blob: fd94150ca8822ffe1152400bdf88ae7dd821ae41 [file] [log] [blame]
/**
******************************************************************************
* @file stm32l1xx_hal_comp.c
* @author MCD Application Team
* @brief COMP HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the COMP peripheral:
* + Initialization and de-initialization functions
* + Peripheral Control functions
* + Peripheral State functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
================================================================================
##### COMP Peripheral features #####
================================================================================
[..]
The STM32L1xx device family integrates 2 analog comparators COMP1 and
COMP2:
(#) The non inverting input and inverting input can be set to GPIO pins.
HAL COMP driver configures the Routing Interface (RI) to connect the
selected I/O pins to comparator input.
Caution: Comparator COMP1 and ADC cannot be used at the same time as
ADC since they share the ADC switch matrix: COMP1 non-inverting
input is routed through ADC switch matrix. Except if ADC is intended
to measure voltage on COMP1 non-inverting input: it can be performed
on ADC channel VCOMP.
(#) The COMP output is available using HAL_COMP_GetOutputLevel().
(#) The COMP output can be redirected to embedded timers (TIM2, TIM3,
TIM4, TIM10).
COMP output cannot be redirected to any I/O pin.
(#) The comparators COMP1 and COMP2 can be combined in window mode.
In this mode, COMP2 non inverting input is used as common
non-inverting input.
(#) The 2 comparators have interrupt capability with wake-up
from Sleep and Stop modes (through the EXTI controller):
(++) COMP1 is internally connected to EXTI Line 21
(++) COMP2 is internally connected to EXTI Line 22
From the corresponding IRQ handler, the right interrupt source can be retrieved with the
macros __HAL_COMP_COMP1_EXTI_GET_FLAG() and __HAL_COMP_COMP2_EXTI_GET_FLAG().
(#) The comparators also offer the possibility to output the voltage
reference (VrefInt), used on inverting inputs, on I/O pin through
a buffer. To use it, refer to macro "__HAL_SYSCFG_VREFINT_OUT_ENABLE()".
##### How to use this driver #####
================================================================================
[..]
This driver provides functions to configure and program the Comparators of all STM32L1xx devices.
To use the comparator, perform the following steps:
(#) Initialize the COMP low level resources by implementing the HAL_COMP_MspInit().
(++) Configure the comparator input I/O pin using HAL_GPIO_Init():
- For all inputs: I/O pin in analog mode (Schmitt trigger disabled)
- Possible alternate configuration, for non-inverting inputs of comparator 2: I/O pin in floating mode (Schmitt trigger enabled).
It is recommended to use analog configuration to avoid any overconsumption around VDD/2.
(++) Enable COMP Peripheral clock using macro __HAL_RCC_COMP_CLK_ENABLE()
(++) If required enable the COMP interrupt (EXTI line Interrupt): enable
the comparator interrupt vector using HAL_NVIC_EnableIRQ(COMP_IRQn)
and HAL_NVIC_SetPriority(COMP_IRQn, xxx, xxx) functions.
(#) Configure the comparator using HAL_COMP_Init() function:
(++) Select the inverting input (COMP2 only)
(++) Select the non-inverting input
(++) Select the output redirection to timers (COMP2 only)
(++) Select the speed mode (COMP2 only)
(++) Select the window mode (related to COMP1 and COMP2, but selected
by COMP2 only)
(++) Select the pull-up/down resistors on non-inverting input (COMP1 only)
(#) Enable the comparator using HAL_COMP_Start() or HAL_COMP_Start_IT()
function
(#) If needed, use HAL_COMP_GetOutputLevel() or HAL_COMP_TriggerCallback()
functions to manage comparator actions (output level or events)
(#) Disable the comparator using HAL_COMP_Stop() or HAL_COMP_Stop_IT()
function
(#) De-initialize the comparator using HAL_COMP_DeInit() function
*** Callback registration ***
=============================================
[..]
The compilation flag USE_HAL_COMP_REGISTER_CALLBACKS, when set to 1,
allows the user to configure dynamically the driver callbacks.
Use Functions HAL_COMP_RegisterCallback()
to register an interrupt callback.
[..]
Function HAL_COMP_RegisterCallback() allows to register following callbacks:
(+) TriggerCallback : callback for COMP trigger.
(+) MspInitCallback : callback for Msp Init.
(+) MspDeInitCallback : callback for Msp DeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
[..]
Use function HAL_COMP_UnRegisterCallback to reset a callback to the default
weak function.
[..]
HAL_COMP_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) TriggerCallback : callback for COMP trigger.
(+) MspInitCallback : callback for Msp Init.
(+) MspDeInitCallback : callback for Msp DeInit.
[..]
By default, after the HAL_COMP_Init() and when the state is HAL_COMP_STATE_RESET
all callbacks are set to the corresponding weak functions:
example HAL_COMP_TriggerCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak functions in the HAL_COMP_Init()/ HAL_COMP_DeInit() only when
these callbacks are null (not registered beforehand).
[..]
If MspInit or MspDeInit are not null, the HAL_COMP_Init()/ HAL_COMP_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
[..]
Callbacks can be registered/unregistered in HAL_COMP_STATE_READY state only.
Exception done MspInit/MspDeInit functions that can be registered/unregistered
in HAL_COMP_STATE_READY or HAL_COMP_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
[..]
Then, the user first registers the MspInit/MspDeInit user callbacks
using HAL_COMP_RegisterCallback() before calling HAL_COMP_DeInit()
or HAL_COMP_Init() function.
[..]
When the compilation flag USE_HAL_COMP_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
*/
/*
Additional remark:
Table 1. COMP Inputs for the STM32L1xx devices
+----------------------------------------------------------------------+
| | | COMP1 | COMP2 |
|-----------------|--------------------------------|---------|---------|
| | 1/4 VREFINT | -- | OK |
| | 1/2 VREFINT | -- | OK |
| | 3/4 VREFINT | -- | OK |
| Inverting | VREFINT | OK | OK |
| input | DAC Ch1 OUT (PA4) | -- | OK |
| | DAC Ch2 OUT (PA5) | -- | OK |
| | IO: PB3 | -- | OK |
|-----------------|--------------------------------|---------|---------|
| | IO: | | |
| | PB4, 5, 6*, 7* | --- | OK |
| Non-inverting | PA0*, 1*, 2*, 3*, 4, 5, 6, 7 | OK | --- |
| input | PB0, 1, 12, 13, 14, 15 | OK | --- |
| | PC0, 1, 2, 3, 4, 5 | OK | --- |
| | PE7, 8, 9, 10 | OK | --- |
| | PF6, 7, 8, 9, 10 | OK | --- |
| | OPAMP1 output | OK | --- |
| | OPAMP2 output | OK | --- |
| | OPAMP3 output** | OK | --- |
+----------------------------------------------------------------------+
*: Available on devices category Cat.3, Cat.4, Cat.5 only.
**: Available on devices category Cat.4 only.
[..] Table 2. COMP Outputs redirection to embedded timers
+-----------------------------------+
| COMP1 | COMP2 |
|-----------------|-----------------|
| | TIM2 IC4 |
| | TIM2 OCREF CLR |
| (no redirection | TIM3 IC4 |
| to timers) | TIM3 OCREF CLR |
| | TIM4 IC4 |
| | TIM4 OCREF CLR |
| | TIM10 IC1 |
+-----------------------------------+
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_hal.h"
/** @addtogroup STM32L1xx_HAL_Driver
* @{
*/
/** @defgroup COMP COMP
* @brief COMP HAL module driver
* @{
*/
#ifdef HAL_COMP_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup COMP_Private_Constants COMP Private Constants
* @{
*/
/* Delay for COMP start-up time. */
/* Maximum delay is 10us for comparator 1 and 25us for comparator 2 in slow */
/* mode (refer to device datasheet, parameter tSTART). */
/* Delay in CPU cycles, fixed to worst case: maximum CPU frequency 32MHz to */
/* have the minimum number of CPU cycles to fulfill this delay. */
/* - Comparator 1: delay minimum of 320 CPU cycles. Wait loop takes 3 CPU */
/* cycles per iteration, therefore total wait iterations */
/* number must be initialized at 106 iterations. */
/* - Comparator 2: delay minimum of 800 CPU cycles. Wait loop takes 3 CPU */
/* cycles per iteration, therefore total wait iterations */
/* number must be initialized at 266 iterations. */
#define COMP1_START_DELAY_CPU_CYCLES (106U)
#define COMP2_START_DELAY_CPU_CYCLES (266U)
/* Comparator status "locked": to update COMP handle state (software lock */
/* only on COMP of STM32L1xx devices) by bitfield: */
/* states HAL_COMP_STATE_READY_LOCKED, HAL_COMP_STATE_BUSY_LOCKED. */
#define COMP_STATE_BIT_LOCK (0x00000010U)
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup COMP_Exported_Functions COMP Exported Functions
* @{
*/
/** @defgroup COMP_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions to initialize and de-initialize comparators
@endverbatim
* @{
*/
/**
* @brief Initializes the COMP according to the specified
* parameters in the COMP_InitTypeDef and create the associated handle.
* @note If the selected comparator is locked, initialization can't be performed.
* To unlock the configuration, perform a system reset.
* @param hcomp COMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_COMP_Init(COMP_HandleTypeDef *hcomp)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the COMP handle allocation and lock status */
if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET))
{
status = HAL_ERROR;
}
else
{
/* Check the parameter */
assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
if (hcomp->Instance == COMP1)
{
assert_param(IS_COMP_NONINVERTINGINPUTPULL(hcomp->Init.NonInvertingInputPull));
}
else /* if (hcomp->Instance == COMP2) */
{
assert_param(IS_COMP_INVERTINGINPUT(hcomp->Init.InvertingInput));
assert_param(IS_COMP_OUTPUT(hcomp->Init.Output));
assert_param(IS_COMP_MODE(hcomp->Init.Mode));
assert_param(IS_COMP_WINDOWMODE(hcomp->Init.WindowMode));
}
/* In window mode, non-inverting inputs of the 2 comparators are */
/* connected together and are using inputs of COMP2 only. If COMP1 is */
/* selected, this parameter is discarded. */
if ((hcomp->Init.WindowMode == COMP_WINDOWMODE_DISABLE) ||
(hcomp->Instance == COMP2) )
{
assert_param(IS_COMP_NONINVERTINGINPUT(hcomp->Init.NonInvertingInput));
}
/* Enable SYSCFG clock and the low level hardware to access comparators */
if(hcomp->State == HAL_COMP_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hcomp->Lock = HAL_UNLOCKED;
/* Enable SYSCFG clock to control the routing Interface (RI) */
__HAL_RCC_SYSCFG_CLK_ENABLE();
#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1)
/* Init the COMP Callback settings */
hcomp->TriggerCallback = HAL_COMP_TriggerCallback; /* Legacy weak callback */
if (hcomp->MspInitCallback == NULL)
{
hcomp->MspInitCallback = HAL_COMP_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware */
hcomp->MspInitCallback(hcomp);
#else
/* Init the low level hardware */
HAL_COMP_MspInit(hcomp);
#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */
}
/* Configuration of comparator: */
/* - Output selection */
/* - Inverting input selection */
/* - Window mode */
/* - Mode fast/slow speed */
/* - Inverting input pull-up/down resistors */
/* Configuration depending on comparator instance */
if (hcomp->Instance == COMP1)
{
MODIFY_REG(COMP->CSR, COMP_CSR_400KPD | COMP_CSR_10KPD | COMP_CSR_400KPU | COMP_CSR_10KPU,
hcomp->Init.NonInvertingInputPull );
}
else /* if (hcomp->Instance == COMP2) */
{
/* Note: If comparator 2 is not enabled, inverting input (parameter */
/* "hcomp->Init.InvertingInput") is configured into function */
/* "HAL_COMP_Start()" since inverting input selection also */
/* enables the comparator 2. */
/* If comparator 2 is already enabled, inverting input is */
/* reconfigured on the fly. */
if (__COMP_IS_ENABLED(hcomp) == RESET)
{
MODIFY_REG(COMP->CSR, COMP_CSR_OUTSEL |
COMP_CSR_WNDWE |
COMP_CSR_SPEED ,
hcomp->Init.Output |
hcomp->Init.WindowMode |
hcomp->Init.Mode );
}
else
{
MODIFY_REG(COMP->CSR, COMP_CSR_OUTSEL |
COMP_CSR_INSEL |
COMP_CSR_WNDWE |
COMP_CSR_SPEED ,
hcomp->Init.Output |
hcomp->Init.InvertingInput |
hcomp->Init.WindowMode |
hcomp->Init.Mode );
}
}
/* Configure Routing Interface (RI) switches for comparator non-inverting */
/* input. */
/* Except in 2 cases: */
/* - if non-inverting input has no selection: it can be the case for */
/* COMP1 in window mode. */
/* - particular case for PC3: if switch COMP1_SW1 is closed */
/* (by macro "__HAL_OPAMP_OPAMP3OUT_CONNECT_ADC_COMP1()" or */
/* "__HAL_RI_SWITCH_COMP1_SW1_CLOSE()"), connection between pin PC3 */
/* (or OPAMP3, if available) and COMP1 is done directly, without going */
/* through ADC switch matrix. */
#if defined(COMP_CSR_SW1)
if(READ_BIT(COMP->CSR, COMP_CSR_SW1) != RESET)
{
if(hcomp->Init.NonInvertingInput != COMP_NONINVERTINGINPUT_PC3)
{
/* Case of switch COMP1_SW1 closed and non-inverting input different of PC3:
setting of another input is not possible (issue of pin shorted with PC3) */
status = HAL_ERROR;
}
}
else
#endif
{
if (__COMP_ROUTING_INTERFACE_TOBECONFIGURED(hcomp))
{
if (hcomp->Instance == COMP1)
{
/* Enable the switch control mode */
__HAL_RI_SWITCHCONTROLMODE_ENABLE();
/* Close the analog switch of ADC switch matrix to COMP1 (ADC */
/* channel 26: Vcomp) */
__HAL_RI_IOSWITCH_CLOSE(RI_IOSWITCH_VCOMP);
}
/* Close the I/O analog switch corresponding to comparator */
/* non-inverting input selected. */
__HAL_RI_IOSWITCH_CLOSE(hcomp->Init.NonInvertingInput);
}
}
/* Initialize the COMP state*/
if(hcomp->State == HAL_COMP_STATE_RESET)
{
hcomp->State = HAL_COMP_STATE_READY;
}
}
return status;
}
/**
* @brief DeInitializes the COMP peripheral
* @note Deinitialization can't be performed if the COMP configuration is locked.
* To unlock the configuration, perform a system reset.
* @param hcomp COMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_COMP_DeInit(COMP_HandleTypeDef *hcomp)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the COMP handle allocation and lock status */
if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET))
{
status = HAL_ERROR;
}
else
{
/* Check the parameter */
assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
/* Reset configuration depending on comparator instance */
if (hcomp->Instance == COMP1)
{
CLEAR_BIT(COMP->CSR , COMP_CSR_400KPD | COMP_CSR_10KPD | COMP_CSR_400KPU | COMP_CSR_10KPU);
}
else /* if (hcomp->Instance == COMP2) */
{
CLEAR_BIT(COMP->CSR , COMP_CSR_OUTSEL |
COMP_CSR_WNDWE |
COMP_CSR_INSEL |
COMP_CSR_SPEED );
}
/* Restore default state of Routing Interface (RI) switches for */
/* comparator non-inverting input. */
if (hcomp->Init.NonInvertingInput != COMP_NONINVERTINGINPUT_NONE)
{
/* Open the I/O analog switch corresponding to comparator */
/* non-inverting input selected. */
__HAL_RI_IOSWITCH_OPEN(hcomp->Init.NonInvertingInput);
}
if (hcomp->Instance == COMP1)
{
/* Open the analog switch of ADC switch matrix to COMP1 (ADC */
/* channel 26: Vcomp) */
__HAL_RI_IOSWITCH_OPEN(RI_IOSWITCH_VCOMP);
/* Disable the switch control mode */
__HAL_RI_SWITCHCONTROLMODE_DISABLE();
}
#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1)
if (hcomp->MspDeInitCallback == NULL)
{
hcomp->MspDeInitCallback = HAL_COMP_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
hcomp->MspDeInitCallback(hcomp);
#else
/* DeInit the low level hardware: SYSCFG, GPIO, CLOCK, NVIC */
HAL_COMP_MspDeInit(hcomp);
#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */
hcomp->State = HAL_COMP_STATE_RESET;
/* Process unlocked */
__HAL_UNLOCK(hcomp);
}
return status;
}
/**
* @brief Initializes the COMP MSP.
* @param hcomp COMP handle
* @retval None
*/
__weak void HAL_COMP_MspInit(COMP_HandleTypeDef *hcomp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcomp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_COMP_MspInit could be implenetd in the user file
*/
}
/**
* @brief DeInitializes COMP MSP.
* @param hcomp COMP handle
* @retval None
*/
__weak void HAL_COMP_MspDeInit(COMP_HandleTypeDef *hcomp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcomp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_COMP_MspDeInit could be implenetd in the user file
*/
}
#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User COMP Callback
* To be used instead of the weak predefined callback
* @param hcomp Pointer to a COMP_HandleTypeDef structure that contains
* the configuration information for the specified COMP.
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_COMP_TRIGGER_CB_ID Trigger callback ID
* @arg @ref HAL_COMP_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_COMP_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_COMP_RegisterCallback(COMP_HandleTypeDef *hcomp, HAL_COMP_CallbackIDTypeDef CallbackID, pCOMP_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (HAL_COMP_STATE_READY == hcomp->State)
{
switch (CallbackID)
{
case HAL_COMP_TRIGGER_CB_ID :
hcomp->TriggerCallback = pCallback;
break;
case HAL_COMP_MSPINIT_CB_ID :
hcomp->MspInitCallback = pCallback;
break;
case HAL_COMP_MSPDEINIT_CB_ID :
hcomp->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_COMP_STATE_RESET == hcomp->State)
{
switch (CallbackID)
{
case HAL_COMP_MSPINIT_CB_ID :
hcomp->MspInitCallback = pCallback;
break;
case HAL_COMP_MSPDEINIT_CB_ID :
hcomp->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unregister a COMP Callback
* COMP callback is redirected to the weak predefined callback
* @param hcomp Pointer to a COMP_HandleTypeDef structure that contains
* the configuration information for the specified COMP.
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_COMP_TRIGGER_CB_ID Trigger callback ID
* @arg @ref HAL_COMP_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_COMP_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_COMP_UnRegisterCallback(COMP_HandleTypeDef *hcomp, HAL_COMP_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (HAL_COMP_STATE_READY == hcomp->State)
{
switch (CallbackID)
{
case HAL_COMP_TRIGGER_CB_ID :
hcomp->TriggerCallback = HAL_COMP_TriggerCallback; /* Legacy weak callback */
break;
case HAL_COMP_MSPINIT_CB_ID :
hcomp->MspInitCallback = HAL_COMP_MspInit; /* Legacy weak MspInit */
break;
case HAL_COMP_MSPDEINIT_CB_ID :
hcomp->MspDeInitCallback = HAL_COMP_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_COMP_STATE_RESET == hcomp->State)
{
switch (CallbackID)
{
case HAL_COMP_MSPINIT_CB_ID :
hcomp->MspInitCallback = HAL_COMP_MspInit; /* Legacy weak MspInit */
break;
case HAL_COMP_MSPDEINIT_CB_ID :
hcomp->MspDeInitCallback = HAL_COMP_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup COMP_Exported_Functions_Group2 I/O operation functions
* @brief I/O operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the COMP
start and stop actions with or without interruption on ExtI line.
@endverbatim
* @{
*/
/**
* @brief Start the comparator
* @param hcomp COMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_COMP_Start(COMP_HandleTypeDef *hcomp)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t wait_loop_cycles = 0;
__IO uint32_t wait_loop_index = 0;
/* Check the COMP handle allocation and lock status */
if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET))
{
status = HAL_ERROR;
}
else
{
/* Check the parameter */
assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
if(hcomp->State == HAL_COMP_STATE_READY)
{
/* Note: For comparator 2, inverting input (parameter */
/* "hcomp->Init.InvertingInput") is configured into this */
/* function instead of function "HAL_COMP_Init()" since */
/* inverting input selection also enables the comparator 2. */
__HAL_COMP_ENABLE(hcomp);
/* Set delay for COMP start-up time */
if (hcomp->Instance == COMP1)
{
wait_loop_cycles = COMP1_START_DELAY_CPU_CYCLES;
}
else /* if (hcomp->Instance == COMP2) */
{
wait_loop_cycles = COMP2_START_DELAY_CPU_CYCLES;
}
/* Delay for COMP start-up time. */
/* Delay fixed to worst case: maximum CPU frequency */
while(wait_loop_index < wait_loop_cycles)
{
wait_loop_index++;
}
/* Update COMP state */
hcomp->State = HAL_COMP_STATE_BUSY;
}
else
{
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Stop the comparator
* @param hcomp COMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_COMP_Stop(COMP_HandleTypeDef *hcomp)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the COMP handle allocation and lock status */
if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET))
{
status = HAL_ERROR;
}
else
{
/* Check the parameter */
assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
if(hcomp->State == HAL_COMP_STATE_BUSY)
{
/* Disable the selected comparator */
__HAL_COMP_DISABLE(hcomp);
/* Update COMP state */
hcomp->State = HAL_COMP_STATE_READY;
}
else
{
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Enables the interrupt and starts the comparator
* @param hcomp COMP handle
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_COMP_Start_IT(COMP_HandleTypeDef *hcomp)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t extiline = 0;
status = HAL_COMP_Start(hcomp);
if(status == HAL_OK)
{
/* Check the parameter */
assert_param(IS_COMP_TRIGGERMODE(hcomp->Init.TriggerMode));
/* Get the Exti Line output configuration */
extiline = COMP_GET_EXTI_LINE(hcomp->Instance);
/* Configure the trigger rising edge */
if((hcomp->Init.TriggerMode & COMP_TRIGGERMODE_IT_RISING) != RESET)
{
SET_BIT(EXTI->RTSR, extiline);
}
else
{
CLEAR_BIT(EXTI->RTSR, extiline);
}
/* Configure the trigger falling edge */
if((hcomp->Init.TriggerMode & COMP_TRIGGERMODE_IT_FALLING) != RESET)
{
SET_BIT(EXTI->FTSR, extiline);
}
else
{
CLEAR_BIT(EXTI->FTSR, extiline);
}
/* Clear COMP EXTI pending bit */
WRITE_REG(EXTI->PR, extiline);
/* Enable EXTI interrupt mode */
SET_BIT(EXTI->IMR, extiline);
}
return status;
}
/**
* @brief Disable the interrupt and Stop the comparator
* @param hcomp COMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_COMP_Stop_IT(COMP_HandleTypeDef *hcomp)
{
HAL_StatusTypeDef status = HAL_OK;
/* Disable the EXTI Line interrupt mode */
CLEAR_BIT(EXTI->IMR, COMP_GET_EXTI_LINE(hcomp->Instance));
status = HAL_COMP_Stop(hcomp);
return status;
}
/**
* @brief Comparator IRQ Handler
* @param hcomp COMP handle
* @retval HAL status
*/
void HAL_COMP_IRQHandler(COMP_HandleTypeDef *hcomp)
{
uint32_t extiline = COMP_GET_EXTI_LINE(hcomp->Instance);
/* Check COMP Exti flag */
if(READ_BIT(EXTI->PR, extiline) != RESET)
{
/* Clear COMP EXTI pending bit */
WRITE_REG(EXTI->PR, extiline);
/* COMP trigger callback */
#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1)
hcomp->TriggerCallback(hcomp);
#else
HAL_COMP_TriggerCallback(hcomp);
#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */
}
}
/**
* @}
*/
/** @defgroup COMP_Exported_Functions_Group3 Peripheral Control functions
* @brief Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the COMP
management functions: Lock status, comparator output level check, IRQ
callback (in case of usage of comparator with interruption on ExtI line).
@endverbatim
* @{
*/
/**
* @brief Lock the selected comparator configuration.
* Caution: On STM32L1, HAL COMP lock is software lock only (not
* hardware lock as on some other STM32 devices)
* @param hcomp COMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_COMP_Lock(COMP_HandleTypeDef *hcomp)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the COMP handle allocation and lock status */
if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET))
{
status = HAL_ERROR;
}
else
{
/* Check the parameter */
assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
/* Set lock flag on state */
switch(hcomp->State)
{
case HAL_COMP_STATE_BUSY:
hcomp->State = HAL_COMP_STATE_BUSY_LOCKED;
break;
case HAL_COMP_STATE_READY:
hcomp->State = HAL_COMP_STATE_READY_LOCKED;
break;
default:
/* unexpected state */
status = HAL_ERROR;
break;
}
}
return status;
}
/**
* @brief Return the output level (high or low) of the selected comparator.
* The output level depends on the selected polarity.
* - Comparator output is low when the non-inverting input is at a lower
* voltage than the inverting input
* - Comparator output is high when the non-inverting input is at a higher
* voltage than the inverting input
* @param hcomp COMP handle
* @retval Returns the selected comparator output level: COMP_OUTPUTLEVEL_LOW or COMP_OUTPUTLEVEL_HIGH.
*
*/
uint32_t HAL_COMP_GetOutputLevel(COMP_HandleTypeDef *hcomp)
{
uint32_t level = 0;
/* Check the parameter */
assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
/* Read output level of the selected comparator */
if(READ_BIT(COMP->CSR, __COMP_CSR_CMPXOUT(hcomp)) == RESET)
{
level = COMP_OUTPUTLEVEL_LOW;
}
else
{
level = COMP_OUTPUTLEVEL_HIGH;
}
return(level);
}
/**
* @brief Comparator trigger callback.
* @param hcomp COMP handle
* @retval None
*/
__weak void HAL_COMP_TriggerCallback(COMP_HandleTypeDef *hcomp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcomp);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_COMP_TriggerCallback should be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup COMP_Exported_Functions_Group4 Peripheral State functions
* @brief Peripheral State functions
*
@verbatim
===============================================================================
##### Peripheral State functions #####
===============================================================================
[..]
This subsection permit to get in run-time the status of the peripheral.
@endverbatim
* @{
*/
/**
* @brief Return the COMP state
* @param hcomp COMP handle
* @retval HAL state
*/
HAL_COMP_StateTypeDef HAL_COMP_GetState(COMP_HandleTypeDef *hcomp)
{
/* Check the COMP handle allocation */
if(hcomp == NULL)
{
return HAL_COMP_STATE_RESET;
}
/* Check the parameter */
assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
return hcomp->State;
}
/**
* @brief Return the COMP error code.
* @param hcomp COMP handle
* @retval COMP error code
*/
uint32_t HAL_COMP_GetError(COMP_HandleTypeDef *hcomp)
{
/* Check the parameters */
assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
return hcomp->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_COMP_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/