blob: 1fc09903e2f8d3287e29f2f8605f252fbff75c8e [file] [log] [blame]
/**
******************************************************************************
* @file stm32l5xx_ll_rcc.c
* @author MCD Application Team
* @brief RCC LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32l5xx_ll_rcc.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32L5xx_LL_Driver
* @{
*/
#if defined(RCC)
/** @addtogroup RCC_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup RCC_LL_Private_Macros RCC Private Macros
* @{
*/
#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USART1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_USART2_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_USART3_CLKSOURCE))
#define IS_LL_RCC_UART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_UART4_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_UART5_CLKSOURCE))
#define IS_LL_RCC_LPUART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPUART1_CLKSOURCE))
#define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_I2C1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_I2C2_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_I2C3_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_I2C4_CLKSOURCE))
#define IS_LL_RCC_LPTIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPTIM1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_LPTIM2_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_LPTIM3_CLKSOURCE))
#define IS_LL_RCC_SAI_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_SAI1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_SAI2_CLKSOURCE))
#define IS_LL_RCC_SDMMC_KERNELCLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_SDMMC1_KERNELCLKSOURCE))
#define IS_LL_RCC_SDMMC_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_SDMMC1_CLKSOURCE))
#define IS_LL_RCC_RNG_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_RNG_CLKSOURCE))
#define IS_LL_RCC_USB_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USB_CLKSOURCE))
#define IS_LL_RCC_ADC_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_ADC_CLKSOURCE))
#define IS_LL_RCC_DFSDM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_DFSDM1_CLKSOURCE))
#define IS_LL_RCC_DFSDM_AUDIO_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_DFSDM1_AUDIO_CLKSOURCE))
#define IS_LL_RCC_OCTOSPI_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_OCTOSPI_CLKSOURCE))
#define IS_LL_RCC_FDCAN_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_FDCAN_CLKSOURCE))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup RCC_LL_Private_Functions RCC Private Functions
* @{
*/
uint32_t RCC_GetSystemClockFreq(void);
uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency);
uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency);
uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency);
uint32_t RCC_PLL_GetFreqDomain_SYS(void);
uint32_t RCC_PLL_GetFreqDomain_SAI(void);
uint32_t RCC_PLL_GetFreqDomain_48M(void);
uint32_t RCC_PLLSAI1_GetFreqDomain_SAI(void);
uint32_t RCC_PLLSAI1_GetFreqDomain_48M(void);
uint32_t RCC_PLLSAI1_GetFreqDomain_ADC(void);
uint32_t RCC_PLLSAI2_GetFreqDomain_SAI(void);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup RCC_LL_Exported_Functions
* @{
*/
/** @addtogroup RCC_LL_EF_Init
* @{
*/
/**
* @brief Reset the RCC clock configuration to the default reset state.
* @note The default reset state of the clock configuration is given below:
* - MSI ON and used as system clock source
* - HSE, HSI, PLL, PLLSAI1 and PLLSAI2 OFF
* - AHB, APB1 and APB2 prescaler set to 1.
* - CSS, MCO OFF
* - All interrupts disabled
* @note This function doesn't modify the configuration of the
* - Peripheral clocks
* - LSI, LSE and RTC clocks
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RCC registers are de-initialized
* - ERROR: not applicable
*/
ErrorStatus LL_RCC_DeInit(void)
{
__IO uint32_t vl_mask;
/* Set MSION bit */
LL_RCC_MSI_Enable();
/* Insure MSIRDY bit is set before writing default MSIRANGE value */
while (LL_RCC_MSI_IsReady() == 0U)
{
}
/* Set MSIRANGE default value */
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_6);
/* Set MSITRIM bits to the reset value*/
LL_RCC_MSI_SetCalibTrimming(0);
/* Set HSITRIM bits to the reset value*/
LL_RCC_HSI_SetCalibTrimming(0x40U);
/* Reset CFGR register */
LL_RCC_WriteReg(CFGR, 0x00000000U);
/* Read CR register */
vl_mask = LL_RCC_ReadReg(CR);
/* Reset HSION, HSIKERON, HSIASFS, HSEON, PLLON, PLLSAI1ON and PLLSAI2ON bits */
CLEAR_BIT(vl_mask, (RCC_CR_HSION | RCC_CR_HSIASFS | RCC_CR_HSIKERON | RCC_CR_HSEON |
RCC_CR_PLLON | RCC_CR_PLLSAI1ON | RCC_CR_PLLSAI2ON));
/* Write new mask in CR register */
LL_RCC_WriteReg(CR, vl_mask);
/* Wait for PLLRDY, PLLSAI1RDY and PLLSAI2RDY bits to be reset */
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY | RCC_CR_PLLSAI1RDY | RCC_CR_PLLSAI2RDY) != 0U)
{
}
/* Reset PLLCFGR register */
LL_RCC_WriteReg(PLLCFGR, 16U << RCC_PLLCFGR_PLLN_Pos);
/* Reset PLLSAI1CFGR register */
LL_RCC_WriteReg(PLLSAI1CFGR, 16U << RCC_PLLSAI1CFGR_PLLSAI1N_Pos);
/* Reset PLLSAI2CFGR register */
LL_RCC_WriteReg(PLLSAI2CFGR, 16U << RCC_PLLSAI2CFGR_PLLSAI2N_Pos);
/* Reset HSEBYP bit */
LL_RCC_HSE_DisableBypass();
/* Disable all interrupts */
LL_RCC_WriteReg(CIER, 0x00000000U);
/* Clear all interrupt flags */
vl_mask = RCC_CICR_LSIRDYC | RCC_CICR_LSERDYC | RCC_CICR_MSIRDYC | RCC_CICR_HSIRDYC | RCC_CICR_HSERDYC | RCC_CICR_PLLRDYC | \
RCC_CICR_HSI48RDYC | RCC_CICR_PLLSAI1RDYC | RCC_CICR_PLLSAI2RDYC | RCC_CICR_CSSC;
LL_RCC_WriteReg(CICR, vl_mask);
/* Clear reset flags */
LL_RCC_ClearResetFlags();
/* Reset privilege mode */
LL_RCC_DisablePrivilege();
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/* Reset secure configuration */
LL_RCC_ConfigSecure(LL_RCC_ALL_NSEC);
#endif /* __ARM_FEATURE_CMSE && (__ARM_FEATURE_CMSE == 3U) */
return SUCCESS;
}
/**
* @}
*/
/** @addtogroup RCC_LL_EF_Get_Freq
* @brief Return the frequencies of different on chip clocks; System, AHB, APB1 and APB2 buses clocks
* and different peripheral clocks available on the device.
* @note If SYSCLK source is MSI, function returns values based on MSI_VALUE(*)
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(**)
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***)
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(***)
* or HSI_VALUE(**) or MSI_VALUE(*) multiplied/divided by the PLL factors.
* @note (*) MSI_VALUE is a constant defined in this file (default value
* 4 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* @note (**) HSI_VALUE is a constant defined in this file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* @note (***) HSE_VALUE is a constant defined in this file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
* @note The result of this function could be incorrect when using fractional
* value for HSE crystal.
* @note This function can be used by the user application to compute the
* baud-rate for the communication peripherals or configure other parameters.
* @{
*/
/**
* @brief Return the frequencies of different on chip clocks; System, AHB, APB1 and APB2 buses clocks
* @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function
* must be called to update structure fields. Otherwise, any
* configuration based on this function will be incorrect.
* @param RCC_Clocks pointer to a @ref LL_RCC_ClocksTypeDef structure which will hold the clocks frequencies
* @retval None
*/
void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks)
{
/* Get SYSCLK frequency */
RCC_Clocks->SYSCLK_Frequency = RCC_GetSystemClockFreq();
/* HCLK clock frequency */
RCC_Clocks->HCLK_Frequency = RCC_GetHCLKClockFreq(RCC_Clocks->SYSCLK_Frequency);
/* PCLK1 clock frequency */
RCC_Clocks->PCLK1_Frequency = RCC_GetPCLK1ClockFreq(RCC_Clocks->HCLK_Frequency);
/* PCLK2 clock frequency */
RCC_Clocks->PCLK2_Frequency = RCC_GetPCLK2ClockFreq(RCC_Clocks->HCLK_Frequency);
}
/**
* @brief Return USARTx clock frequency
* @param USARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USART1_CLKSOURCE
* @arg @ref LL_RCC_USART2_CLKSOURCE
* @arg @ref LL_RCC_USART3_CLKSOURCE
* @retval USART clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready
*/
uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource)
{
uint32_t usart_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_USART_CLKSOURCE(USARTxSource));
if (USARTxSource == LL_RCC_USART1_CLKSOURCE)
{
/* USART1CLK clock frequency */
switch (LL_RCC_GetUSARTClockSource(USARTxSource))
{
case LL_RCC_USART1_CLKSOURCE_SYSCLK: /* USART1 Clock is System Clock */
usart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_USART1_CLKSOURCE_HSI: /* USART1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
usart_frequency = HSI_VALUE;
}
break;
case LL_RCC_USART1_CLKSOURCE_LSE: /* USART1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
usart_frequency = LSE_VALUE;
}
break;
case LL_RCC_USART1_CLKSOURCE_PCLK2: /* USART1 Clock is PCLK2 */
usart_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else if (USARTxSource == LL_RCC_USART2_CLKSOURCE)
{
/* USART2CLK clock frequency */
switch (LL_RCC_GetUSARTClockSource(USARTxSource))
{
case LL_RCC_USART2_CLKSOURCE_SYSCLK: /* USART2 Clock is System Clock */
usart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_USART2_CLKSOURCE_HSI: /* USART2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
usart_frequency = HSI_VALUE;
}
break;
case LL_RCC_USART2_CLKSOURCE_LSE: /* USART2 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
usart_frequency = LSE_VALUE;
}
break;
case LL_RCC_USART2_CLKSOURCE_PCLK1: /* USART2 Clock is PCLK1 */
usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else if (USARTxSource == LL_RCC_USART3_CLKSOURCE)
{
/* USART3CLK clock frequency */
switch (LL_RCC_GetUSARTClockSource(USARTxSource))
{
case LL_RCC_USART3_CLKSOURCE_SYSCLK: /* USART3 Clock is System Clock */
usart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_USART3_CLKSOURCE_HSI: /* USART3 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
usart_frequency = HSI_VALUE;
}
break;
case LL_RCC_USART3_CLKSOURCE_LSE: /* USART3 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
usart_frequency = LSE_VALUE;
}
break;
case LL_RCC_USART3_CLKSOURCE_PCLK1: /* USART3 Clock is PCLK1 */
usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else
{
/* nothing to do */
}
return usart_frequency;
}
/**
* @brief Return UARTx clock frequency
* @param UARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_UART4_CLKSOURCE
* @arg @ref LL_RCC_UART5_CLKSOURCE
* @retval UART clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready
*/
uint32_t LL_RCC_GetUARTClockFreq(uint32_t UARTxSource)
{
uint32_t uart_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_UART_CLKSOURCE(UARTxSource));
if (UARTxSource == LL_RCC_UART4_CLKSOURCE)
{
/* UART4CLK clock frequency */
switch (LL_RCC_GetUARTClockSource(UARTxSource))
{
case LL_RCC_UART4_CLKSOURCE_SYSCLK: /* UART4 Clock is System Clock */
uart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_UART4_CLKSOURCE_HSI: /* UART4 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
uart_frequency = HSI_VALUE;
}
break;
case LL_RCC_UART4_CLKSOURCE_LSE: /* UART4 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
uart_frequency = LSE_VALUE;
}
break;
case LL_RCC_UART4_CLKSOURCE_PCLK1: /* UART4 Clock is PCLK1 */
uart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else if (UARTxSource == LL_RCC_UART5_CLKSOURCE)
{
/* UART5CLK clock frequency */
switch (LL_RCC_GetUARTClockSource(UARTxSource))
{
case LL_RCC_UART5_CLKSOURCE_SYSCLK: /* UART5 Clock is System Clock */
uart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_UART5_CLKSOURCE_HSI: /* UART5 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
uart_frequency = HSI_VALUE;
}
break;
case LL_RCC_UART5_CLKSOURCE_LSE: /* UART5 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
uart_frequency = LSE_VALUE;
}
break;
case LL_RCC_UART5_CLKSOURCE_PCLK1: /* UART5 Clock is PCLK1 */
uart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else
{
/* nothing to do */
}
return uart_frequency;
}
/**
* @brief Return I2Cx clock frequency
* @param I2CxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_I2C1_CLKSOURCE
* @arg @ref LL_RCC_I2C2_CLKSOURCE
* @arg @ref LL_RCC_I2C3_CLKSOURCE
* @arg @ref LL_RCC_I2C4_CLKSOURCE
* @retval I2C clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI) is not ready
*/
uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource)
{
uint32_t i2c_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_I2C_CLKSOURCE(I2CxSource));
if (I2CxSource == LL_RCC_I2C1_CLKSOURCE)
{
/* I2C1 CLK clock frequency */
switch (LL_RCC_GetI2CClockSource(I2CxSource))
{
case LL_RCC_I2C1_CLKSOURCE_SYSCLK: /* I2C1 Clock is System Clock */
i2c_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_I2C1_CLKSOURCE_HSI: /* I2C1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
i2c_frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C1_CLKSOURCE_PCLK1: /* I2C1 Clock is PCLK1 */
i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else if (I2CxSource == LL_RCC_I2C2_CLKSOURCE)
{
/* I2C2 CLK clock frequency */
switch (LL_RCC_GetI2CClockSource(I2CxSource))
{
case LL_RCC_I2C2_CLKSOURCE_SYSCLK: /* I2C2 Clock is System Clock */
i2c_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_I2C2_CLKSOURCE_HSI: /* I2C2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
i2c_frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C2_CLKSOURCE_PCLK1: /* I2C2 Clock is PCLK1 */
i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else if (I2CxSource == LL_RCC_I2C3_CLKSOURCE)
{
/* I2C3 CLK clock frequency */
switch (LL_RCC_GetI2CClockSource(I2CxSource))
{
case LL_RCC_I2C3_CLKSOURCE_SYSCLK: /* I2C3 Clock is System Clock */
i2c_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_I2C3_CLKSOURCE_HSI: /* I2C3 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
i2c_frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C3_CLKSOURCE_PCLK1: /* I2C3 Clock is PCLK1 */
i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else if (I2CxSource == LL_RCC_I2C4_CLKSOURCE)
{
/* I2C4 CLK clock frequency */
switch (LL_RCC_GetI2CClockSource(I2CxSource))
{
case LL_RCC_I2C4_CLKSOURCE_SYSCLK: /* I2C4 Clock is System Clock */
i2c_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_I2C4_CLKSOURCE_HSI: /* I2C4 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
i2c_frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C4_CLKSOURCE_PCLK1: /* I2C4 Clock is PCLK1 */
i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else
{
/* nothing to do */
}
return i2c_frequency;
}
/**
* @brief Return LPUARTx clock frequency
* @param LPUARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPUART1_CLKSOURCE
* @retval LPUART clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready
*/
uint32_t LL_RCC_GetLPUARTClockFreq(uint32_t LPUARTxSource)
{
uint32_t lpuart_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_LPUART_CLKSOURCE(LPUARTxSource));
/* LPUART1CLK clock frequency */
switch (LL_RCC_GetLPUARTClockSource(LPUARTxSource))
{
case LL_RCC_LPUART1_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */
lpuart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_LPUART1_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lpuart_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lpuart_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_PCLK1: /* LPUART1 Clock is PCLK1 */
lpuart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
return lpuart_frequency;
}
/**
* @brief Return LPTIMx clock frequency
* @param LPTIMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE
* @arg @ref LL_RCC_LPTIM3_CLKSOURCE
* @retval LPTIM clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI, LSI or LSE) is not ready
*/
uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMxSource)
{
uint32_t lptim_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_LPTIM_CLKSOURCE(LPTIMxSource));
if (LPTIMxSource == LL_RCC_LPTIM1_CLKSOURCE)
{
/* LPTIM1CLK clock frequency */
switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource))
{
case LL_RCC_LPTIM1_CLKSOURCE_LSI: /* LPTIM1 Clock is LSI Osc. */
if (LL_RCC_LSI_IsReady() == 1U)
{
lptim_frequency = LSI_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_HSI: /* LPTIM1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lptim_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_LSE: /* LPTIM1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lptim_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_PCLK1: /* LPTIM1 Clock is PCLK1 */
lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else if (LPTIMxSource == LL_RCC_LPTIM2_CLKSOURCE)
{
/* LPTIM2CLK clock frequency */
switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource))
{
case LL_RCC_LPTIM2_CLKSOURCE_LSI: /* LPTIM2 Clock is LSI Osc. */
if (LL_RCC_LSI_IsReady() == 1U)
{
lptim_frequency = LSI_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_HSI: /* LPTIM2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lptim_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_LSE: /* LPTIM2 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lptim_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_PCLK1: /* LPTIM2 Clock is PCLK1 */
lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else if (LPTIMxSource == LL_RCC_LPTIM3_CLKSOURCE)
{
/* LPTIM3CLK clock frequency */
switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource))
{
case LL_RCC_LPTIM3_CLKSOURCE_LSI: /* LPTIM3 Clock is LSI Osc. */
if (LL_RCC_LSI_IsReady() == 1U)
{
lptim_frequency = LSI_VALUE;
}
break;
case LL_RCC_LPTIM3_CLKSOURCE_HSI: /* LPTIM3 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lptim_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPTIM3_CLKSOURCE_LSE: /* LPTIM3 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lptim_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM3_CLKSOURCE_PCLK1: /* LPTIM3 Clock is PCLK1 */
lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
default:
/* unreachable code */
break;
}
}
else
{
/* nothing to do */
}
return lptim_frequency;
}
/**
* @brief Return SAIx clock frequency
* @param SAIxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_SAI1_CLKSOURCE
* @arg @ref LL_RCC_SAI2_CLKSOURCE
* @retval SAI clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that PLL is not ready
*/
uint32_t LL_RCC_GetSAIClockFreq(uint32_t SAIxSource)
{
uint32_t sai_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_SAI_CLKSOURCE(SAIxSource));
if (SAIxSource == LL_RCC_SAI1_CLKSOURCE)
{
/* SAI1CLK clock frequency */
switch (LL_RCC_GetSAIClockSource(SAIxSource))
{
case LL_RCC_SAI1_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as SAI1 clock source */
if (LL_RCC_PLLSAI1_IsReady() == 1U)
{
sai_frequency = RCC_PLLSAI1_GetFreqDomain_SAI();
}
break;
case LL_RCC_SAI1_CLKSOURCE_PLLSAI2: /* PLLSAI2 clock used as SAI1 clock source */
if (LL_RCC_PLLSAI2_IsReady() == 1U)
{
sai_frequency = RCC_PLLSAI2_GetFreqDomain_SAI();
}
break;
case LL_RCC_SAI1_CLKSOURCE_PLL: /* PLL clock used as SAI1 clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
sai_frequency = RCC_PLL_GetFreqDomain_SAI();
}
break;
case LL_RCC_SAI1_CLKSOURCE_PIN: /* External input clock used as SAI1 clock source */
sai_frequency = EXTERNAL_SAI1_CLOCK_VALUE;
break;
default:
/* unreachable code */
break;
}
}
else if (SAIxSource == LL_RCC_SAI2_CLKSOURCE)
{
/* SAI2CLK clock frequency */
switch (LL_RCC_GetSAIClockSource(SAIxSource))
{
case LL_RCC_SAI2_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as SAI2 clock source */
if (LL_RCC_PLLSAI1_IsReady() == 1U)
{
sai_frequency = RCC_PLLSAI1_GetFreqDomain_SAI();
}
break;
case LL_RCC_SAI2_CLKSOURCE_PLLSAI2: /* PLLSAI2 clock used as SAI2 clock source */
if (LL_RCC_PLLSAI2_IsReady() == 1U)
{
sai_frequency = RCC_PLLSAI2_GetFreqDomain_SAI();
}
break;
case LL_RCC_SAI2_CLKSOURCE_PLL: /* PLL clock used as SAI2 clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
sai_frequency = RCC_PLL_GetFreqDomain_SAI();
}
break;
case LL_RCC_SAI2_CLKSOURCE_PIN: /* External input clock used as SAI2 clock source */
sai_frequency = EXTERNAL_SAI2_CLOCK_VALUE;
break;
default:
/* unreachable code */
break;
}
}
else
{
/* nothing to do */
}
return sai_frequency;
}
/**
* @brief Return SDMMCx kernel clock frequency
* @param SDMMCxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_SDMMC1_KERNELCLKSOURCE
* @retval SDMMC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator or PLL is not ready
*/
uint32_t LL_RCC_GetSDMMCKernelClockFreq(uint32_t SDMMCxSource)
{
uint32_t sdmmc_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_SDMMC_KERNELCLKSOURCE(SDMMCxSource));
/* SDMMC1CLK kernel clock frequency */
switch (LL_RCC_GetSDMMCKernelClockSource(SDMMCxSource))
{
case LL_RCC_SDMMC1_KERNELCLKSOURCE_48CLK: /* 48MHz clock from internal multiplexor used as SDMMC1 clock source */
sdmmc_frequency = LL_RCC_GetSDMMCClockFreq(LL_RCC_SDMMC1_CLKSOURCE);
break;
case LL_RCC_SDMMC1_KERNELCLKSOURCE_PLLP: /* PLL "P" output (PLLSAI3CLK) clock used as SDMMC1 clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
sdmmc_frequency = RCC_PLL_GetFreqDomain_SAI();
}
break;
default:
/* unreachable code */
break;
}
return sdmmc_frequency;
}
/**
* @brief Return SDMMCx clock frequency
* @param SDMMCxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_SDMMC1_CLKSOURCE
* @retval SDMMC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI or HSI48) or PLL is not ready
*/
uint32_t LL_RCC_GetSDMMCClockFreq(uint32_t SDMMCxSource)
{
uint32_t sdmmc_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_SDMMC_CLKSOURCE(SDMMCxSource));
/* SDMMC1CLK clock frequency */
switch (LL_RCC_GetSDMMCClockSource(SDMMCxSource))
{
case LL_RCC_SDMMC1_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as SDMMC1 clock source */
if (LL_RCC_PLLSAI1_IsReady() == 1U)
{
sdmmc_frequency = RCC_PLLSAI1_GetFreqDomain_48M();
}
break;
case LL_RCC_SDMMC1_CLKSOURCE_PLL: /* PLL clock used as SDMMC1 clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
sdmmc_frequency = RCC_PLL_GetFreqDomain_48M();
}
break;
case LL_RCC_SDMMC1_CLKSOURCE_MSI: /* MSI clock used as SDMMC1 clock source */
if (LL_RCC_MSI_IsReady() == 1U)
{
sdmmc_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
}
break;
case LL_RCC_SDMMC1_CLKSOURCE_HSI48: /* HSI48 used as SDMMC1 clock source */
if (LL_RCC_HSI48_IsReady() == 1U)
{
sdmmc_frequency = HSI48_VALUE;
}
break;
default:
/* unreachable code */
break;
}
return sdmmc_frequency;
}
/**
* @brief Return RNGx clock frequency
* @param RNGxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE
* @retval RNG clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI or HSI48) or PLL is not ready
*/
uint32_t LL_RCC_GetRNGClockFreq(uint32_t RNGxSource)
{
uint32_t rng_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_RNG_CLKSOURCE(RNGxSource));
/* RNGCLK clock frequency */
switch (LL_RCC_GetRNGClockSource(RNGxSource))
{
case LL_RCC_RNG_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as RNG clock source */
if (LL_RCC_PLLSAI1_IsReady() == 1U)
{
rng_frequency = RCC_PLLSAI1_GetFreqDomain_48M();
}
break;
case LL_RCC_RNG_CLKSOURCE_PLL: /* PLL clock used as RNG clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
rng_frequency = RCC_PLL_GetFreqDomain_48M();
}
break;
case LL_RCC_RNG_CLKSOURCE_MSI: /* MSI clock used as RNG clock source */
if (LL_RCC_MSI_IsReady() == 1U)
{
rng_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
}
break;
case LL_RCC_RNG_CLKSOURCE_HSI48: /* HSI48 clock used as RNG clock source */
if (LL_RCC_HSI48_IsReady() == 1U)
{
rng_frequency = HSI48_VALUE;
}
break;
default:
/* unreachable code */
break;
}
return rng_frequency;
}
/**
* @brief Return USBx clock frequency
* @param USBxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USB_CLKSOURCE
* @retval USB clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI or HSI48) or PLL is not ready
*/
uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource)
{
uint32_t usb_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_USB_CLKSOURCE(USBxSource));
/* USBCLK clock frequency */
switch (LL_RCC_GetUSBClockSource(USBxSource))
{
case LL_RCC_USB_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as USB clock source */
if (LL_RCC_PLLSAI1_IsReady() == 1U)
{
usb_frequency = RCC_PLLSAI1_GetFreqDomain_48M();
}
break;
case LL_RCC_USB_CLKSOURCE_PLL: /* PLL clock used as USB clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
usb_frequency = RCC_PLL_GetFreqDomain_48M();
}
break;
case LL_RCC_USB_CLKSOURCE_MSI: /* MSI clock used as USB clock source */
if (LL_RCC_MSI_IsReady() == 1U)
{
usb_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
}
break;
case LL_RCC_USB_CLKSOURCE_HSI48: /* HSI48 clock used as USB clock source */
if (LL_RCC_HSI48_IsReady() == 1U)
{
usb_frequency = HSI48_VALUE;
}
break;
default:
/* unreachable code */
break;
}
return usb_frequency;
}
/**
* @brief Return ADCx clock frequency
* @param ADCxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSOURCE
* @retval ADC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator or PLL is not ready
* - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected
*/
uint32_t LL_RCC_GetADCClockFreq(uint32_t ADCxSource)
{
uint32_t adc_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_ADC_CLKSOURCE(ADCxSource));
/* ADCCLK clock frequency */
switch (LL_RCC_GetADCClockSource(ADCxSource))
{
case LL_RCC_ADC_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as ADC clock source */
if (LL_RCC_PLLSAI1_IsReady() == 1U)
{
adc_frequency = RCC_PLLSAI1_GetFreqDomain_ADC();
}
break;
case LL_RCC_ADC_CLKSOURCE_SYSCLK: /* SYSCLK clock used as ADC clock source */
adc_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_ADC_CLKSOURCE_NONE: /* No clock used as ADC clock source */
adc_frequency = LL_RCC_PERIPH_FREQUENCY_NA;
break;
default:
/* unreachable code */
break;
}
return adc_frequency;
}
/**
* @brief Return DFSDMx clock frequency
* @param DFSDMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_DFSDM1_CLKSOURCE
* @retval DFSDM clock frequency (in Hz)
*/
uint32_t LL_RCC_GetDFSDMClockFreq(uint32_t DFSDMxSource)
{
uint32_t dfsdm_frequency;
/* Check parameter */
assert_param(IS_LL_RCC_DFSDM_CLKSOURCE(DFSDMxSource));
/* DFSDM1CLK clock frequency */
if (LL_RCC_GetDFSDMClockSource(DFSDMxSource) == LL_RCC_DFSDM1_CLKSOURCE_PCLK2)
{
/* DFSDM1 Clock is PCLK2 */
dfsdm_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
}
else
{
/* DFSDM1 Clock is SYSCLK */
dfsdm_frequency = RCC_GetSystemClockFreq();
}
return dfsdm_frequency;
}
/**
* @brief Return DFSDMx Audio clock frequency
* @param DFSDMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_DFSDM1_AUDIO_CLKSOURCE
* @retval DFSDM clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI or HSI) is not ready
*/
uint32_t LL_RCC_GetDFSDMAudioClockFreq(uint32_t DFSDMxSource)
{
uint32_t dfsdm_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_DFSDM_AUDIO_CLKSOURCE(DFSDMxSource));
/* DFSDM1CLK clock frequency */
switch (LL_RCC_GetDFSDMAudioClockSource(DFSDMxSource))
{
case LL_RCC_DFSDM1_AUDIO_CLKSOURCE_SAI1: /* SAI1 clock used as DFSDM1 audio clock */
dfsdm_frequency = LL_RCC_GetSAIClockFreq(LL_RCC_SAI1_CLKSOURCE);
break;
case LL_RCC_DFSDM1_AUDIO_CLKSOURCE_MSI: /* MSI clock used as DFSDM1 audio clock */
if (LL_RCC_MSI_IsReady() == 1U)
{
dfsdm_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
}
break;
case LL_RCC_DFSDM1_AUDIO_CLKSOURCE_HSI: /* HSI clock used as DFSDM1 audio clock */
if (LL_RCC_HSI_IsReady() == 1U)
{
dfsdm_frequency = HSI_VALUE;
}
break;
default:
/* unreachable code */
break;
}
return dfsdm_frequency;
}
/**
* @brief Return OCTOSPI clock frequency
* @param OCTOSPIxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_OCTOSPI_CLKSOURCE
* @retval OCTOSPI clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI) or PLL is not ready
*/
uint32_t LL_RCC_GetOCTOSPIClockFreq(uint32_t OCTOSPIxSource)
{
uint32_t octospi_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_OCTOSPI_CLKSOURCE(OCTOSPIxSource));
/* OCTOSPI clock frequency */
switch (LL_RCC_GetOCTOSPIClockSource(OCTOSPIxSource))
{
case LL_RCC_OCTOSPI_CLKSOURCE_SYSCLK: /* OCTOSPI clock is SYSCLK */
octospi_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_OCTOSPI_CLKSOURCE_MSI: /* MSI clock used as OCTOSPI clock */
if (LL_RCC_MSI_IsReady() == 1U)
{
octospi_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
}
break;
case LL_RCC_OCTOSPI_CLKSOURCE_PLL: /* PLL clock used as OCTOSPI source */
if (LL_RCC_PLL_IsReady() == 1U)
{
octospi_frequency = RCC_PLL_GetFreqDomain_48M();
}
break;
default:
/* unreachable code */
break;
}
return octospi_frequency;
}
/**
* @brief Return FDCAN kernel clock frequency
* @param FDCANxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_FDCAN_CLKSOURCE
* @retval FDCAN kernel clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSE) or PLL is not ready
*/
uint32_t LL_RCC_GetFDCANClockFreq(uint32_t FDCANxSource)
{
uint32_t fdcan_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_FDCAN_CLKSOURCE(FDCANxSource));
/* FDCAN kernel clock frequency */
switch (LL_RCC_GetFDCANClockSource(FDCANxSource))
{
case LL_RCC_FDCAN_CLKSOURCE_HSE: /* HSE clock used as FDCAN kernel clock */
if (LL_RCC_HSE_IsReady() == 1U)
{
fdcan_frequency = HSE_VALUE;
}
break;
case LL_RCC_FDCAN_CLKSOURCE_PLL: /* PLL clock used as FDCAN kernel clock */
if (LL_RCC_PLL_IsReady() == 1U)
{
fdcan_frequency = RCC_PLL_GetFreqDomain_48M();
}
break;
case LL_RCC_FDCAN_CLKSOURCE_PLLSAI1: /* MSI clock used as FDCAN kernel clock */
if (LL_RCC_PLLSAI1_IsReady() == 1U)
{
fdcan_frequency = RCC_PLLSAI1_GetFreqDomain_SAI();
}
break;
default:
/* unreachable code */
break;
}
return fdcan_frequency;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup RCC_LL_Private_Functions
* @{
*/
/**
* @brief Return SYSTEM clock frequency
* @retval SYSTEM clock frequency (in Hz)
*/
uint32_t RCC_GetSystemClockFreq(void)
{
uint32_t frequency;
/* Get SYSCLK source -------------------------------------------------------*/
switch (LL_RCC_GetSysClkSource())
{
case LL_RCC_SYS_CLKSOURCE_STATUS_MSI: /* MSI used as system clock source */
frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
frequency = HSI_VALUE;
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: /* HSE used as system clock source */
frequency = HSE_VALUE;
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_PLL: /* PLL used as system clock source */
frequency = RCC_PLL_GetFreqDomain_SYS();
break;
default:
frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
}
return frequency;
}
/**
* @brief Return HCLK clock frequency
* @param SYSCLK_Frequency SYSCLK clock frequency
* @retval HCLK clock frequency (in Hz)
*/
uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency)
{
/* HCLK clock frequency */
return __LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, LL_RCC_GetAHBPrescaler());
}
/**
* @brief Return PCLK1 clock frequency
* @param HCLK_Frequency HCLK clock frequency
* @retval PCLK1 clock frequency (in Hz)
*/
uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency)
{
/* PCLK1 clock frequency */
return __LL_RCC_CALC_PCLK1_FREQ(HCLK_Frequency, LL_RCC_GetAPB1Prescaler());
}
/**
* @brief Return PCLK2 clock frequency
* @param HCLK_Frequency HCLK clock frequency
* @retval PCLK2 clock frequency (in Hz)
*/
uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency)
{
/* PCLK2 clock frequency */
return __LL_RCC_CALC_PCLK2_FREQ(HCLK_Frequency, LL_RCC_GetAPB2Prescaler());
}
/**
* @brief Return PLL clock frequency used for system domain
* @retval PLL clock frequency (in Hz)
*/
uint32_t RCC_PLL_GetFreqDomain_SYS(void)
{
uint32_t pllinputfreq, pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
}
return __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetR());
}
/**
* @brief Return PLL clock frequency used for SAI domain
* @retval PLL clock frequency (in Hz)
*/
uint32_t RCC_PLL_GetFreqDomain_SAI(void)
{
uint32_t pllinputfreq, plloutputfreq, pllsource;
uint32_t plln, pllpdiv;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE / PLLM) * PLLN
SAI Domain clock = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
}
plln = LL_RCC_PLL_GetN();
pllpdiv = LL_RCC_PLL_GetP();
if ((plln >= 8U) && (pllpdiv >= LL_RCC_PLLP_DIV_2))
{
plloutputfreq = __LL_RCC_CALC_PLLCLK_SAI_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
plln, pllpdiv);
}
else
{
plloutputfreq = 0; /* Invalid PLLN or PLLPDIV value */
}
return plloutputfreq;
}
/**
* @brief Return PLL clock frequency used for 48 MHz domain
* @retval PLL clock frequency (in Hz)
*/
uint32_t RCC_PLL_GetFreqDomain_48M(void)
{
uint32_t pllinputfreq, pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLM) * PLLN
48M Domain clock = PLL_VCO / PLLQ
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
}
return __LL_RCC_CALC_PLLCLK_48M_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ());
}
/**
* @brief Return PLLSAI1 clock frequency used for SAI domain
* @retval PLLSAI1 clock frequency (in Hz)
*/
uint32_t RCC_PLLSAI1_GetFreqDomain_SAI(void)
{
uint32_t pllinputfreq, plloutputfreq, pllsource;
uint32_t plln, pllpdiv;
/* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLSAI1M) * PLLSAI1N */
/* SAI Domain clock = PLLSAI1_VCO / PLLSAI1P */
pllsource = LL_RCC_PLLSAI1_GetSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */
pllinputfreq = HSE_VALUE;
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
}
plln = LL_RCC_PLLSAI1_GetN();
pllpdiv = LL_RCC_PLLSAI1_GetP();
if ((plln >= 8U) && (pllpdiv >= LL_RCC_PLLSAI1P_DIV_2))
{
plloutputfreq = __LL_RCC_CALC_PLLSAI1_SAI_FREQ(pllinputfreq, LL_RCC_PLLSAI1_GetDivider(),
plln, pllpdiv);
}
else
{
plloutputfreq = 0; /* Invalid PLLSAI1N or PLLSAI1PDIV value */
}
return plloutputfreq;
}
/**
* @brief Return PLLSAI1 clock frequency used for 48Mhz domain
* @retval PLLSAI1 clock frequency (in Hz)
*/
uint32_t RCC_PLLSAI1_GetFreqDomain_48M(void)
{
uint32_t pllinputfreq, pllsource;
/* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLSAI1M) * PLLSAI1N */
/* 48M Domain clock = PLLSAI1_VCO / PLLSAI1Q */
pllsource = LL_RCC_PLLSAI1_GetSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */
pllinputfreq = HSE_VALUE;
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
}
return __LL_RCC_CALC_PLLSAI1_48M_FREQ(pllinputfreq, LL_RCC_PLLSAI1_GetDivider(),
LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetQ());
}
/**
* @brief Return PLLSAI1 clock frequency used for ADC domain
* @retval PLLSAI1 clock frequency (in Hz)
*/
uint32_t RCC_PLLSAI1_GetFreqDomain_ADC(void)
{
uint32_t pllinputfreq, pllsource;
/* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLSAI1M) * PLLSAI1N */
/* 48M Domain clock = PLLSAI1_VCO / PLLSAI1R */
pllsource = LL_RCC_PLLSAI1_GetSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */
pllinputfreq = HSE_VALUE;
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
}
return __LL_RCC_CALC_PLLSAI1_ADC_FREQ(pllinputfreq, LL_RCC_PLLSAI1_GetDivider(),
LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetR());
}
/**
* @brief Return PLLSAI2 clock frequency used for SAI domain
* @retval PLLSAI2 clock frequency (in Hz)
*/
uint32_t RCC_PLLSAI2_GetFreqDomain_SAI(void)
{
uint32_t pllinputfreq, plloutputfreq, pllsource;
uint32_t plln, pllpdiv;
/* PLLSAI2_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLSAI2M) * PLLSAI2N */
/* SAI Domain clock = PLLSAI2_VCO / PLLSAI2P */
pllsource = LL_RCC_PLLSAI2_GetSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI2 clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI2 clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI2 clock source */
pllinputfreq = HSE_VALUE;
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
}
plln = LL_RCC_PLLSAI2_GetN();
pllpdiv = LL_RCC_PLLSAI2_GetP();
if ((plln >= 8U) && (pllpdiv >= LL_RCC_PLLSAI2P_DIV_2))
{
plloutputfreq = __LL_RCC_CALC_PLLSAI2_SAI_FREQ(pllinputfreq, LL_RCC_PLLSAI2_GetDivider(),
plln, pllpdiv);
}
else
{
plloutputfreq = 0; /* Invalid PLLSAI2N or PLLSAI2PDIV value */
}
return plloutputfreq;
}
/**
* @}
*/
/**
* @}
*/
#endif /* defined(RCC) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/