU_CYCLES (653UL * 4096UL * 256UL) /*!< ADC conversion completion time-out value */ |
| |
| |
| /** |
| * @} |
| */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Private function prototypes -----------------------------------------------*/ |
| /* Exported functions --------------------------------------------------------*/ |
| |
| /** @defgroup ADC_Exported_Functions ADC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief ADC Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Initialize and configure the ADC. |
| (+) De-initialize the ADC. |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initialize the ADC peripheral and regular group according to |
| * parameters specified in structure "ADC_InitTypeDef". |
| * @note As prerequisite, ADC clock must be configured at RCC top level |
| * (refer to description of RCC configuration for ADC |
| * in header of this file). |
| * @note Possibility to update parameters on the fly: |
| * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when |
| * coming from ADC state reset. Following calls to this function can |
| * be used to reconfigure some parameters of ADC_InitTypeDef |
| * structure on the fly, without modifying MSP configuration. If ADC |
| * MSP has to be modified again, HAL_ADC_DeInit() must be called |
| * before HAL_ADC_Init(). |
| * The setting of these parameters is conditioned to ADC state. |
| * For parameters constraints, see comments of structure |
| * "ADC_InitTypeDef". |
| * @note This function configures the ADC within 2 scopes: scope of entire |
| * ADC and scope of regular group. For parameters details, see comments |
| * of structure "ADC_InitTypeDef". |
| * @note Parameters related to common ADC registers (ADC clock mode) are set |
| * only if all ADCs are disabled. |
| * If this is not the case, these common parameters setting are |
| * bypassed without error reporting: it can be the intended behaviour in |
| * case of update of a parameter of ADC_InitTypeDef on the fly, |
| * without disabling the other ADCs. |
| * @param hadc ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| uint32_t tmpCFGR; |
| uint32_t tmp_adc_reg_is_conversion_on_going; |
| __IO uint32_t wait_loop_index = 0UL; |
| uint32_t tmp_adc_is_conversion_on_going_regular; |
| uint32_t tmp_adc_is_conversion_on_going_injected; |
| |
| /* Check ADC handle */ |
| if (hadc == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); |
| assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); |
| assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); |
| assert_param(IS_ADC_GAIN_COMPENSATION(hadc->Init.GainCompensation)); |
| assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); |
| assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); |
| assert_param(IS_ADC_EXTTRIG(hadc, hadc->Init.ExternalTrigConv)); |
| assert_param(IS_ADC_SAMPLINGMODE(hadc->Init.SamplingMode)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); |
| assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); |
| assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode)); |
| |
| if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE) |
| { |
| assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); |
| |
| if (hadc->Init.DiscontinuousConvMode == ENABLE) |
| { |
| assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion)); |
| } |
| } |
| |
| /* DISCEN and CONT bits cannot be set at the same time */ |
| assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == ENABLE))); |
| |
| /* Actions performed only if ADC is coming from state reset: */ |
| /* - Initialization of ADC MSP */ |
| if (hadc->State == HAL_ADC_STATE_RESET) |
| { |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| /* Init the ADC Callback settings */ |
| hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */ |
| hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */ |
| hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */ |
| hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */ |
| hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */ |
| hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback; /* Legacy weak callback */ |
| hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; /* Legacy weak callback */ |
| hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; /* Legacy weak callback */ |
| hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; /* Legacy weak callback */ |
| |
| if (hadc->MspInitCallback == NULL) |
| { |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| } |
| |
| /* Init the low level hardware */ |
| hadc->MspInitCallback(hadc); |
| #else |
| /* Init the low level hardware */ |
| HAL_ADC_MspInit(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Set ADC error code to none */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Initialize Lock */ |
| hadc->Lock = HAL_UNLOCKED; |
| } |
| |
| /* - Exit from deep-power-down mode and ADC voltage regulator enable */ |
| if (LL_ADC_IsDeepPowerDownEnabled(hadc->Instance) != 0UL) |
| { |
| /* Disable ADC deep power down mode */ |
| LL_ADC_DisableDeepPowerDown(hadc->Instance); |
| |
| /* System was in deep power down mode, calibration must |
| be relaunched or a previously saved calibration factor |
| re-applied once the ADC voltage regulator is enabled */ |
| } |
| |
| if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL) |
| { |
| /* Enable ADC internal voltage regulator */ |
| LL_ADC_EnableInternalRegulator(hadc->Instance); |
| |
| /* Note: Variable divided by 2 to compensate partially */ |
| /* CPU processing cycles, scaling in us split to not */ |
| /* exceed 32 bits register capacity and handle low frequency. */ |
| wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US / 10UL) * (SystemCoreClock / (100000UL * 2UL))); |
| while (wait_loop_index != 0UL) |
| { |
| wait_loop_index--; |
| } |
| } |
| |
| /* Verification that ADC voltage regulator is correctly enabled, whether */ |
| /* or not ADC is coming from state reset (if any potential problem of */ |
| /* clocking, voltage regulator would not be enabled). */ |
| if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| tmp_hal_status = HAL_ERROR; |
| } |
| |
| /* Configuration of ADC parameters if previous preliminary actions are */ |
| /* correctly completed and if there is no conversion on going on regular */ |
| /* group (ADC may already be enabled at this point if HAL_ADC_Init() is */ |
| /* called to update a parameter on the fly). */ |
| tmp_adc_reg_is_conversion_on_going = LL_ADC_REG_IsConversionOngoing(hadc->Instance); |
| |
| if (((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) |
| && (tmp_adc_reg_is_conversion_on_going == 0UL) |
| ) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY, |
| HAL_ADC_STATE_BUSY_INTERNAL); |
| |
| /* Configuration of common ADC parameters */ |
| |
| /* Parameters update conditioned to ADC state: */ |
| /* Parameters that can be updated only when ADC is disabled: */ |
| /* - clock configuration */ |
| if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) |
| { |
| if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) |
| { |
| /* Reset configuration of ADC common register CCR: */ |
| /* */ |
| /* - ADC clock mode and ACC prescaler (CKMODE and PRESC bits)are set */ |
| /* according to adc->Init.ClockPrescaler. It selects the clock */ |
| /* source and sets the clock division factor. */ |
| /* */ |
| /* Some parameters of this register are not reset, since they are set */ |
| /* by other functions and must be kept in case of usage of this */ |
| /* function on the fly (update of a parameter of ADC_InitTypeDef */ |
| /* without needing to reconfigure all other ADC groups/channels */ |
| /* parameters): */ |
| /* - when multimode feature is available, multimode-related */ |
| /* parameters: MDMA, DMACFG, DELAY, DUAL (set by API */ |
| /* HAL_ADCEx_MultiModeConfigChannel() ) */ |
| /* - internal measurement paths: Vbat, temperature sensor, Vref */ |
| /* (set into HAL_ADC_ConfigChannel() or */ |
| /* HAL_ADCEx_InjectedConfigChannel() ) */ |
| LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(hadc->Instance), hadc->Init.ClockPrescaler); |
| } |
| } |
| |
| /* Configuration of ADC: */ |
| /* - resolution Init.Resolution */ |
| /* - data alignment Init.DataAlign */ |
| /* - external trigger to start conversion Init.ExternalTrigConv */ |
| /* - external trigger polarity Init.ExternalTrigConvEdge */ |
| /* - continuous conversion mode Init.ContinuousConvMode */ |
| /* - overrun Init.Overrun */ |
| /* - discontinuous mode Init.DiscontinuousConvMode */ |
| /* - discontinuous mode channel count Init.NbrOfDiscConversion */ |
| tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | |
| hadc->Init.Overrun | |
| hadc->Init.DataAlign | |
| hadc->Init.Resolution | |
| ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode)); |
| |
| if (hadc->Init.DiscontinuousConvMode == ENABLE) |
| { |
| tmpCFGR |= ADC_CFGR_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion); |
| } |
| |
| /* Enable external trigger if trigger selection is different of software */ |
| /* start. */ |
| /* Note: This configuration keeps the hardware feature of parameter */ |
| /* ExternalTrigConvEdge "trigger edge none" equivalent to */ |
| /* software start. */ |
| if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) |
| { |
| tmpCFGR |= ((hadc->Init.ExternalTrigConv & ADC_CFGR_EXTSEL) |
| | hadc->Init.ExternalTrigConvEdge |
| ); |
| } |
| |
| /* Update Configuration Register CFGR */ |
| MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmpCFGR); |
| |
| /* Configuration of sampling mode */ |
| MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_BULB | ADC_CFGR2_SMPTRIG, hadc->Init.SamplingMode); |
| |
| /* Parameters update conditioned to ADC state: */ |
| /* Parameters that can be updated when ADC is disabled or enabled without */ |
| /* conversion on going on regular and injected groups: */ |
| /* - Gain Compensation Init.GainCompensation */ |
| /* - DMA continuous request Init.DMAContinuousRequests */ |
| /* - LowPowerAutoWait feature Init.LowPowerAutoWait */ |
| /* - Oversampling parameters Init.Oversampling */ |
| tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); |
| tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); |
| if ((tmp_adc_is_conversion_on_going_regular == 0UL) |
| && (tmp_adc_is_conversion_on_going_injected == 0UL) |
| ) |
| { |
| tmpCFGR = (ADC_CFGR_DFSDM(hadc) | |
| ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) | |
| ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests)); |
| |
| MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_2, tmpCFGR); |
| |
| if (hadc->Init.GainCompensation != 0UL) |
| { |
| SET_BIT(hadc->Instance->CFGR2, ADC_CFGR2_GCOMP); |
| MODIFY_REG(hadc->Instance->GCOMP, ADC_GCOMP_GCOMPCOEFF, hadc->Init.GainCompensation); |
| } |
| else |
| { |
| CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_GCOMP); |
| MODIFY_REG(hadc->Instance->GCOMP, ADC_GCOMP_GCOMPCOEFF, 0UL); |
| } |
| |
| if (hadc->Init.OversamplingMode == ENABLE) |
| { |
| assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio)); |
| assert_param(IS_ADC_RIGHT_BIT_SHIFT(hadc->Init.Oversampling.RightBitShift)); |
| assert_param(IS_ADC_TRIGGERED_OVERSAMPLING_MODE(hadc->Init.Oversampling.TriggeredMode)); |
| assert_param(IS_ADC_REGOVERSAMPLING_MODE(hadc->Init.Oversampling.OversamplingStopReset)); |
| |
| /* Configuration of Oversampler: */ |
| /* - Oversampling Ratio */ |
| /* - Right bit shift */ |
| /* - Triggered mode */ |
| /* - Oversampling mode (continued/resumed) */ |
| MODIFY_REG(hadc->Instance->CFGR2, |
| ADC_CFGR2_OVSR | |
| ADC_CFGR2_OVSS | |
| ADC_CFGR2_TROVS | |
| ADC_CFGR2_ROVSM, |
| ADC_CFGR2_ROVSE | |
| hadc->Init.Oversampling.Ratio | |
| hadc->Init.Oversampling.RightBitShift | |
| hadc->Init.Oversampling.TriggeredMode | |
| hadc->Init.Oversampling.OversamplingStopReset |
| ); |
| } |
| else |
| { |
| /* Disable ADC oversampling scope on ADC group regular */ |
| CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSE); |
| } |
| |
| } |
| |
| /* Configuration of regular group sequencer: */ |
| /* - if scan mode is disabled, regular channels sequence length is set to */ |
| /* 0x00: 1 channel converted (channel on regular rank 1) */ |
| /* Parameter "NbrOfConversion" is discarded. */ |
| /* Note: Scan mode is not present by hardware on this device, but */ |
| /* emulated by software for alignment over all STM32 devices. */ |
| /* - if scan mode is enabled, regular channels sequence length is set to */ |
| /* parameter "NbrOfConversion". */ |
| |
| if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE) |
| { |
| /* Set number of ranks in regular group sequencer */ |
| MODIFY_REG(hadc->Instance->SQR1, ADC_SQR1_L, (hadc->Init.NbrOfConversion - (uint8_t)1)); |
| } |
| else |
| { |
| CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L); |
| } |
| |
| /* Initialize the ADC state */ |
| /* Clear HAL_ADC_STATE_BUSY_INTERNAL bit, set HAL_ADC_STATE_READY bit */ |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY); |
| } |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| tmp_hal_status = HAL_ERROR; |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Deinitialize the ADC peripheral registers to their default reset |
| * values, with deinitialization of the ADC MSP. |
| * @note For devices with several ADCs: reset of ADC common registers is done |
| * only if all ADCs sharing the same common group are disabled. |
| * (function "HAL_ADC_MspDeInit()" is also called under the same conditions: |
| * all ADC instances use the same core clock at RCC level, disabling |
| * the core clock reset all ADC instances). |
| * If this is not the case, reset of these common parameters reset is |
| * bypassed without error reporting: it can be the intended behavior in |
| * case of reset of a single ADC while the other ADCs sharing the same |
| * common group is still running. |
| * @note By default, HAL_ADC_DeInit() set ADC in mode deep power-down: |
| * this saves more power by reducing leakage currents |
| * and is particularly interesting before entering MCU low-power modes. |
| * @param hadc ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status; |
| |
| /* Check ADC handle */ |
| if (hadc == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); |
| |
| /* Stop potential conversion on going */ |
| tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); |
| |
| /* Disable ADC peripheral if conversions are effectively stopped */ |
| /* Flush register JSQR: reset the queue sequencer when injected */ |
| /* queue sequencer is enabled and ADC disabled. */ |
| /* The software and hardware triggers of the injected sequence are both */ |
| /* internally disabled just after the completion of the last valid */ |
| /* injected sequence. */ |
| SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQM); |
| |
| /* Disable ADC peripheral if conversions are effectively stopped */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Disable the ADC peripheral */ |
| tmp_hal_status = ADC_Disable(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Change ADC state */ |
| hadc->State = HAL_ADC_STATE_READY; |
| } |
| } |
| |
| /* Note: HAL ADC deInit is done independently of ADC conversion stop */ |
| /* and disable return status. In case of status fail, attempt to */ |
| /* perform deinitialization anyway and it is up user code in */ |
| /* in HAL_ADC_MspDeInit() to reset the ADC peripheral using */ |
| /* system RCC hard reset. */ |
| |
| /* ========== Reset ADC registers ========== */ |
| /* Reset register IER */ |
| __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3 | ADC_IT_AWD2 | ADC_IT_AWD1 | |
| ADC_IT_JQOVF | ADC_IT_OVR | |
| ADC_IT_JEOS | ADC_IT_JEOC | |
| ADC_IT_EOS | ADC_IT_EOC | |
| ADC_IT_EOSMP | ADC_IT_RDY)); |
| |
| /* Reset register ISR */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3 | ADC_FLAG_AWD2 | ADC_FLAG_AWD1 | |
| ADC_FLAG_JQOVF | ADC_FLAG_OVR | |
| ADC_FLAG_JEOS | ADC_FLAG_JEOC | |
| ADC_FLAG_EOS | ADC_FLAG_EOC | |
| ADC_FLAG_EOSMP | ADC_FLAG_RDY)); |
| |
| /* Reset register CR */ |
| /* Bits ADC_CR_JADSTP, ADC_CR_ADSTP, ADC_CR_JADSTART, ADC_CR_ADSTART, |
| ADC_CR_ADCAL, ADC_CR_ADDIS and ADC_CR_ADEN are in access mode "read-set": |
| no direct reset applicable. |
| Update CR register to reset value where doable by software */ |
| CLEAR_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN | ADC_CR_ADCALDIF); |
| SET_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD); |
| |
| /* Reset register CFGR */ |
| CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_FIELDS); |
| SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS); |
| |
| /* Reset register CFGR2 */ |
| CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSM | ADC_CFGR2_TROVS | ADC_CFGR2_OVSS | |
| ADC_CFGR2_OVSR | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSE); |
| |
| /* Reset register SMPR1 */ |
| CLEAR_BIT(hadc->Instance->SMPR1, ADC_SMPR1_FIELDS); |
| |
| /* Reset register SMPR2 */ |
| CLEAR_BIT(hadc->Instance->SMPR2, ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 | ADC_SMPR2_SMP16 | |
| ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 | ADC_SMPR2_SMP13 | |
| ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 | ADC_SMPR2_SMP10); |
| |
| /* Reset register TR1 */ |
| CLEAR_BIT(hadc->Instance->TR1, ADC_TR1_HT1 | ADC_TR1_LT1); |
| |
| /* Reset register TR2 */ |
| CLEAR_BIT(hadc->Instance->TR2, ADC_TR2_HT2 | ADC_TR2_LT2); |
| |
| /* Reset register TR3 */ |
| CLEAR_BIT(hadc->Instance->TR3, ADC_TR3_HT3 | ADC_TR3_LT3); |
| |
| /* Reset register SQR1 */ |
| CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_SQ4 | ADC_SQR1_SQ3 | ADC_SQR1_SQ2 | |
| ADC_SQR1_SQ1 | ADC_SQR1_L); |
| |
| /* Reset register SQR2 */ |
| CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 | |
| ADC_SQR2_SQ6 | ADC_SQR2_SQ5); |
| |
| /* Reset register SQR3 */ |
| CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ14 | ADC_SQR3_SQ13 | ADC_SQR3_SQ12 | |
| ADC_SQR3_SQ11 | ADC_SQR3_SQ10); |
| |
| /* Reset register SQR4 */ |
| CLEAR_BIT(hadc->Instance->SQR4, ADC_SQR4_SQ16 | ADC_SQR4_SQ15); |
| |
| /* Register JSQR was reset when the ADC was disabled */ |
| |
| /* Reset register DR */ |
| /* bits in access mode read only, no direct reset applicable*/ |
| |
| /* Reset register OFR1 */ |
| CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_OFFSET1_EN | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1); |
| /* Reset register OFR2 */ |
| CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_OFFSET2_EN | ADC_OFR2_OFFSET2_CH | ADC_OFR2_OFFSET2); |
| /* Reset register OFR3 */ |
| CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_OFFSET3_EN | ADC_OFR3_OFFSET3_CH | ADC_OFR3_OFFSET3); |
| /* Reset register OFR4 */ |
| CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_OFFSET4_EN | ADC_OFR4_OFFSET4_CH | ADC_OFR4_OFFSET4); |
| |
| /* Reset registers JDR1, JDR2, JDR3, JDR4 */ |
| /* bits in access mode read only, no direct reset applicable*/ |
| |
| /* Reset register AWD2CR */ |
| CLEAR_BIT(hadc->Instance->AWD2CR, ADC_AWD2CR_AWD2CH); |
| |
| /* Reset register AWD3CR */ |
| CLEAR_BIT(hadc->Instance->AWD3CR, ADC_AWD3CR_AWD3CH); |
| |
| /* Reset register DIFSEL */ |
| CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_DIFSEL); |
| |
| /* Reset register CALFACT */ |
| CLEAR_BIT(hadc->Instance->CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S); |
| |
| |
| /* ========== Reset common ADC registers ========== */ |
| |
| /* Software is allowed to change common parameters only when all the other |
| ADCs are disabled. */ |
| if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) |
| { |
| /* Reset configuration of ADC common register CCR: |
| - clock mode: CKMODE, PRESCEN |
| - multimode related parameters (when this feature is available): MDMA, |
| DMACFG, DELAY, DUAL (set by HAL_ADCEx_MultiModeConfigChannel() API) |
| - internal measurement paths: Vbat, temperature sensor, Vref (set into |
| HAL_ADC_ConfigChannel() or HAL_ADCEx_InjectedConfigChannel() ) |
| */ |
| ADC_CLEAR_COMMON_CONTROL_REGISTER(hadc); |
| } |
| |
| /* DeInit the low level hardware. |
| |
| For example: |
| __HAL_RCC_ADC_FORCE_RESET(); |
| __HAL_RCC_ADC_RELEASE_RESET(); |
| __HAL_RCC_ADC_CLK_DISABLE(); |
| |
| Keep in mind that all ADCs use the same clock: disabling |
| the clock will reset all ADCs. |
| |
| */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| if (hadc->MspDeInitCallback == NULL) |
| { |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| } |
| |
| /* DeInit the low level hardware: RCC clock, NVIC */ |
| hadc->MspDeInitCallback(hadc); |
| #else |
| /* DeInit the low level hardware: RCC clock, NVIC */ |
| HAL_ADC_MspDeInit(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Set ADC error code to none */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Reset injected channel configuration parameters */ |
| hadc->InjectionConfig.ContextQueue = 0; |
| hadc->InjectionConfig.ChannelCount = 0; |
| |
| /* Set ADC state */ |
| hadc->State = HAL_ADC_STATE_RESET; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Initialize the ADC MSP. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_MspInit must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief DeInitialize the ADC MSP. |
| * @param hadc ADC handle |
| * @note All ADC instances use the same core clock at RCC level, disabling |
| * the core clock reset all ADC instances). |
| * @retval None |
| */ |
| __weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_MspDeInit must be implemented in the user file. |
| */ |
| } |
| |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| /** |
| * @brief Register a User ADC Callback |
| * To be used instead of the weak predefined callback |
| * @param hadc Pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param CallbackID ID of the callback to be registered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID |
| * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID |
| * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID |
| * @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID |
| * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID |
| * @param pCallback pointer to the Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| return HAL_ERROR; |
| } |
| |
| if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_CONVERSION_COMPLETE_CB_ID : |
| hadc->ConvCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_CONVERSION_HALF_CB_ID : |
| hadc->ConvHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : |
| hadc->LevelOutOfWindowCallback = pCallback; |
| break; |
| |
| case HAL_ADC_ERROR_CB_ID : |
| hadc->ErrorCallback = pCallback; |
| break; |
| |
| case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID : |
| hadc->InjectedConvCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID : |
| hadc->InjectedQueueOverflowCallback = pCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID : |
| hadc->LevelOutOfWindow2Callback = pCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID : |
| hadc->LevelOutOfWindow3Callback = pCallback; |
| break; |
| |
| case HAL_ADC_END_OF_SAMPLING_CB_ID : |
| hadc->EndOfSamplingCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (HAL_ADC_STATE_RESET == hadc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Unregister a ADC Callback |
| * ADC callback is redirected to the weak predefined callback |
| * @param hadc Pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param CallbackID ID of the callback to be unregistered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID |
| * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID |
| * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID |
| * @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID |
| * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_CONVERSION_COMPLETE_CB_ID : |
| hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; |
| break; |
| |
| case HAL_ADC_CONVERSION_HALF_CB_ID : |
| hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : |
| hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; |
| break; |
| |
| case HAL_ADC_ERROR_CB_ID : |
| hadc->ErrorCallback = HAL_ADC_ErrorCallback; |
| break; |
| |
| case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID : |
| hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; |
| break; |
| |
| case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID : |
| hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID : |
| hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID : |
| hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; |
| break; |
| |
| case HAL_ADC_END_OF_SAMPLING_CB_ID : |
| hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; |
| break; |
| |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (HAL_ADC_STATE_RESET == hadc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group2 ADC Input and Output operation functions |
| * @brief ADC IO operation functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### IO operation functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Start conversion of regular group. |
| (+) Stop conversion of regular group. |
| (+) Poll for conversion complete on regular group. |
| (+) Poll for conversion event. |
| (+) Get result of regular channel conversion. |
| (+) Start conversion of regular group and enable interruptions. |
| (+) Stop conversion of regular group and disable interruptions. |
| (+) Handle ADC interrupt request |
| (+) Start conversion of regular group and enable DMA transfer. |
| (+) Stop conversion of regular group and disable ADC DMA transfer. |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Enable ADC, start conversion of regular group. |
| * @note Interruptions enabled in this function: None. |
| * @note Case of multimode enabled (when multimode feature is available): |
| * if ADC is Slave, ADC is enabled but conversion is not started, |
| * if ADC is master, ADC is enabled and multimode conversion is started. |
| * @param hadc ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status; |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| const ADC_TypeDef *tmpADC_Master; |
| uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); |
| #endif |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Perform ADC enable and conversion start if no conversion is on going */ |
| if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) |
| { |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable the ADC peripheral */ |
| tmp_hal_status = ADC_Enable(hadc); |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit |
| - if ADC instance is master or if multimode feature is not available |
| - if multimode setting is disabled (ADC instance slave in independent mode) */ |
| if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) |
| || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) |
| ) |
| { |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| } |
| #endif |
| |
| /* Set ADC error code */ |
| /* Check if a conversion is on going on ADC group injected */ |
| if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| /* Reset ADC error code fields related to regular conversions only */ |
| CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); |
| } |
| else |
| { |
| /* Reset all ADC error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| } |
| |
| /* Clear ADC group regular conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Enable conversion of regular group. */ |
| /* If software start has been selected, conversion starts immediately. */ |
| /* If external trigger has been selected, conversion will start at next */ |
| /* trigger event. */ |
| /* Case of multimode enabled (when multimode feature is available): */ |
| /* - if ADC is slave and dual regular conversions are enabled, ADC is */ |
| /* enabled only (conversion is not started), */ |
| /* - if ADC is master, ADC is enabled and conversion is started. */ |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) |
| || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) |
| ) |
| { |
| /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */ |
| if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| |
| /* Start ADC group regular conversion */ |
| LL_ADC_REG_StartConversion(hadc->Instance); |
| } |
| else |
| { |
| /* ADC instance is a multimode slave instance with multimode regular conversions enabled */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| /* if Master ADC JAUTO bit is set, update Slave State in setting |
| HAL_ADC_STATE_INJ_BUSY bit and in resetting HAL_ADC_STATE_INJ_EOC bit */ |
| tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); |
| if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| |
| } |
| #else |
| if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| |
| /* Start ADC group regular conversion */ |
| LL_ADC_REG_StartConversion(hadc->Instance); |
| #endif |
| } |
| else |
| { |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| } |
| } |
| else |
| { |
| tmp_hal_status = HAL_BUSY; |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Stop ADC conversion of regular group (and injected channels in |
| * case of auto_injection mode), disable ADC peripheral. |
| * @note: ADC peripheral disable is forcing stop of potential |
| * conversion on injected group. If injected group is under use, it |
| * should be preliminarily stopped using HAL_ADCEx_InjectedStop function. |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* 1. Stop potential conversion on going, on ADC groups regular and injected */ |
| tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); |
| |
| /* Disable ADC peripheral if conversions are effectively stopped */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* 2. Disable the ADC peripheral */ |
| tmp_hal_status = ADC_Disable(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Wait for regular group conversion to be completed. |
| * @note ADC conversion flags EOS (end of sequence) and EOC (end of |
| * conversion) are cleared by this function, with an exception: |
| * if low power feature "LowPowerAutoWait" is enabled, flags are |
| * not cleared to not interfere with this feature until data register |
| * is read using function HAL_ADC_GetValue(). |
| * @note This function cannot be used in a particular setup: ADC configured |
| * in DMA mode and polling for end of each conversion (ADC init |
| * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). |
| * In this case, DMA resets the flag EOC and polling cannot be |
| * performed on each conversion. Nevertheless, polling can still |
| * be performed on the complete sequence (ADC init |
| * parameter "EOCSelection" set to ADC_EOC_SEQ_CONV). |
| * @param hadc ADC handle |
| * @param Timeout Timeout value in millisecond. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout) |
| { |
| uint32_t tickstart; |
| uint32_t tmp_Flag_End; |
| uint32_t tmp_cfgr; |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| const ADC_TypeDef *tmpADC_Master; |
| uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); |
| #endif |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* If end of conversion selected to end of sequence conversions */ |
| if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV) |
| { |
| tmp_Flag_End = ADC_FLAG_EOS; |
| } |
| /* If end of conversion selected to end of unitary conversion */ |
| else /* ADC_EOC_SINGLE_CONV */ |
| { |
| /* Verification that ADC configuration is compliant with polling for */ |
| /* each conversion: */ |
| /* Particular case is ADC configured in DMA mode and ADC sequencer with */ |
| /* several ranks and polling for end of each conversion. */ |
| /* For code simplicity sake, this particular case is generalized to */ |
| /* ADC configured in DMA mode and and polling for end of each conversion. */ |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) |
| ) |
| { |
| /* Check ADC DMA mode in independent mode on ADC group regular */ |
| if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN) != 0UL) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| return HAL_ERROR; |
| } |
| else |
| { |
| tmp_Flag_End = (ADC_FLAG_EOC); |
| } |
| } |
| else |
| { |
| /* Check ADC DMA mode in multimode on ADC group regular */ |
| if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| return HAL_ERROR; |
| } |
| else |
| { |
| tmp_Flag_End = (ADC_FLAG_EOC); |
| } |
| } |
| #else |
| /* Check ADC DMA mode */ |
| if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN) != 0UL) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| return HAL_ERROR; |
| } |
| else |
| { |
| tmp_Flag_End = (ADC_FLAG_EOC); |
| } |
| #endif |
| } |
| |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait until End of unitary conversion or sequence conversions flag is raised */ |
| while ((hadc->Instance->ISR & tmp_Flag_End) == 0UL) |
| { |
| /* Check if timeout is disabled (set to infinite wait) */ |
| if (Timeout != HAL_MAX_DELAY) |
| { |
| if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) |
| { |
| /* Update ADC state machine to timeout */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Update ADC state machine */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going. */ |
| if ((LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) |
| && (hadc->Init.ContinuousConvMode == DISABLE) |
| ) |
| { |
| /* Check whether end of sequence is reached */ |
| if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) |
| { |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); |
| |
| if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| } |
| |
| /* Get relevant register CFGR in ADC instance of ADC master or slave */ |
| /* in function of multimode state (for devices with multimode */ |
| /* available). */ |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) |
| || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) |
| ) |
| { |
| /* Retrieve handle ADC CFGR register */ |
| tmp_cfgr = READ_REG(hadc->Instance->CFGR); |
| } |
| else |
| { |
| /* Retrieve Master ADC CFGR register */ |
| tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); |
| tmp_cfgr = READ_REG(tmpADC_Master->CFGR); |
| } |
| #else |
| /* Retrieve handle ADC CFGR register */ |
| tmp_cfgr = READ_REG(hadc->Instance->CFGR); |
| #endif |
| |
| /* Clear polled flag */ |
| if (tmp_Flag_End == ADC_FLAG_EOS) |
| { |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOS); |
| } |
| else |
| { |
| /* Clear end of conversion EOC flag of regular group if low power feature */ |
| /* "LowPowerAutoWait " is disabled, to not interfere with this feature */ |
| /* until data register is read using function HAL_ADC_GetValue(). */ |
| if (READ_BIT(tmp_cfgr, ADC_CFGR_AUTDLY) == 0UL) |
| { |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); |
| } |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Poll for ADC event. |
| * @param hadc ADC handle |
| * @param EventType the ADC event type. |
| * This parameter can be one of the following values: |
| * @arg @ref ADC_EOSMP_EVENT ADC End of Sampling event |
| * @arg @ref ADC_AWD1_EVENT ADC Analog watchdog 1 event (main analog watchdog, present on all STM32 devices) |
| * @arg @ref ADC_AWD2_EVENT ADC Analog watchdog 2 event (additional analog watchdog, not present on all STM32 families) |
| * @arg @ref ADC_AWD3_EVENT ADC Analog watchdog 3 event (additional analog watchdog, not present on all STM32 families) |
| * @arg @ref ADC_OVR_EVENT ADC Overrun event |
| * @arg @ref ADC_JQOVF_EVENT ADC Injected context queue overflow event |
| * @param Timeout Timeout value in millisecond. |
| * @note The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR. |
| * Indeed, the latter is reset only if hadc->Init.Overrun field is set |
| * to ADC_OVR_DATA_OVERWRITTEN. Otherwise, data register may be potentially overwritten |
| * by a new converted data as soon as OVR is cleared. |
| * To reset OVR flag once the preserved data is retrieved, the user can resort |
| * to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout) |
| { |
| uint32_t tickstart; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_EVENT_TYPE(EventType)); |
| |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| /* Check selected event flag */ |
| while (__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL) |
| { |
| /* Check if timeout is disabled (set to infinite wait) */ |
| if (Timeout != HAL_MAX_DELAY) |
| { |
| if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) |
| { |
| /* Update ADC state machine to timeout */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| switch (EventType) |
| { |
| /* End Of Sampling event */ |
| case ADC_EOSMP_EVENT: |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP); |
| |
| /* Clear the End Of Sampling flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP); |
| |
| break; |
| |
| /* Analog watchdog (level out of window) event */ |
| /* Note: In case of several analog watchdog enabled, if needed to know */ |
| /* which one triggered and on which ADCx, test ADC state of analog watchdog */ |
| /* flags HAL_ADC_STATE_AWD1/2/3 using function "HAL_ADC_GetState()". */ |
| /* For example: */ |
| /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " */ |
| /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD2) != 0UL) " */ |
| /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD3) != 0UL) " */ |
| |
| /* Check analog watchdog 1 flag */ |
| case ADC_AWD_EVENT: |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); |
| |
| /* Clear ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1); |
| |
| break; |
| |
| /* Check analog watchdog 2 flag */ |
| case ADC_AWD2_EVENT: |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD2); |
| |
| /* Clear ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2); |
| |
| break; |
| |
| /* Check analog watchdog 3 flag */ |
| case ADC_AWD3_EVENT: |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD3); |
| |
| /* Clear ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3); |
| |
| break; |
| |
| /* Injected context queue overflow event */ |
| case ADC_JQOVF_EVENT: |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF); |
| |
| /* Set ADC error code to Injected context queue overflow */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF); |
| |
| /* Clear ADC Injected context queue overflow flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF); |
| |
| break; |
| |
| /* Overrun event */ |
| default: /* Case ADC_OVR_EVENT */ |
| /* If overrun is set to overwrite previous data, overrun event is not */ |
| /* considered as an error. */ |
| /* (cf ref manual "Managing conversions without using the DMA and without */ |
| /* overrun ") */ |
| if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); |
| |
| /* Set ADC error code to overrun */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); |
| } |
| else |
| { |
| /* Clear ADC Overrun flag only if Overrun is set to ADC_OVR_DATA_OVERWRITTEN |
| otherwise, data register is potentially overwritten by new converted data as soon |
| as OVR is cleared. */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); |
| } |
| break; |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Enable ADC, start conversion of regular group with interruption. |
| * @note Interruptions enabled in this function according to initialization |
| * setting : EOC (end of conversion), EOS (end of sequence), |
| * OVR overrun. |
| * Each of these interruptions has its dedicated callback function. |
| * @note Case of multimode enabled (when multimode feature is available): |
| * HAL_ADC_Start_IT() must be called for ADC Slave first, then for |
| * ADC Master. |
| * For ADC Slave, ADC is enabled only (conversion is not started). |
| * For ADC Master, ADC is enabled and multimode conversion is started. |
| * @note To guarantee a proper reset of all interruptions once all the needed |
| * conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure |
| * a correct stop of the IT-based conversions. |
| * @note By default, HAL_ADC_Start_IT() does not enable the End Of Sampling |
| * interruption. If required (e.g. in case of oversampling with trigger |
| * mode), the user must: |
| * 1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP) |
| * 2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP) |
| * before calling HAL_ADC_Start_IT(). |
| * @param hadc ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status; |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| const ADC_TypeDef *tmpADC_Master; |
| uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); |
| #endif |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Perform ADC enable and conversion start if no conversion is on going */ |
| if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) |
| { |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable the ADC peripheral */ |
| tmp_hal_status = ADC_Enable(hadc); |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit |
| - if ADC instance is master or if multimode feature is not available |
| - if multimode setting is disabled (ADC instance slave in independent mode) */ |
| if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) |
| || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) |
| ) |
| { |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| } |
| #endif |
| |
| /* Set ADC error code */ |
| /* Check if a conversion is on going on ADC group injected */ |
| if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL) |
| { |
| /* Reset ADC error code fields related to regular conversions only */ |
| CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); |
| } |
| else |
| { |
| /* Reset all ADC error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| } |
| |
| /* Clear ADC group regular conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Disable all interruptions before enabling the desired ones */ |
| __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); |
| |
| /* Enable ADC end of conversion interrupt */ |
| switch (hadc->Init.EOCSelection) |
| { |
| case ADC_EOC_SEQ_CONV: |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOS); |
| break; |
| /* case ADC_EOC_SINGLE_CONV */ |
| default: |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC); |
| break; |
| } |
| |
| /* Enable ADC overrun interrupt */ |
| /* If hadc->Init.Overrun is set to ADC_OVR_DATA_PRESERVED, only then is |
| ADC_IT_OVR enabled; otherwise data overwrite is considered as normal |
| behavior and no CPU time is lost for a non-processed interruption */ |
| if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) |
| { |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); |
| } |
| |
| /* Enable conversion of regular group. */ |
| /* If software start has been selected, conversion starts immediately. */ |
| /* If external trigger has been selected, conversion will start at next */ |
| /* trigger event. */ |
| /* Case of multimode enabled (when multimode feature is available): */ |
| /* - if ADC is slave and dual regular conversions are enabled, ADC is */ |
| /* enabled only (conversion is not started), */ |
| /* - if ADC is master, ADC is enabled and conversion is started. */ |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) |
| || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) |
| ) |
| { |
| /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */ |
| if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| |
| /* Enable as well injected interruptions in case |
| HAL_ADCEx_InjectedStart_IT() has not been called beforehand. This |
| allows to start regular and injected conversions when JAUTO is |
| set with a single call to HAL_ADC_Start_IT() */ |
| switch (hadc->Init.EOCSelection) |
| { |
| case ADC_EOC_SEQ_CONV: |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS); |
| break; |
| /* case ADC_EOC_SINGLE_CONV */ |
| default: |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS); |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC); |
| break; |
| } |
| } |
| |
| /* Start ADC group regular conversion */ |
| LL_ADC_REG_StartConversion(hadc->Instance); |
| } |
| else |
| { |
| /* ADC instance is a multimode slave instance with multimode regular conversions enabled */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| /* if Master ADC JAUTO bit is set, Slave injected interruptions |
| are enabled nevertheless (for same reason as above) */ |
| tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); |
| if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL) |
| { |
| /* First, update Slave State in setting HAL_ADC_STATE_INJ_BUSY bit |
| and in resetting HAL_ADC_STATE_INJ_EOC bit */ |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| /* Next, set Slave injected interruptions */ |
| switch (hadc->Init.EOCSelection) |
| { |
| case ADC_EOC_SEQ_CONV: |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS); |
| break; |
| /* case ADC_EOC_SINGLE_CONV */ |
| default: |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS); |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC); |
| break; |
| } |
| } |
| } |
| #else |
| /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */ |
| if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| |
| /* Enable as well injected interruptions in case |
| HAL_ADCEx_InjectedStart_IT() has not been called beforehand. This |
| allows to start regular and injected conversions when JAUTO is |
| set with a single call to HAL_ADC_Start_IT() */ |
| switch (hadc->Init.EOCSelection) |
| { |
| case ADC_EOC_SEQ_CONV: |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS); |
| break; |
| /* case ADC_EOC_SINGLE_CONV */ |
| default: |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS); |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC); |
| break; |
| } |
| } |
| |
| /* Start ADC group regular conversion */ |
| LL_ADC_REG_StartConversion(hadc->Instance); |
| #endif |
| } |
| else |
| { |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| } |
| |
| } |
| else |
| { |
| tmp_hal_status = HAL_BUSY; |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Stop ADC conversion of regular group (and injected group in |
| * case of auto_injection mode), disable interrution of |
| * end-of-conversion, disable ADC peripheral. |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* 1. Stop potential conversion on going, on ADC groups regular and injected */ |
| tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); |
| |
| /* Disable ADC peripheral if conversions are effectively stopped */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Disable ADC end of conversion interrupt for regular group */ |
| /* Disable ADC overrun interrupt */ |
| __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); |
| |
| /* 2. Disable the ADC peripheral */ |
| tmp_hal_status = ADC_Disable(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Enable ADC, start conversion of regular group and transfer result through DMA. |
| * @note Interruptions enabled in this function: |
| * overrun (if applicable), DMA half transfer, DMA transfer complete. |
| * Each of these interruptions has its dedicated callback function. |
| * @note Case of multimode enabled (when multimode feature is available): HAL_ADC_Start_DMA() |
| * is designed for single-ADC mode only. For multimode, the dedicated |
| * HAL_ADCEx_MultiModeStart_DMA() function must be used. |
| * @param hadc ADC handle |
| * @param pData Destination Buffer address. |
| * @param Length Number of data to be transferred from ADC peripheral to memory |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length) |
| { |
| HAL_StatusTypeDef tmp_hal_status; |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); |
| #endif |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Perform ADC enable and conversion start if no conversion is on going */ |
| if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) |
| { |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| /* Ensure that multimode regular conversions are not enabled. */ |
| /* Otherwise, dedicated API HAL_ADCEx_MultiModeStart_DMA() must be used. */ |
| if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) |
| ) |
| #endif |
| { |
| /* Enable the ADC peripheral */ |
| tmp_hal_status = ADC_Enable(hadc); |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit |
| - if ADC instance is master or if multimode feature is not available |
| - if multimode setting is disabled (ADC instance slave in independent mode) */ |
| if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) |
| || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) |
| ) |
| { |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| } |
| #endif |
| |
| /* Check if a conversion is on going on ADC group injected */ |
| if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL) |
| { |
| /* Reset ADC error code fields related to regular conversions only */ |
| CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); |
| } |
| else |
| { |
| /* Reset all ADC error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| } |
| |
| /* Set the DMA transfer complete callback */ |
| hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; |
| |
| /* Set the DMA half transfer complete callback */ |
| hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; |
| |
| /* Set the DMA error callback */ |
| hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; |
| |
| |
| /* Manage ADC and DMA start: ADC overrun interruption, DMA start, */ |
| /* ADC start (in case of SW start): */ |
| |
| /* Clear regular group conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC */ |
| /* operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* With DMA, overrun event is always considered as an error even if |
| hadc->Init.Overrun is set to ADC_OVR_DATA_OVERWRITTEN. Therefore, |
| ADC_IT_OVR is enabled. */ |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); |
| |
| /* Enable ADC DMA mode */ |
| SET_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN); |
| |
| /* Start the DMA channel */ |
| tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); |
| |
| /* Enable conversion of regular group. */ |
| /* If software start has been selected, conversion starts immediately. */ |
| /* If external trigger has been selected, conversion will start at next */ |
| /* trigger event. */ |
| /* Start ADC group regular conversion */ |
| LL_ADC_REG_StartConversion(hadc->Instance); |
| } |
| else |
| { |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| } |
| |
| } |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| else |
| { |
| tmp_hal_status = HAL_ERROR; |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| } |
| #endif |
| } |
| else |
| { |
| tmp_hal_status = HAL_BUSY; |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Stop ADC conversion of regular group (and injected group in |
| * case of auto_injection mode), disable ADC DMA transfer, disable |
| * ADC peripheral. |
| * @note: ADC peripheral disable is forcing stop of potential |
| * conversion on ADC group injected. If ADC group injected is under use, it |
| * should be preliminarily stopped using HAL_ADCEx_InjectedStop function. |
| * @note Case of multimode enabled (when multimode feature is available): |
| * HAL_ADC_Stop_DMA() function is dedicated to single-ADC mode only. |
| * For multimode, the dedicated HAL_ADCEx_MultiModeStop_DMA() API must be used. |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* 1. Stop potential ADC group regular conversion on going */ |
| tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); |
| |
| /* Disable ADC peripheral if conversions are effectively stopped */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Disable ADC DMA (ADC DMA configuration of continous requests is kept) */ |
| CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN); |
| |
| /* Disable the DMA channel (in case of DMA in circular mode or stop */ |
| /* while DMA transfer is on going) */ |
| if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY) |
| { |
| tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); |
| |
| /* Check if DMA channel effectively disabled */ |
| if (tmp_hal_status != HAL_OK) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); |
| } |
| } |
| |
| /* Disable ADC overrun interrupt */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); |
| |
| /* 2. Disable the ADC peripheral */ |
| /* Update "tmp_hal_status" only if DMA channel disabling passed, */ |
| /* to keep in memory a potential failing status. */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| tmp_hal_status = ADC_Disable(hadc); |
| } |
| else |
| { |
| (void)ADC_Disable(hadc); |
| } |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Get ADC regular group conversion result. |
| * @note Reading register DR automatically clears ADC flag EOC |
| * (ADC group regular end of unitary conversion). |
| * @note This function does not clear ADC flag EOS |
| * (ADC group regular end of sequence conversion). |
| * Occurrence of flag EOS rising: |
| * - If sequencer is composed of 1 rank, flag EOS is equivalent |
| * to flag EOC. |
| * - If sequencer is composed of several ranks, during the scan |
| * sequence flag EOC only is raised, at the end of the scan sequence |
| * both flags EOC and EOS are raised. |
| * To clear this flag, either use function: |
| * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming |
| * model polling: @ref HAL_ADC_PollForConversion() |
| * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS). |
| * @param hadc ADC handle |
| * @retval ADC group regular conversion data |
| */ |
| uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Note: EOC flag is not cleared here by software because automatically */ |
| /* cleared by hardware when reading register DR. */ |
| |
| /* Return ADC converted value */ |
| return hadc->Instance->DR; |
| } |
| |
| /** |
| * @brief Start ADC conversion sampling phase of regular group |
| * @note: This function should only be called to start sampling when |
| * - @ref ADC_SAMPLING_MODE_TRIGGER_CONTROLED sampling |
| * mode has been selected |
| * - @ref ADC_SOFTWARE_START has been selected as trigger source |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_StartSampling(ADC_HandleTypeDef *hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Start sampling */ |
| SET_BIT(hadc->Instance->CFGR2, ADC_CFGR2_SWTRIG); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stop ADC conversion sampling phase of regular group and start conversion |
| * @note: This function should only be called to stop sampling when |
| * - @ref ADC_SAMPLING_MODE_TRIGGER_CONTROLED sampling |
| * mode has been selected |
| * - @ref ADC_SOFTWARE_START has been selected as trigger source |
| * - after sampling has been started using @ref HAL_ADC_StartSampling. |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_StopSampling(ADC_HandleTypeDef *hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Start sampling */ |
| CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_SWTRIG); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Handle ADC interrupt request. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc) |
| { |
| uint32_t overrun_error = 0UL; /* flag set if overrun occurrence has to be considered as an error */ |
| uint32_t tmp_isr = hadc->Instance->ISR; |
| uint32_t tmp_ier = hadc->Instance->IER; |
| uint32_t tmp_adc_inj_is_trigger_source_sw_start; |
| uint32_t tmp_adc_reg_is_trigger_source_sw_start; |
| uint32_t tmp_cfgr; |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| const ADC_TypeDef *tmpADC_Master; |
| uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); |
| #endif |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); |
| |
| /* ========== Check End of Sampling flag for ADC group regular ========== */ |
| if (((tmp_isr & ADC_FLAG_EOSMP) == ADC_FLAG_EOSMP) && ((tmp_ier & ADC_IT_EOSMP) == ADC_IT_EOSMP)) |
| { |
| /* Update state machine on end of sampling status if not in error state */ |
| if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP); |
| } |
| |
| /* End Of Sampling callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->EndOfSamplingCallback(hadc); |
| #else |
| HAL_ADCEx_EndOfSamplingCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear regular group conversion flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP); |
| } |
| |
| /* ====== Check ADC group regular end of unitary conversion sequence conversions ===== */ |
| if ((((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) || |
| (((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS))) |
| { |
| /* Update state machine on conversion status if not in error state */ |
| if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| } |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going */ |
| /* to disable interruption. */ |
| if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) |
| { |
| /* Get relevant register CFGR in ADC instance of ADC master or slave */ |
| /* in function of multimode state (for devices with multimode */ |
| /* available). */ |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) |
| || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) |
| ) |
| { |
| /* check CONT bit directly in handle ADC CFGR register */ |
| tmp_cfgr = READ_REG(hadc->Instance->CFGR); |
| } |
| else |
| { |
| /* else need to check Master ADC CONT bit */ |
| tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); |
| tmp_cfgr = READ_REG(tmpADC_Master->CFGR); |
| } |
| #else |
| tmp_cfgr = READ_REG(hadc->Instance->CFGR); |
| #endif |
| |
| /* Carry on if continuous mode is disabled */ |
| if (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) != ADC_CFGR_CONT) |
| { |
| /* If End of Sequence is reached, disable interrupts */ |
| if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) |
| { |
| /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ |
| /* ADSTART==0 (no conversion on going) */ |
| if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) |
| { |
| /* Disable ADC end of sequence conversion interrupt */ |
| /* Note: Overrun interrupt was enabled with EOC interrupt in */ |
| /* HAL_Start_IT(), but is not disabled here because can be used */ |
| /* by overrun IRQ process below. */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); |
| |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); |
| |
| if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| else |
| { |
| /* Change ADC state to error state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| } |
| } |
| } |
| } |
| |
| /* Conversion complete callback */ |
| /* Note: Into callback function "HAL_ADC_ConvCpltCallback()", */ |
| /* to determine if conversion has been triggered from EOC or EOS, */ |
| /* possibility to use: */ |
| /* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ConvCpltCallback(hadc); |
| #else |
| HAL_ADC_ConvCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear regular group conversion flag */ |
| /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */ |
| /* conversion flags clear induces the release of the preserved data.*/ |
| /* Therefore, if the preserved data value is needed, it must be */ |
| /* read preliminarily into HAL_ADC_ConvCpltCallback(). */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); |
| } |
| |
| /* ====== Check ADC group injected end of unitary conversion sequence conversions ===== */ |
| if ((((tmp_isr & ADC_FLAG_JEOC) == ADC_FLAG_JEOC) && ((tmp_ier & ADC_IT_JEOC) == ADC_IT_JEOC)) || |
| (((tmp_isr & ADC_FLAG_JEOS) == ADC_FLAG_JEOS) && ((tmp_ier & ADC_IT_JEOS) == ADC_IT_JEOS))) |
| { |
| /* Update state machine on conversion status if not in error state */ |
| if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC); |
| } |
| |
| /* Retrieve ADC configuration */ |
| tmp_adc_inj_is_trigger_source_sw_start = LL_ADC_INJ_IsTriggerSourceSWStart(hadc->Instance); |
| tmp_adc_reg_is_trigger_source_sw_start = LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance); |
| /* Get relevant register CFGR in ADC instance of ADC master or slave */ |
| /* in function of multimode state (for devices with multimode */ |
| /* available). */ |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) |
| || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT) |
| || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL) |
| ) |
| { |
| tmp_cfgr = READ_REG(hadc->Instance->CFGR); |
| } |
| else |
| { |
| tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); |
| tmp_cfgr = READ_REG(tmpADC_Master->CFGR); |
| } |
| #else |
| tmp_cfgr = READ_REG(hadc->Instance->CFGR); |
| #endif |
| |
| /* Disable interruption if no further conversion upcoming by injected */ |
| /* external trigger or by automatic injected conversion with regular */ |
| /* group having no further conversion upcoming (same conditions as */ |
| /* regular group interruption disabling above), */ |
| /* and if injected scan sequence is completed. */ |
| if ((tmp_adc_inj_is_trigger_source_sw_start != 0UL) || |
| ((READ_BIT(tmp_cfgr, ADC_CFGR_JAUTO) == 0UL) && |
| ((tmp_adc_reg_is_trigger_source_sw_start != 0UL) && |
| (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) == 0UL)))) |
| { |
| /* If End of Sequence is reached, disable interrupts */ |
| if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS)) |
| { |
| /* Particular case if injected contexts queue is enabled: */ |
| /* when the last context has been fully processed, JSQR is reset */ |
| /* by the hardware. Even if no injected conversion is planned to come */ |
| /* (queue empty, triggers are ignored), it can start again */ |
| /* immediately after setting a new context (JADSTART is still set). */ |
| /* Therefore, state of HAL ADC injected group is kept to busy. */ |
| if (READ_BIT(tmp_cfgr, ADC_CFGR_JQM) == 0UL) |
| { |
| /* Allowed to modify bits ADC_IT_JEOC/ADC_IT_JEOS only if bit */ |
| /* JADSTART==0 (no conversion on going) */ |
| if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL) |
| { |
| /* Disable ADC end of sequence conversion interrupt */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC | ADC_IT_JEOS); |
| |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); |
| |
| if ((hadc->State & HAL_ADC_STATE_REG_BUSY) == 0UL) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| } |
| } |
| } |
| } |
| |
| /* Injected Conversion complete callback */ |
| /* Note: HAL_ADCEx_InjectedConvCpltCallback can resort to |
| if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOS)) or |
| if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOC)) to determine whether |
| interruption has been triggered by end of conversion or end of |
| sequence. */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->InjectedConvCpltCallback(hadc); |
| #else |
| HAL_ADCEx_InjectedConvCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear injected group conversion flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC | ADC_FLAG_JEOS); |
| } |
| |
| /* ========== Check Analog watchdog 1 flag ========== */ |
| if (((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); |
| |
| /* Level out of window 1 callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->LevelOutOfWindowCallback(hadc); |
| #else |
| HAL_ADC_LevelOutOfWindowCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1); |
| } |
| |
| /* ========== Check analog watchdog 2 flag ========== */ |
| if (((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD2); |
| |
| /* Level out of window 2 callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->LevelOutOfWindow2Callback(hadc); |
| #else |
| HAL_ADCEx_LevelOutOfWindow2Callback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2); |
| } |
| |
| /* ========== Check analog watchdog 3 flag ========== */ |
| if (((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD3); |
| |
| /* Level out of window 3 callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->LevelOutOfWindow3Callback(hadc); |
| #else |
| HAL_ADCEx_LevelOutOfWindow3Callback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3); |
| } |
| |
| /* ========== Check Overrun flag ========== */ |
| if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR)) |
| { |
| /* If overrun is set to overwrite previous data (default setting), */ |
| /* overrun event is not considered as an error. */ |
| /* (cf ref manual "Managing conversions without using the DMA and without */ |
| /* overrun ") */ |
| /* Exception for usage with DMA overrun event always considered as an */ |
| /* error. */ |
| if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) |
| { |
| overrun_error = 1UL; |
| } |
| else |
| { |
| /* Check DMA configuration */ |
| #if defined(ADC_MULTIMODE_SUPPORT) |
| if (tmp_multimode_config != LL_ADC_MULTI_INDEPENDENT) |
| { |
| /* Multimode (when feature is available) is enabled, |
| Common Control Register MDMA bits must be checked. */ |
| if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC) |
| { |
| overrun_error = 1UL; |
| } |
| } |
| else |
| #endif |
| { |
| /* Multimode not set or feature not available or ADC independent */ |
| if ((hadc->Instance->CFGR & ADC_CFGR_DMAEN) != 0UL) |
| { |
| overrun_error = 1UL; |
| } |
| } |
| } |
| |
| if (overrun_error == 1UL) |
| { |
| /* Change ADC state to error state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); |
| |
| /* Set ADC error code to overrun */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); |
| |
| /* Error callback */ |
| /* Note: In case of overrun, ADC conversion data is preserved until */ |
| /* flag OVR is reset. */ |
| /* Therefore, old ADC conversion data can be retrieved in */ |
| /* function "HAL_ADC_ErrorCallback()". */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ErrorCallback(hadc); |
| #else |
| HAL_ADC_ErrorCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| /* Clear ADC overrun flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); |
| } |
| |
| /* ========== Check Injected context queue overflow flag ========== */ |
| if (((tmp_isr & ADC_FLAG_JQOVF) == ADC_FLAG_JQOVF) && ((tmp_ier & ADC_IT_JQOVF) == ADC_IT_JQOVF)) |
| { |
| /* Change ADC state to overrun state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF); |
| |
| /* Set ADC error code to Injected context queue overflow */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF); |
| |
| /* Clear the Injected context queue overflow flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF); |
| |
| /* Injected context queue overflow callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->InjectedQueueOverflowCallback(hadc); |
| #else |
| HAL_ADCEx_InjectedQueueOverflowCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| } |
| |
| /** |
| * @brief Conversion complete callback in non-blocking mode. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_ConvCpltCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief Conversion DMA half-transfer callback in non-blocking mode. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief Analog watchdog 1 callback in non-blocking mode. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief ADC error callback in non-blocking mode |
| * (ADC conversion with interruption or transfer by DMA). |
| * @note In case of error due to overrun when using ADC with DMA transfer |
| * (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"): |
| * - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()". |
| * - If needed, restart a new ADC conversion using function |
| * "HAL_ADC_Start_DMA()" |
| * (this function is also clearing overrun flag) |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_ErrorCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions |
| * @brief Peripheral Control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Configure channels on regular group |
| (+) Configure the analog watchdog |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Configure a channel to be assigned to ADC group regular. |
| * @note In case of usage of internal measurement channels: |
| * Vbat/VrefInt/TempSensor. |
| * These internal paths can be disabled using function |
| * HAL_ADC_DeInit(). |
| * @note Possibility to update parameters on the fly: |
| * This function initializes channel into ADC group regular, |
| * following calls to this function can be used to reconfigure |
| * some parameters of structure "ADC_ChannelConfTypeDef" on the fly, |
| * without resetting the ADC. |
| * The setting of these parameters is conditioned to ADC state: |
| * Refer to comments of structure "ADC_ChannelConfTypeDef". |
| * @param hadc ADC handle |
| * @param sConfig Structure of ADC channel assigned to ADC group regular. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, ADC_ChannelConfTypeDef *sConfig) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| uint32_t tmpOffsetShifted; |
| uint32_t tmp_config_internal_channel; |
| __IO uint32_t wait_loop_index = 0; |
| uint32_t tmp_adc_is_conversion_on_going_regular; |
| uint32_t tmp_adc_is_conversion_on_going_injected; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank)); |
| assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime)); |
| assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfig->SingleDiff)); |
| assert_param(IS_ADC_OFFSET_NUMBER(sConfig->OffsetNumber)); |
| assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset)); |
| |
| /* if ROVSE is set, the value of the OFFSETy_EN bit in ADCx_OFRy register is |
| ignored (considered as reset) */ |
| assert_param(!((sConfig->OffsetNumber != ADC_OFFSET_NONE) && (hadc->Init.OversamplingMode == ENABLE))); |
| |
| /* Verification of channel number */ |
| if (sConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED) |
| { |
| assert_param(IS_ADC_CHANNEL(hadc, sConfig->Channel)); |
| } |
| else |
| { |
| assert_param(IS_ADC_DIFF_CHANNEL(hadc, sConfig->Channel)); |
| } |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Parameters update conditioned to ADC state: */ |
| /* Parameters that can be updated when ADC is disabled or enabled without */ |
| /* conversion on going on regular group: */ |
| /* - Channel number */ |
| /* - Channel rank */ |
| if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) |
| { |
| /* Set ADC group regular sequence: channel on the selected scan sequence rank */ |
| LL_ADC_REG_SetSequencerRanks(hadc->Instance, sConfig->Rank, sConfig->Channel); |
| |
| /* Parameters update conditioned to ADC state: */ |
| /* Parameters that can be updated when ADC is disabled or enabled without */ |
| /* conversion on going on regular group: */ |
| /* - Channel sampling time */ |
| /* - Channel offset */ |
| tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); |
| tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); |
| if ((tmp_adc_is_conversion_on_going_regular == 0UL) |
| && (tmp_adc_is_conversion_on_going_injected == 0UL) |
| ) |
| { |
| /* Manage specific case of sampling time 3.5 cycles replacing 2.5 cyles */ |
| if (sConfig->SamplingTime == ADC_SAMPLETIME_3CYCLES_5) |
| { |
| /* Set sampling time of the selected ADC channel */ |
| LL_ADC_SetChannelSamplingTime(hadc->Instance, sConfig->Channel, LL_ADC_SAMPLINGTIME_2CYCLES_5); |
| |
| /* Set ADC sampling time common configuration */ |
| LL_ADC_SetSamplingTimeCommonConfig(hadc->Instance, LL_ADC_SAMPLINGTIME_COMMON_3C5_REPL_2C5); |
| } |
| else |
| { |
| /* Set sampling time of the selected ADC channel */ |
| LL_ADC_SetChannelSamplingTime(hadc->Instance, sConfig->Channel, sConfig->SamplingTime); |
| |
| /* Set ADC sampling time common configuration */ |
| LL_ADC_SetSamplingTimeCommonConfig(hadc->Instance, LL_ADC_SAMPLINGTIME_COMMON_DEFAULT); |
| } |
| |
| /* Configure the offset: offset enable/disable, channel, offset value */ |
| |
| /* Shift the offset with respect to the selected ADC resolution. */ |
| /* Offset has to be left-aligned on bit 11, the LSB (right bits) are set to 0 */ |
| tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, (uint32_t)sConfig->Offset); |
| |
| if (sConfig->OffsetNumber != ADC_OFFSET_NONE) |
| { |
| /* Set ADC selected offset number */ |
| LL_ADC_SetOffset(hadc->Instance, sConfig->OffsetNumber, sConfig->Channel, tmpOffsetShifted); |
| |
| assert_param(IS_ADC_OFFSET_SIGN(sConfig->OffsetSign)); |
| assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetSaturation)); |
| /* Set ADC selected offset sign & saturation */ |
| LL_ADC_SetOffsetSign(hadc->Instance, sConfig->OffsetNumber, sConfig->OffsetSign); |
| LL_ADC_SetOffsetSaturation(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetSaturation == ENABLE) ? LL_ADC_OFFSET_SATURATION_ENABLE : LL_ADC_OFFSET_SATURATION_DISABLE); |
| } |
| else |
| { |
| /* Scan each offset register to check if the selected channel is targeted. */ |
| /* If this is the case, the corresponding offset number is disabled. */ |
| if(__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_1)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel)) |
| { |
| LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_1, LL_ADC_OFFSET_DISABLE); |
| } |
| if(__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_2)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel)) |
| { |
| LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_2, LL_ADC_OFFSET_DISABLE); |
| } |
| if(__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_3)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel)) |
| { |
| LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_3, LL_ADC_OFFSET_DISABLE); |
| } |
| if(__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_4)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel)) |
| { |
| LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_4, LL_ADC_OFFSET_DISABLE); |
| } |
| } |
| } |
| |
| /* Parameters update conditioned to ADC state: */ |
| /* Parameters that can be updated only when ADC is disabled: */ |
| /* - Single or differential mode */ |
| if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) |
| { |
| /* Set mode single-ended or differential input of the selected ADC channel */ |
| LL_ADC_SetChannelSingleDiff(hadc->Instance, sConfig->Channel, sConfig->SingleDiff); |
| |
| /* Configuration of differential mode */ |
| if (sConfig->SingleDiff == ADC_DIFFERENTIAL_ENDED) |
| { |
| /* Set sampling time of the selected ADC channel */ |
| /* Note: ADC channel number masked with value "0x1F" to ensure shift value within 32 bits range */ |
| LL_ADC_SetChannelSamplingTime(hadc->Instance, |
| (uint32_t)(__LL_ADC_DECIMAL_NB_TO_CHANNEL((__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) + 1UL) & 0x1FUL)), |
| sConfig->SamplingTime); |
| } |
| |
| } |
| |
| /* Management of internal measurement channels: Vbat/VrefInt/TempSensor. */ |
| /* If internal channel selected, enable dedicated internal buffers and */ |
| /* paths. */ |
| /* Note: these internal measurement paths can be disabled using */ |
| /* HAL_ADC_DeInit(). */ |
| |
| if (__LL_ADC_IS_CHANNEL_INTERNAL(sConfig->Channel)) |
| { |
| tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); |
| |
| /* If the requested internal measurement path has already been enabled, */ |
| /* bypass the configuration processing. */ |
| if (((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR_ADC1) || (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR_ADC5)) |
| && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL)) |
| { |
| if (ADC_TEMPERATURE_SENSOR_INSTANCE(hadc)) |
| { |
| LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), |
| LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel); |
| |
| /* Delay for temperature sensor stabilization time */ |
| /* Wait loop initialization and execution */ |
| /* Note: Variable divided by 2 to compensate partially */ |
| /* CPU processing cycles, scaling in us split to not */ |
| /* exceed 32 bits register capacity and handle low frequency. */ |
| wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * (SystemCoreClock / (100000UL * 2UL))); |
| while (wait_loop_index != 0UL) |
| { |
| wait_loop_index--; |
| } |
| } |
| } |
| else if ((sConfig->Channel == ADC_CHANNEL_VBAT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL)) |
| { |
| if (ADC_BATTERY_VOLTAGE_INSTANCE(hadc)) |
| { |
| LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), |
| LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel); |
| } |
| } |
| else if ((sConfig->Channel == ADC_CHANNEL_VREFINT) |
| && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL)) |
| { |
| if (ADC_VREFINT_INSTANCE(hadc)) |
| { |
| LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), |
| LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel); |
| } |
| } |
| else |
| { |
| /* nothing to do */ |
| } |
| } |
| } |
| |
| /* If a conversion is on going on regular group, no update on regular */ |
| /* channel could be done on neither of the channel configuration structure */ |
| /* parameters. */ |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| tmp_hal_status = HAL_ERROR; |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Configure the analog watchdog. |
| * @note Possibility to update parameters on the fly: |
| * This function initializes the selected analog watchdog, successive |
| * calls to this function can be used to reconfigure some parameters |
| * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting |
| * the ADC. |
| * The setting of these parameters is conditioned to ADC state. |
| * For parameters constraints, see comments of structure |
| * "ADC_AnalogWDGConfTypeDef". |
| * @note On this STM32 serie, analog watchdog thresholds can be modified |
| * while ADC conversion is on going. |
| * In this case, some constraints must be taken into account: |
| * the programmed threshold values are effective from the next |
| * ADC EOC (end of unitary conversion). |
| * Considering that registers write delay may happen due to |
| * bus activity, this might cause an uncertainty on the |
| * effective timing of the new programmed threshold values. |
| * @param hadc ADC handle |
| * @param AnalogWDGConfig Structure of ADC analog watchdog configuration |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, ADC_AnalogWDGConfTypeDef *AnalogWDGConfig) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| uint32_t tmpAWDHighThresholdShifted; |
| uint32_t tmpAWDLowThresholdShifted; |
| uint32_t tmp_adc_is_conversion_on_going_regular; |
| uint32_t tmp_adc_is_conversion_on_going_injected; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(AnalogWDGConfig->WatchdogNumber)); |
| assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode)); |
| assert_param(IS_ADC_ANALOG_WATCHDOG_FILTERING_MODE(AnalogWDGConfig->FilteringConfig)); |
| assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); |
| |
| if ((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) || |
| (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC) || |
| (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC)) |
| { |
| assert_param(IS_ADC_CHANNEL(hadc, AnalogWDGConfig->Channel)); |
| } |
| |
| /* Verify thresholds range */ |
| if (hadc->Init.OversamplingMode == ENABLE) |
| { |
| /* Case of oversampling enabled: depending on ratio and shift configuration, |
| analog watchdog thresholds can be higher than ADC resolution. |
| Verify if thresholds are within maximum thresholds range. */ |
| assert_param(IS_ADC_RANGE(ADC_RESOLUTION_12B, AnalogWDGConfig->HighThreshold)); |
| assert_param(IS_ADC_RANGE(ADC_RESOLUTION_12B, AnalogWDGConfig->LowThreshold)); |
| } |
| else |
| { |
| /* Verify if thresholds are within the selected ADC resolution */ |
| assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold)); |
| assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold)); |
| } |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Parameters update conditioned to ADC state: */ |
| /* Parameters that can be updated when ADC is disabled or enabled without */ |
| /* conversion on going on ADC groups regular and injected: */ |
| /* - Analog watchdog channels */ |
| tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); |
| tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); |
| if ((tmp_adc_is_conversion_on_going_regular == 0UL) |
| && (tmp_adc_is_conversion_on_going_injected == 0UL) |
| ) |
| { |
| /* Analog watchdog configuration */ |
| if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1) |
| { |
| /* Configuration of analog watchdog: */ |
| /* - Set the analog watchdog enable mode: one or overall group of */ |
| /* channels, on groups regular and-or injected. */ |
| switch (AnalogWDGConfig->WatchdogMode) |
| { |
| case ADC_ANALOGWATCHDOG_SINGLE_REG: |
| LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel, |
| LL_ADC_GROUP_REGULAR)); |
| break; |
| |
| case ADC_ANALOGWATCHDOG_SINGLE_INJEC: |
| LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel, |
| LL_ADC_GROUP_INJECTED)); |
| break; |
| |
| case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC: |
| LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel, |
| LL_ADC_GROUP_REGULAR_INJECTED)); |
| break; |
| |
| case ADC_ANALOGWATCHDOG_ALL_REG: |
| LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG); |
| break; |
| |
| case ADC_ANALOGWATCHDOG_ALL_INJEC: |
| LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_INJ); |
| break; |
| |
| case ADC_ANALOGWATCHDOG_ALL_REGINJEC: |
| LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG_INJ); |
| break; |
| |
| default: /* ADC_ANALOGWATCHDOG_NONE */ |
| LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_DISABLE); |
| break; |
| } |
| |
| /* Set the filtering configuration */ |
| MODIFY_REG(hadc->Instance->TR1, |
| ADC_TR1_AWDFILT, |
| AnalogWDGConfig->FilteringConfig); |
| |
| /* Update state, clear previous result related to AWD1 */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD1); |
| |
| /* Clear flag ADC analog watchdog */ |
| /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ |
| /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ |
| /* (in case left enabled by previous ADC operations). */ |
| LL_ADC_ClearFlag_AWD1(hadc->Instance); |
| |
| /* Configure ADC analog watchdog interrupt */ |
| if (AnalogWDGConfig->ITMode == ENABLE) |
| { |
| LL_ADC_EnableIT_AWD1(hadc->Instance); |
| } |
| else |
| { |
| LL_ADC_DisableIT_AWD1(hadc->Instance); |
| } |
| } |
| /* Case of ADC_ANALOGWATCHDOG_2 or ADC_ANALOGWATCHDOG_3 */ |
| else |
| { |
| switch (AnalogWDGConfig->WatchdogMode) |
| { |
| case ADC_ANALOGWATCHDOG_SINGLE_REG: |
| case ADC_ANALOGWATCHDOG_SINGLE_INJEC: |
| case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC: |
| /* Update AWD by bitfield to keep the possibility to monitor */ |
| /* several channels by successive calls of this function. */ |
| if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) |
| { |
| SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL))); |
| } |
| else |
| { |
| SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL))); |
| } |
| break; |
| |
| case ADC_ANALOGWATCHDOG_ALL_REG: |
| case ADC_ANALOGWATCHDOG_ALL_INJEC: |
| case ADC_ANALOGWATCHDOG_ALL_REGINJEC: |
| LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_ALL_CHANNELS_REG_INJ); |
| break; |
| |
| default: /* ADC_ANALOGWATCHDOG_NONE */ |
| LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_DISABLE); |
| break; |
| } |
| |
| if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) |
| { |
| /* Update state, clear previous result related to AWD2 */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD2); |
| |
| /* Clear flag ADC analog watchdog */ |
| /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ |
| /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ |
| /* (in case left enabled by previous ADC operations). */ |
| LL_ADC_ClearFlag_AWD2(hadc->Instance); |
| |
| /* Configure ADC analog watchdog interrupt */ |
| if (AnalogWDGConfig->ITMode == ENABLE) |
| { |
| LL_ADC_EnableIT_AWD2(hadc->Instance); |
| } |
| else |
| { |
| LL_ADC_DisableIT_AWD2(hadc->Instance); |
| } |
| } |
| /* (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */ |
| else |
| { |
| /* Update state, clear previous result related to AWD3 */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD3); |
| |
| /* Clear flag ADC analog watchdog */ |
| /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ |
| /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ |
| /* (in case left enabled by previous ADC operations). */ |
| LL_ADC_ClearFlag_AWD3(hadc->Instance); |
| |
| /* Configure ADC analog watchdog interrupt */ |
| if (AnalogWDGConfig->ITMode == ENABLE) |
| { |
| LL_ADC_EnableIT_AWD3(hadc->Instance); |
| } |
| else |
| { |
| LL_ADC_DisableIT_AWD3(hadc->Instance); |
| } |
| } |
| } |
| |
| } |
| |
| /* Analog watchdog thresholds configuration */ |
| if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1) |
| { |
| /* Shift the offset with respect to the selected ADC resolution: */ |
| /* Thresholds have to be left-aligned on bit 11, the LSB (right bits) */ |
| /* are set to 0. */ |
| tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); |
| tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); |
| } |
| /* Case of ADC_ANALOGWATCHDOG_2 and ADC_ANALOGWATCHDOG_3 */ |
| else |
| { |
| /* Shift the offset with respect to the selected ADC resolution: */ |
| /* Thresholds have to be left-aligned on bit 7, the LSB (right bits) */ |
| /* are set to 0. */ |
| tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); |
| tmpAWDLowThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); |
| } |
| |
| /* Set ADC analog watchdog thresholds value of both thresholds high and low */ |
| LL_ADC_ConfigAnalogWDThresholds(hadc->Instance, AnalogWDGConfig->WatchdogNumber, tmpAWDHighThresholdShifted, |
| tmpAWDLowThresholdShifted); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions |
| * @brief ADC Peripheral State functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral state and errors functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides functions to get in run-time the status of the |
| peripheral. |
| (+) Check the ADC state |
| (+) Check the ADC error code |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Return the ADC handle state. |
| * @note ADC state machine is managed by bitfields, ADC status must be |
| * compared with states bits. |
| * For example: |
| * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_REG_BUSY) != 0UL) " |
| * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " |
| * @param hadc ADC handle |
| * @retval ADC handle state (bitfield on 32 bits) |
| */ |
| uint32_t HAL_ADC_GetState(ADC_HandleTypeDef *hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Return ADC handle state */ |
| return hadc->State; |
| } |
| |
| /** |
| * @brief Return the ADC error code. |
| * @param hadc ADC handle |
| * @retval ADC error code (bitfield on 32 bits) |
| */ |
| uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| return hadc->ErrorCode; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Private_Functions ADC Private Functions |
| * @{ |
| */ |
| |
| /** |
| * @brief Stop ADC conversion. |
| * @param hadc ADC handle |
| * @param ConversionGroup ADC group regular and/or injected. |
| * This parameter can be one of the following values: |
| * @arg @ref ADC_REGULAR_GROUP ADC regular conversion type. |
| * @arg @ref ADC_INJECTED_GROUP ADC injected conversion type. |
| * @arg @ref ADC_REGULAR_INJECTED_GROUP ADC regular and injected conversion type. |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc, uint32_t ConversionGroup) |
| { |
| uint32_t tickstart; |
| uint32_t Conversion_Timeout_CPU_cycles = 0UL; |
| uint32_t conversion_group_reassigned = ConversionGroup; |
| uint32_t tmp_ADC_CR_ADSTART_JADSTART; |
| uint32_t tmp_adc_is_conversion_on_going_regular; |
| uint32_t tmp_adc_is_conversion_on_going_injected; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_CONVERSION_GROUP(ConversionGroup)); |
| |
| /* Verification if ADC is not already stopped (on regular and injected */ |
| /* groups) to bypass this function if not needed. */ |
| tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); |
| tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); |
| if ((tmp_adc_is_conversion_on_going_regular != 0UL) |
| || (tmp_adc_is_conversion_on_going_injected != 0UL) |
| ) |
| { |
| /* Particular case of continuous auto-injection mode combined with */ |
| /* auto-delay mode. */ |
| /* In auto-injection mode, regular group stop ADC_CR_ADSTP is used (not */ |
| /* injected group stop ADC_CR_JADSTP). */ |
| /* Procedure to be followed: Wait until JEOS=1, clear JEOS, set ADSTP=1 */ |
| /* (see reference manual). */ |
| if (((hadc->Instance->CFGR & ADC_CFGR_JAUTO) != 0UL) |
| && (hadc->Init.ContinuousConvMode == ENABLE) |
| && (hadc->Init.LowPowerAutoWait == ENABLE) |
| ) |
| { |
| /* Use stop of regular group */ |
| conversion_group_reassigned = ADC_REGULAR_GROUP; |
| |
| /* Wait until JEOS=1 (maximum Timeout: 4 injected conversions) */ |
| while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS) == 0UL) |
| { |
| if (Conversion_Timeout_CPU_cycles >= (ADC_CONVERSION_TIME_MAX_CPU_CYCLES * 4UL)) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| return HAL_ERROR; |
| } |
| Conversion_Timeout_CPU_cycles ++; |
| } |
| |
| /* Clear JEOS */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOS); |
| } |
| |
| /* Stop potential conversion on going on ADC group regular */ |
| if (conversion_group_reassigned != ADC_INJECTED_GROUP) |
| { |
| /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */ |
| if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL) |
| { |
| if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL) |
| { |
| /* Stop ADC group regular conversion */ |
| LL_ADC_REG_StopConversion(hadc->Instance); |
| } |
| } |
| } |
| |
| /* Stop potential conversion on going on ADC group injected */ |
| if (conversion_group_reassigned != ADC_REGULAR_GROUP) |
| { |
| /* Software is allowed to set JADSTP only when JADSTART=1 and ADDIS=0 */ |
| if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL) |
| { |
| if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL) |
| { |
| /* Stop ADC group injected conversion */ |
| LL_ADC_INJ_StopConversion(hadc->Instance); |
| } |
| } |
| } |
| |
| /* Selection of start and stop bits with respect to the regular or injected group */ |
| switch (conversion_group_reassigned) |
| { |
| case ADC_REGULAR_INJECTED_GROUP: |
| tmp_ADC_CR_ADSTART_JADSTART = (ADC_CR_ADSTART | ADC_CR_JADSTART); |
| break; |
| case ADC_INJECTED_GROUP: |
| tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_JADSTART; |
| break; |
| /* Case ADC_REGULAR_GROUP only*/ |
| default: |
| tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_ADSTART; |
| break; |
| } |
| |
| /* Wait for conversion effectively stopped */ |
| tickstart = HAL_GetTick(); |
| |
| while ((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL) |
| { |
| if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| } |
| |
| /* Return HAL status */ |
| return HAL_OK; |
| |