| /** |
| ****************************************************************************** |
| * @file stm32wbxx_hal_cryp.c |
| * @author MCD Application Team |
| * @brief CRYP HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Cryptography (CRYP) peripheral: |
| * + Initialization, de-initialization, set config and get config functions |
| * + AES processing functions |
| * + DMA callback functions |
| * + CRYP IRQ handler management |
| * + Peripheral State functions |
| * |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2019 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| ============================================================================== |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| The CRYP HAL driver can be used in CRYP or TinyAES peripheral as follows: |
| |
| (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): |
| (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE() |
| or __HAL_RCC_AES_CLK_ENABLE for TinyAES peripheral |
| (##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT()) |
| (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() |
| (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() |
| (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() |
| (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA()) |
| (+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE() |
| (+++) Configure and enable two DMA streams one for managing data transfer from |
| memory to peripheral (input stream) and another stream for managing data |
| transfer from peripheral to memory (output stream) |
| (+++) Associate the initialized DMA handle to the CRYP DMA handle |
| using __HAL_LINKDMA() |
| (+++) Configure the priority and enable the NVIC for the transfer complete |
| interrupt on the two DMA channels. The output channel should have higher |
| priority than the input channel HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). |
| |
| (#)Initialize the CRYP according to the specified parameters : |
| (##) The data type: 1-bit, 8-bit, 16-bit or 32-bit. |
| (##) The key size: 128, 192 or 256. |
| (##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR/GCM or CCM. |
| (##) The initialization vector (counter). It is not used in ECB mode. |
| (##) The key buffer used for encryption/decryption. |
| (+++) In some specific configurations, the key is written by the application |
| code out of the HAL scope. In that case, user can still resort to the |
| HAL APIs as usual but must make sure that pKey pointer is set to NULL. |
| (##) The DataWidthUnit field. It specifies whether the data length (or the payload length for authentication |
| algorithms) is in words or bytes. |
| (##) The Header used only in AES GCM and CCM Algorithm for authentication. |
| (##) The HeaderSize providing the size of the header buffer in words or bytes, |
| depending upon HeaderWidthUnit field. |
| (##) The HeaderWidthUnit field. It specifies whether the header length (for authentication algorithms) |
| is in words or bytes. |
| (##) The B0 block is the first authentication block used only in AES CCM mode. |
| (##) The KeyIVConfigSkip used to process several messages in a row (please see more information below). |
| |
| (#)Three processing (encryption/decryption) functions are available: |
| (##) Polling mode: encryption and decryption APIs are blocking functions |
| i.e. they process the data and wait till the processing is finished, |
| e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt |
| (##) Interrupt mode: encryption and decryption APIs are not blocking functions |
| i.e. they process the data under interrupt, |
| e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT |
| (##) DMA mode: encryption and decryption APIs are not blocking functions |
| i.e. the data transfer is ensured by DMA, |
| e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA |
| |
| (#)When the processing function is called at first time after HAL_CRYP_Init() |
| the CRYP peripheral is configured and processes the buffer in input. |
| At second call, no need to Initialize the CRYP, user have to get current configuration via |
| HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set |
| new parameters, finally user can start encryption/decryption. |
| |
| (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. |
| |
| (#)To process a single message with consecutive calls to HAL_CRYP_Encrypt() or HAL_CRYP_Decrypt() |
| without having to configure again the Key or the Initialization Vector between each API call, |
| the field KeyIVConfigSkip of the initialization structure must be set to CRYP_KEYIVCONFIG_ONCE. |
| Same is true for consecutive calls of HAL_CRYP_Encrypt_IT(), HAL_CRYP_Decrypt_IT(), HAL_CRYP_Encrypt_DMA() |
| or HAL_CRYP_Decrypt_DMA(). |
| |
| [..] |
| The cryptographic processor supports following standards: |
| (#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 peripheral: |
| (##)64-bit data block processing |
| (##) chaining modes supported : |
| (+++) Electronic Code Book(ECB) |
| (+++) Cipher Block Chaining (CBC) |
| (##) keys length supported :64-bit, 128-bit and 192-bit. |
| (#) The advanced encryption standard (AES) supported by CRYP1 & TinyAES peripheral: |
| (##)128-bit data block processing |
| (##) chaining modes supported : |
| (+++) Electronic Code Book(ECB) |
| (+++) Cipher Block Chaining (CBC) |
| (+++) Counter mode (CTR) |
| (+++) Galois/counter mode (GCM/GMAC) |
| (+++) Counter with Cipher Block Chaining-Message(CCM) |
| (##) keys length Supported : |
| (+++) for CRYP1 peripheral: 128-bit, 192-bit and 256-bit. |
| (+++) for TinyAES peripheral: 128-bit and 256-bit |
| |
| [..] |
| (@) Specific care must be taken to format the key and the Initialization Vector IV! |
| |
| [..] If the key is defined as a 128-bit long array key[127..0] = {b127 ... b0} where |
| b127 is the MSB and b0 the LSB, the key must be stored in MCU memory |
| (+) as a sequence of words where the MSB word comes first (occupies the |
| lowest memory address) |
| (++) address n+0 : 0b b127 .. b120 b119 .. b112 b111 .. b104 b103 .. b96 |
| (++) address n+4 : 0b b95 .. b88 b87 .. b80 b79 .. b72 b71 .. b64 |
| (++) address n+8 : 0b b63 .. b56 b55 .. b48 b47 .. b40 b39 .. b32 |
| (++) address n+C : 0b b31 .. b24 b23 .. b16 b15 .. b8 b7 .. b0 |
| [..] Hereafter, another illustration when considering a 128-bit long key made of 16 bytes {B15..B0}. |
| The 4 32-bit words that make the key must be stored as follows in MCU memory: |
| (+) address n+0 : 0x B15 B14 B13 B12 |
| (+) address n+4 : 0x B11 B10 B9 B8 |
| (+) address n+8 : 0x B7 B6 B5 B4 |
| (+) address n+C : 0x B3 B2 B1 B0 |
| [..] which leads to the expected setting |
| (+) AES_KEYR3 = 0x B15 B14 B13 B12 |
| (+) AES_KEYR2 = 0x B11 B10 B9 B8 |
| (+) AES_KEYR1 = 0x B7 B6 B5 B4 |
| (+) AES_KEYR0 = 0x B3 B2 B1 B0 |
| |
| [..] Same format must be applied for a 256-bit long key made of 32 bytes {B31..B0}. |
| The 8 32-bit words that make the key must be stored as follows in MCU memory: |
| (+) address n+00 : 0x B31 B30 B29 B28 |
| (+) address n+04 : 0x B27 B26 B25 B24 |
| (+) address n+08 : 0x B23 B22 B21 B20 |
| (+) address n+0C : 0x B19 B18 B17 B16 |
| (+) address n+10 : 0x B15 B14 B13 B12 |
| (+) address n+14 : 0x B11 B10 B9 B8 |
| (+) address n+18 : 0x B7 B6 B5 B4 |
| (+) address n+1C : 0x B3 B2 B1 B0 |
| [..] which leads to the expected setting |
| (+) AES_KEYR7 = 0x B31 B30 B29 B28 |
| (+) AES_KEYR6 = 0x B27 B26 B25 B24 |
| (+) AES_KEYR5 = 0x B23 B22 B21 B20 |
| (+) AES_KEYR4 = 0x B19 B18 B17 B16 |
| (+) AES_KEYR3 = 0x B15 B14 B13 B12 |
| (+) AES_KEYR2 = 0x B11 B10 B9 B8 |
| (+) AES_KEYR1 = 0x B7 B6 B5 B4 |
| (+) AES_KEYR0 = 0x B3 B2 B1 B0 |
| |
| [..] Initialization Vector IV (4 32-bit words) format must follow the same as |
| that of a 128-bit long key. |
| |
| [..] Note that key and IV registers are not sensitive to swap mode selection. |
| |
| [..] This section describes the AES Galois/counter mode (GCM) supported by both CRYP1 and TinyAES peripherals: |
| (#) Algorithm supported : |
| (##) Galois/counter mode (GCM) |
| (##) Galois message authentication code (GMAC) :is exactly the same as |
| GCM algorithm composed only by an header. |
| (#) Four phases are performed in GCM : |
| (##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing |
| (##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash |
| computation only. |
| (##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream |
| encryption + data XORing. It works in a similar way for ciphertext (C). |
| (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data. |
| (#) structure of message construction in GCM is defined as below : |
| (##) 16 bytes Initial Counter Block (ICB)composed of IV and counter |
| (##) The authenticated header A (also knows as Additional Authentication Data AAD) |
| this part of the message is only authenticated, not encrypted. |
| (##) The plaintext message P is both authenticated and encrypted as ciphertext. |
| GCM standard specifies that ciphertext has same bit length as the plaintext. |
| (##) The last block is composed of the length of A (on 64 bits) and the length of ciphertext |
| (on 64 bits) |
| |
| [..] A more detailed description of the GCM message structure is available below. |
| |
| [..] This section describe The AES Counter with Cipher Block Chaining-Message |
| Authentication Code (CCM) supported by both CRYP1 and TinyAES peripheral: |
| (#) Specific parameters for CCM : |
| |
| (##) B0 block : follows NIST Special Publication 800-38C, |
| (##) B1 block (header) |
| (##) CTRx block : control blocks |
| |
| [..] A detailed description of the CCM message structure is available below. |
| |
| (#) Four phases are performed in CCM for CRYP1 peripheral: |
| (##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing |
| (##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash |
| computation only. |
| (##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream |
| encryption + data XORing. It works in a similar way for ciphertext (C). |
| (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data. |
| (#) CCM in TinyAES peripheral: |
| (##) To perform message payload encryption or decryption AES is configured in CTR mode. |
| (##) For authentication two phases are performed : |
| - Header phase: peripheral processes the Additional Authenticated Data (AAD) first, then the cleartext message |
| only cleartext payload (not the ciphertext payload) is used and no output. |
| (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data. |
| |
| *** Callback registration *** |
| ============================= |
| |
| [..] |
| The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1 |
| allows the user to configure dynamically the driver callbacks. |
| Use Functions HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback() |
| to register an interrupt callback. |
| |
| [..] |
| Function HAL_CRYP_RegisterCallback() allows to register following callbacks: |
| (+) InCpltCallback : Input FIFO transfer completed callback. |
| (+) OutCpltCallback : Output FIFO transfer completed callback. |
| (+) ErrorCallback : callback for error detection. |
| (+) MspInitCallback : CRYP MspInit. |
| (+) MspDeInitCallback : CRYP MspDeInit. |
| This function takes as parameters the HAL peripheral handle, the Callback ID |
| and a pointer to the user callback function. |
| |
| [..] |
| Use function HAL_CRYP_UnRegisterCallback() to reset a callback to the default |
| weak function. |
| HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle, |
| and the Callback ID. |
| This function allows to reset following callbacks: |
| (+) InCpltCallback : Input FIFO transfer completed callback. |
| (+) OutCpltCallback : Output FIFO transfer completed callback. |
| (+) ErrorCallback : callback for error detection. |
| (+) MspInitCallback : CRYP MspInit. |
| (+) MspDeInitCallback : CRYP MspDeInit. |
| |
| [..] |
| By default, after the HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET |
| all callbacks are set to the corresponding weak functions : |
| examples HAL_CRYP_InCpltCallback() , HAL_CRYP_OutCpltCallback(). |
| Exception done for MspInit and MspDeInit functions that are |
| reset to the legacy weak function in the HAL_CRYP_Init()/ HAL_CRYP_DeInit() only when |
| these callbacks are null (not registered beforehand). |
| if not, MspInit or MspDeInit are not null, the HAL_CRYP_Init() / HAL_CRYP_DeInit() |
| keep and use the user MspInit/MspDeInit functions (registered beforehand) |
| |
| [..] |
| Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only. |
| Exception done MspInit/MspDeInit callbacks that can be registered/unregistered |
| in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state, |
| thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. |
| In that case first register the MspInit/MspDeInit user callbacks |
| using HAL_CRYP_RegisterCallback() before calling HAL_CRYP_DeInit() |
| or HAL_CRYP_Init() function. |
| |
| [..] |
| When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registration feature is not available and all callbacks |
| are set to the corresponding weak functions. |
| |
| |
| *** Suspend/Resume feature *** |
| ============================== |
| |
| [..] |
| The compilation define USE_HAL_CRYP_SUSPEND_RESUME when set to 1 |
| allows the user to resort to the suspend/resume feature. |
| A low priority block processing can be suspended to process a high priority block |
| instead. When the high priority block processing is over, the low priority block |
| processing can be resumed, restarting from the point where it was suspended. This |
| feature is applicable only in non-blocking interrupt mode. |
| |
| [..] User must resort to HAL_CRYP_Suspend() to suspend the low priority block |
| processing. This API manages the hardware block processing suspension and saves all the |
| internal data that will be needed to restart later on. Upon HAL_CRYP_Suspend() completion, |
| the user can launch the processing of any other block (high priority block processing). |
| |
| [..] When the high priority block processing is over, user must invoke HAL_CRYP_Resume() |
| to resume the low priority block processing. Ciphering (or deciphering) restarts from |
| the suspension point and ends as usual. |
| |
| [..] HAL_CRYP_Suspend() reports an error when the suspension request is sent too late |
| (i.e when the low priority block processing is about to end). There is no use to |
| suspend the tag generation processing for authentication algorithms. |
| |
| [..] |
| (@) If the key is written out of HAL scope (case pKey pointer set to NULL by the user), |
| the block processing suspension/resumption mechanism is NOT applicable. |
| |
| [..] |
| (@) If the Key and Initialization Vector are configured only once and configuration is |
| skipped for consecutive processings (case KeyIVConfigSkip set to CRYP_KEYIVCONFIG_ONCE), |
| the block processing suspension/resumption mechanism is NOT applicable. |
| |
| @endverbatim |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32wbxx_hal.h" |
| |
| /** @addtogroup STM32WBxx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @addtogroup CRYP |
| * @{ |
| */ |
| |
| |
| #ifdef HAL_CRYP_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** @addtogroup CRYP_Private_Defines |
| * @{ |
| */ |
| #define CRYP_TIMEOUT_KEYPREPARATION 82U /* The latency of key preparation operation is 82 clock cycles.*/ |
| #define CRYP_TIMEOUT_GCMCCMINITPHASE 299U /* The latency of GCM/CCM init phase to prepare hash subkey |
| is 299 clock cycles.*/ |
| #define CRYP_TIMEOUT_GCMCCMHEADERPHASE 290U /* The latency of GCM/CCM header phase is 290 clock cycles.*/ |
| |
| #define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */ |
| #define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */ |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| #define CRYP_PHASE_HEADER_SUSPENDED 0x00000004U /*!< GCM/GMAC/CCM header phase is suspended */ |
| #define CRYP_PHASE_PAYLOAD_SUSPENDED 0x00000005U /*!< GCM/CCM payload phase is suspended */ |
| #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
| #define CRYP_PHASE_HEADER_DMA_FEED 0x00000006U /*!< GCM/GMAC/CCM header is fed to the peripheral in DMA mode */ |
| |
| #define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode(Mode 1) */ |
| #define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions (Mode 2) */ |
| #define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption (Mode 3) */ |
| #define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions (Mode 4) */ |
| #define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */ |
| #define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */ |
| #define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */ |
| #define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */ |
| |
| /* CTR1 information to use in CCM algorithm */ |
| #define CRYP_CCM_CTR1_0 0x07FFFFFFU |
| #define CRYP_CCM_CTR1_1 0xFFFFFF00U |
| #define CRYP_CCM_CTR1_2 0x00000001U |
| |
| /** |
| * @} |
| */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| /** @addtogroup CRYP_Private_Macros |
| * @{ |
| */ |
| |
| #define CRYP_SET_PHASE(__HANDLE__, __PHASE__) MODIFY_REG((__HANDLE__)->Instance->CR,\ |
| AES_CR_GCMPH, (uint32_t)(__PHASE__)) |
| |
| /** |
| * @} |
| */ |
| |
| /* Private struct -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @addtogroup CRYP_Private_Functions |
| * @{ |
| */ |
| |
| static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); |
| static HAL_StatusTypeDef CRYP_SetHeaderDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size); |
| static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma); |
| static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma); |
| static void CRYP_DMAError(DMA_HandleTypeDef *hdma); |
| static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize); |
| static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp); |
| static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
| static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp); |
| static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp); |
| static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp); |
| static HAL_StatusTypeDef CRYP_GCMCCM_SetPayloadPhase_DMA(CRYP_HandleTypeDef *hcryp); |
| static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp); |
| static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp); |
| static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
| static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
| static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp); |
| static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp); |
| static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout); |
| static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
| static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
| static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp); |
| static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp); |
| static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp); |
| static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
| static void CRYP_ClearCCFlagWhenHigh(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output); |
| static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input); |
| static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output); |
| static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input); |
| static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output, uint32_t KeySize); |
| static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint32_t KeySize); |
| static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp); |
| #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
| |
| |
| /** |
| * @} |
| */ |
| |
| /* Exported functions ---------------------------------------------------------*/ |
| |
| /** @addtogroup CRYP_Exported_Functions |
| * @{ |
| */ |
| |
| /** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions. |
| * |
| @verbatim |
| ======================================================================================== |
| ##### Initialization, de-initialization and Set and Get configuration functions ##### |
| ======================================================================================== |
| [..] This section provides functions allowing to: |
| (+) Initialize the CRYP |
| (+) DeInitialize the CRYP |
| (+) Initialize the CRYP MSP |
| (+) DeInitialize the CRYP MSP |
| (+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef |
| Parameters which are configured in This section are : |
| (++) Key size |
| (++) Data Type : 32,16, 8 or 1bit |
| (++) AlgoMode : |
| (+++) for CRYP1 peripheral : |
| ECB and CBC in DES/TDES Standard |
| ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard. |
| (+++) for TinyAES2 peripheral, only ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard are supported. |
| (+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initializes the CRYP according to the specified |
| * parameters in the CRYP_ConfigTypeDef and creates the associated handle. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) |
| { |
| /* Check the CRYP handle allocation */ |
| if (hcryp == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check parameters */ |
| assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize)); |
| assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); |
| assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm)); |
| assert_param(IS_CRYP_INIT(hcryp->Init.KeyIVConfigSkip)); |
| |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| if (hcryp->State == HAL_CRYP_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| hcryp->Lock = HAL_UNLOCKED; |
| |
| hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */ |
| hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */ |
| hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */ |
| |
| if (hcryp->MspInitCallback == NULL) |
| { |
| hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */ |
| } |
| |
| /* Init the low level hardware */ |
| hcryp->MspInitCallback(hcryp); |
| } |
| #else |
| if (hcryp->State == HAL_CRYP_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| hcryp->Lock = HAL_UNLOCKED; |
| |
| /* Init the low level hardware */ |
| HAL_CRYP_MspInit(hcryp); |
| } |
| #endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */ |
| |
| /* Set the key size (This bit field is do not care in the DES or TDES modes), data type and Algorithm */ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD, |
| hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm); |
| |
| /* Reset Error Code field */ |
| hcryp->ErrorCode = HAL_CRYP_ERROR_NONE; |
| |
| /* Reset peripheral Key and IV configuration flag */ |
| hcryp->KeyIVConfig = 0U; |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Set the default CRYP phase */ |
| hcryp->Phase = CRYP_PHASE_READY; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief De-Initializes the CRYP peripheral. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) |
| { |
| /* Check the CRYP handle allocation */ |
| if (hcryp == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the default CRYP phase */ |
| hcryp->Phase = CRYP_PHASE_READY; |
| |
| /* Reset CrypInCount and CrypOutCount */ |
| hcryp->CrypInCount = 0; |
| hcryp->CrypOutCount = 0; |
| hcryp->CrypHeaderCount = 0; |
| |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| |
| if (hcryp->MspDeInitCallback == NULL) |
| { |
| hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */ |
| } |
| /* DeInit the low level hardware */ |
| hcryp->MspDeInitCallback(hcryp); |
| |
| #else |
| |
| /* DeInit the low level hardware: CLOCK, NVIC.*/ |
| HAL_CRYP_MspDeInit(hcryp); |
| |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_RESET; |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Configure the CRYP according to the specified |
| * parameters in the CRYP_ConfigTypeDef |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure |
| * @param pConf pointer to a CRYP_ConfigTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf) |
| { |
| /* Check the CRYP handle allocation */ |
| if ((hcryp == NULL) || (pConf == NULL)) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check parameters */ |
| assert_param(IS_CRYP_KEYSIZE(pConf->KeySize)); |
| assert_param(IS_CRYP_DATATYPE(pConf->DataType)); |
| assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm)); |
| |
| if (hcryp->State == HAL_CRYP_STATE_READY) |
| { |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_BUSY; |
| |
| /* Process locked */ |
| __HAL_LOCK(hcryp); |
| |
| /* Set CRYP parameters */ |
| hcryp->Init.DataType = pConf->DataType; |
| hcryp->Init.pKey = pConf->pKey; |
| hcryp->Init.Algorithm = pConf->Algorithm; |
| hcryp->Init.KeySize = pConf->KeySize; |
| hcryp->Init.pInitVect = pConf->pInitVect; |
| hcryp->Init.Header = pConf->Header; |
| hcryp->Init.HeaderSize = pConf->HeaderSize; |
| hcryp->Init.B0 = pConf->B0; |
| hcryp->Init.DataWidthUnit = pConf->DataWidthUnit; |
| hcryp->Init.HeaderWidthUnit = pConf->HeaderWidthUnit; |
| hcryp->Init.KeyIVConfigSkip = pConf->KeyIVConfigSkip; |
| |
| /* Set the key size (This bit field is do not care in the DES or TDES modes), data type and operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD, |
| hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm); |
| |
| /*clear error flags*/ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR); |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Reset Error Code field */ |
| hcryp->ErrorCode = HAL_CRYP_ERROR_NONE; |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Set the default CRYP phase */ |
| hcryp->Phase = CRYP_PHASE_READY; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Busy error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Get CRYP Configuration parameters in associated handle. |
| * @param pConf pointer to a CRYP_ConfigTypeDef structure |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf) |
| { |
| /* Check the CRYP handle allocation */ |
| if ((hcryp == NULL) || (pConf == NULL)) |
| { |
| return HAL_ERROR; |
| } |
| |
| if (hcryp->State == HAL_CRYP_STATE_READY) |
| { |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_BUSY; |
| |
| /* Process locked */ |
| __HAL_LOCK(hcryp); |
| |
| /* Get CRYP parameters */ |
| pConf->DataType = hcryp->Init.DataType; |
| pConf->pKey = hcryp->Init.pKey; |
| pConf->Algorithm = hcryp->Init.Algorithm; |
| pConf->KeySize = hcryp->Init.KeySize ; |
| pConf->pInitVect = hcryp->Init.pInitVect; |
| pConf->Header = hcryp->Init.Header ; |
| pConf->HeaderSize = hcryp->Init.HeaderSize; |
| pConf->B0 = hcryp->Init.B0; |
| pConf->DataWidthUnit = hcryp->Init.DataWidthUnit; |
| pConf->HeaderWidthUnit = hcryp->Init.HeaderWidthUnit; |
| pConf->KeyIVConfigSkip = hcryp->Init.KeyIVConfigSkip; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Busy error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
| return HAL_ERROR; |
| } |
| } |
| /** |
| * @brief Initializes the CRYP MSP. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval None |
| */ |
| __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hcryp); |
| |
| /* NOTE : This function should not be modified; when the callback is needed, |
| the HAL_CRYP_MspInit can be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes CRYP MSP. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval None |
| */ |
| __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hcryp); |
| |
| /* NOTE : This function should not be modified; when the callback is needed, |
| the HAL_CRYP_MspDeInit can be implemented in the user file |
| */ |
| } |
| |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /** |
| * @brief Register a User CRYP Callback |
| * To be used instead of the weak predefined callback |
| * @param hcryp cryp handle |
| * @param CallbackID ID of the callback to be registered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID |
| * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID |
| * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID |
| * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID |
| * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID |
| * @param pCallback pointer to the Callback function |
| * @retval status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID, |
| pCRYP_CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
| |
| return HAL_ERROR; |
| } |
| /* Process locked */ |
| __HAL_LOCK(hcryp); |
| |
| if (hcryp->State == HAL_CRYP_STATE_READY) |
| { |
| switch (CallbackID) |
| { |
| case HAL_CRYP_INPUT_COMPLETE_CB_ID : |
| hcryp->InCpltCallback = pCallback; |
| break; |
| |
| case HAL_CRYP_OUTPUT_COMPLETE_CB_ID : |
| hcryp->OutCpltCallback = pCallback; |
| break; |
| |
| case HAL_CRYP_ERROR_CB_ID : |
| hcryp->ErrorCallback = pCallback; |
| break; |
| |
| case HAL_CRYP_MSPINIT_CB_ID : |
| hcryp->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_CRYP_MSPDEINIT_CB_ID : |
| hcryp->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (hcryp->State == HAL_CRYP_STATE_RESET) |
| { |
| switch (CallbackID) |
| { |
| case HAL_CRYP_MSPINIT_CB_ID : |
| hcryp->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_CRYP_MSPDEINIT_CB_ID : |
| hcryp->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hcryp); |
| |
| return status; |
| } |
| |
| /** |
| * @brief Unregister an CRYP Callback |
| * CRYP callback is redirected to the weak predefined callback |
| * @param hcryp cryp handle |
| * @param CallbackID ID of the callback to be unregistered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID |
| * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID |
| * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID |
| * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID |
| * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID |
| * @retval status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| /* Process locked */ |
| __HAL_LOCK(hcryp); |
| |
| if (hcryp->State == HAL_CRYP_STATE_READY) |
| { |
| switch (CallbackID) |
| { |
| case HAL_CRYP_INPUT_COMPLETE_CB_ID : |
| hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */ |
| break; |
| |
| case HAL_CRYP_OUTPUT_COMPLETE_CB_ID : |
| hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */ |
| break; |
| |
| case HAL_CRYP_ERROR_CB_ID : |
| hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */ |
| break; |
| |
| case HAL_CRYP_MSPINIT_CB_ID : |
| hcryp->MspInitCallback = HAL_CRYP_MspInit; |
| break; |
| |
| case HAL_CRYP_MSPDEINIT_CB_ID : |
| hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (hcryp->State == HAL_CRYP_STATE_RESET) |
| { |
| switch (CallbackID) |
| { |
| case HAL_CRYP_MSPINIT_CB_ID : |
| hcryp->MspInitCallback = HAL_CRYP_MspInit; |
| break; |
| |
| case HAL_CRYP_MSPDEINIT_CB_ID : |
| hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;; |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hcryp); |
| |
| return status; |
| } |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| /** |
| * @brief Request CRYP processing suspension when in interruption mode. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @note Set the handle field SuspendRequest to the appropriate value so that |
| * the on-going CRYP processing is suspended as soon as the required |
| * conditions are met. |
| * @note HAL_CRYP_ProcessSuspend() can only be invoked when the processing is done |
| * in non-blocking interrupt mode. |
| * @note It is advised not to suspend the CRYP processing when the DMA controller |
| * is managing the data transfer. |
| * @retval None |
| */ |
| void HAL_CRYP_ProcessSuspend(CRYP_HandleTypeDef *hcryp) |
| { |
| /* Set Handle SuspendRequest field */ |
| hcryp->SuspendRequest = HAL_CRYP_SUSPEND; |
| } |
| |
| /** |
| * @brief CRYP processing suspension and peripheral internal parameters storage. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @note peripheral internal parameters are stored to be readily available when |
| * suspended processing is resumed later on. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_Suspend(CRYP_HandleTypeDef *hcryp) |
| { |
| HAL_CRYP_STATETypeDef state; |
| |
| /* Request suspension */ |
| HAL_CRYP_ProcessSuspend(hcryp); |
| |
| do |
| { |
| state = HAL_CRYP_GetState(hcryp); |
| } while ((state != HAL_CRYP_STATE_SUSPENDED) && (state != HAL_CRYP_STATE_READY)); |
| |
| if (HAL_CRYP_GetState(hcryp) == HAL_CRYP_STATE_READY) |
| { |
| /* Processing was already over or was about to end. No suspension done */ |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Suspend Processing */ |
| |
| /* If authentication algorithms on-going, carry out first saving steps |
| before disable the peripheral */ |
| if ((hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) || \ |
| (hcryp->Init.Algorithm == CRYP_AES_CCM)) |
| { |
| /* Save Suspension registers */ |
| CRYP_Read_SuspendRegisters(hcryp, hcryp->SUSPxR_saved); |
| /* Save Key */ |
| CRYP_Read_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize); |
| /* Save IV */ |
| CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved); |
| } |
| /* Disable AES */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Save low-priority block CRYP handle parameters */ |
| hcryp->Init_saved = hcryp->Init; |
| hcryp->pCrypInBuffPtr_saved = hcryp->pCrypInBuffPtr; |
| hcryp->pCrypOutBuffPtr_saved = hcryp->pCrypOutBuffPtr; |
| hcryp->CrypInCount_saved = hcryp->CrypInCount; |
| hcryp->CrypOutCount_saved = hcryp->CrypOutCount; |
| hcryp->Phase_saved = hcryp->Phase; |
| hcryp->State_saved = hcryp->State; |
| hcryp->Size_saved = ((hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) ? \ |
| (hcryp->Size / 4U) : hcryp->Size); |
| hcryp->SizesSum_saved = hcryp->SizesSum; |
| hcryp->AutoKeyDerivation_saved = hcryp->AutoKeyDerivation; |
| hcryp->CrypHeaderCount_saved = hcryp->CrypHeaderCount; |
| hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; |
| |
| if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \ |
| (hcryp->Init.Algorithm == CRYP_AES_CTR)) |
| { |
| /* Save Initialisation Vector registers */ |
| CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved); |
| } |
| |
| /* Save Control register */ |
| hcryp->CR_saved = hcryp->Instance->CR; |
| |
| } |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief CRYP processing resumption. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @note Processing restarts at the exact point where it was suspended, based |
| * on the parameters saved at suspension time. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_Resume(CRYP_HandleTypeDef *hcryp) |
| { |
| /* Check the CRYP handle allocation */ |
| if (hcryp == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| if (hcryp->State_saved != HAL_CRYP_STATE_SUSPENDED) |
| { |
| /* CRYP was not suspended */ |
| return HAL_ERROR; |
| } |
| else |
| { |
| |
| /* Restore low-priority block CRYP handle parameters */ |
| hcryp->Init = hcryp->Init_saved; |
| hcryp->State = hcryp->State_saved; |
| |
| /* Chaining algorithms case */ |
| if ((hcryp->Init_saved.Algorithm == CRYP_AES_ECB) || \ |
| (hcryp->Init_saved.Algorithm == CRYP_AES_CBC) || \ |
| (hcryp->Init_saved.Algorithm == CRYP_AES_CTR)) |
| { |
| /* Restore low-priority block CRYP handle parameters */ |
| hcryp->AutoKeyDerivation = hcryp->AutoKeyDerivation_saved; |
| |
| if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \ |
| (hcryp->Init.Algorithm == CRYP_AES_CTR)) |
| { |
| hcryp->Init.pInitVect = hcryp->IV_saved; |
| } |
| __HAL_CRYP_DISABLE(hcryp); |
| (void) HAL_CRYP_Init(hcryp); |
| } |
| else /* Authentication algorithms case */ |
| { |
| /* Restore low-priority block CRYP handle parameters */ |
| hcryp->Phase = hcryp->Phase_saved; |
| hcryp->CrypHeaderCount = hcryp->CrypHeaderCount_saved; |
| hcryp->SizesSum = hcryp->SizesSum_saved; |
| |
| /* Disable AES and write-back SUSPxR registers */; |
| __HAL_CRYP_DISABLE(hcryp); |
| /* Restore AES Suspend Registers */ |
| CRYP_Write_SuspendRegisters(hcryp, hcryp->SUSPxR_saved); |
| /* Restore Control, Key and IV Registers, then enable AES */ |
| hcryp->Instance->CR = hcryp->CR_saved; |
| CRYP_Write_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize); |
| CRYP_Write_IVRegisters(hcryp, hcryp->IV_saved); |
| |
| /* At the same time, set handle state back to READY to be able to resume the AES calculations |
| without the processing APIs returning HAL_BUSY when called. */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| } |
| |
| |
| /* Resume low-priority block processing under IT */ |
| hcryp->ResumingFlag = 1U; |
| if (READ_BIT(hcryp->CR_saved, AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) |
| { |
| if (HAL_CRYP_Encrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, \ |
| hcryp->pCrypOutBuffPtr_saved) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| if (HAL_CRYP_Decrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, \ |
| hcryp->pCrypOutBuffPtr_saved) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| } |
| } |
| return HAL_OK; |
| } |
| #endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup CRYP_Exported_Functions_Group2 Encryption Decryption functions |
| * @brief Encryption Decryption functions. |
| * |
| @verbatim |
| ============================================================================== |
| ##### Encrypt Decrypt functions ##### |
| ============================================================================== |
| [..] This section provides API allowing to Encrypt/Decrypt Data following |
| Standard DES/TDES or AES, and Algorithm configured by the user: |
| (+) Standard DES/TDES only supported by CRYP1 peripheral, below list of Algorithm supported : |
| - Electronic Code Book(ECB) |
| - Cipher Block Chaining (CBC) |
| (+) Standard AES supported by CRYP1 peripheral & TinyAES, list of Algorithm supported: |
| - Electronic Code Book(ECB) |
| - Cipher Block Chaining (CBC) |
| - Counter mode (CTR) |
| - Cipher Block Chaining (CBC) |
| - Counter mode (CTR) |
| - Galois/counter mode (GCM) |
| - Counter with Cipher Block Chaining-Message(CCM) |
| [..] Three processing functions are available: |
| (+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt |
| (+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT |
| (+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /* GCM message structure additional details |
| |
| ICB |
| +-------------------------------------------------------+ |
| | Initialization vector (IV) | Counter | |
| |----------------|----------------|-----------|---------| |
| 127 95 63 31 0 |
| |
| |
| Bit Number Register Contents |
| ---------- --------------- ----------- |
| 127 ...96 CRYP_IV1R[31:0] ICB[127:96] |
| 95 ...64 CRYP_IV1L[31:0] B0[95:64] |
| 63 ... 32 CRYP_IV0R[31:0] ICB[63:32] |
| 31 ... 0 CRYP_IV0L[31:0] ICB[31:0], where 32-bit counter= 0x2 |
| |
| |
| |
| GCM last block definition |
| +-------------------------------------------------------------------+ |
| | Bit[0] | Bit[32] | Bit[64] | Bit[96] | |
| |-----------|--------------------|-----------|----------------------| |
| | 0x0 | Header length[31:0]| 0x0 | Payload length[31:0] | |
| |-----------|--------------------|-----------|----------------------| |
| |
| */ |
| |
| /* CCM message blocks description |
| |
| (##) B0 block : According to NIST Special Publication 800-38C, |
| The first block B0 is formatted as follows, where l(m) is encoded in |
| most-significant-byte first order: |
| |
| Octet Number Contents |
| ------------ --------- |
| 0 Flags |
| 1 ... 15-q Nonce N |
| 16-q ... 15 Q |
| |
| the Flags field is formatted as follows: |
| |
| Bit Number Contents |
| ---------- ---------------------- |
| 7 Reserved (always zero) |
| 6 Adata |
| 5 ... 3 (t-2)/2 |
| 2 ... 0 [q-1]3 |
| |
| - Q: a bit string representation of the octet length of P (plaintext) |
| - q The octet length of the binary representation of the octet length of the payload |
| - A nonce (N), n The octet length of the where n+q=15. |
| - Flags: most significant octet containing four flags for control information, |
| - t The octet length of the MAC. |
| (##) B1 block (header) : associated data length(a) concatenated with Associated Data (A) |
| the associated data length expressed in bytes (a) defined as below: |
| - If 0 < a < 216-28, then it is encoded as [a]16, i.e. two octets |
| - If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six octets |
| - If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten octets |
| (##) CTRx block : control blocks |
| - Generation of CTR1 from first block B0 information : |
| equal to B0 with first 5 bits zeroed and most significant bits storing octet |
| length of P also zeroed, then incremented by one |
| |
| Bit Number Register Contents |
| ---------- --------------- ----------- |
| 127 ...96 CRYP_IV1R[31:0] B0[127:96], where Q length bits are set to 0, except for |
| bit 0 that is set to 1 |
| 95 ...64 CRYP_IV1L[31:0] B0[95:64] |
| 63 ... 32 CRYP_IV0R[31:0] B0[63:32] |
| 31 ... 0 CRYP_IV0L[31:0] B0[31:0], where flag bits set to 0 |
| |
| - Generation of CTR0: same as CTR1 with bit[0] set to zero. |
| |
| */ |
| |
| /** |
| * @brief Encryption mode. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param Input Pointer to the input buffer (plaintext) |
| * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) |
| * @param Output Pointer to the output buffer(ciphertext) |
| * @param Timeout Specify Timeout value |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, |
| uint32_t Timeout) |
| { |
| uint32_t algo; |
| HAL_StatusTypeDef status; |
| #ifdef USE_FULL_ASSERT |
| uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; |
| |
| /* Check input buffer size */ |
| assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); |
| #endif /* USE_FULL_ASSERT */ |
| |
| if (hcryp->State == HAL_CRYP_STATE_READY) |
| { |
| /* Change state Busy */ |
| hcryp->State = HAL_CRYP_STATE_BUSY; |
| |
| /* Process locked */ |
| __HAL_LOCK(hcryp); |
| |
| /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ |
| hcryp->CrypInCount = 0U; |
| hcryp->CrypOutCount = 0U; |
| hcryp->pCrypInBuffPtr = Input; |
| hcryp->pCrypOutBuffPtr = Output; |
| |
| /* Calculate Size parameter in Byte*/ |
| if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
| { |
| hcryp->Size = Size * 4U; |
| } |
| else |
| { |
| hcryp->Size = Size; |
| } |
| |
| /* Set the operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); |
| |
| /* algo get algorithm selected */ |
| algo = hcryp->Instance->CR & AES_CR_CHMOD; |
| |
| switch (algo) |
| { |
| |
| case CRYP_AES_ECB: |
| case CRYP_AES_CBC: |
| case CRYP_AES_CTR: |
| |
| /* AES encryption */ |
| status = CRYP_AES_Encrypt(hcryp, Timeout); |
| break; |
| |
| case CRYP_AES_GCM_GMAC: |
| |
| /* AES GCM encryption */ |
| status = CRYP_AESGCM_Process(hcryp, Timeout) ; |
| break; |
| |
| case CRYP_AES_CCM: |
| |
| /* AES CCM encryption */ |
| status = CRYP_AESCCM_Process(hcryp, Timeout); |
| break; |
| |
| default: |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
| status = HAL_ERROR; |
| break; |
| } |
| |
| if (status == HAL_OK) |
| { |
| /* Change the CRYP peripheral state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| } |
| else |
| { |
| /* Busy error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
| status = HAL_ERROR; |
| } |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Decryption mode. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param Input Pointer to the input buffer (ciphertext ) |
| * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) |
| * @param Output Pointer to the output buffer(plaintext) |
| * @param Timeout Specify Timeout value |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, |
| uint32_t Timeout) |
| { |
| HAL_StatusTypeDef status; |
| uint32_t algo; |
| #ifdef USE_FULL_ASSERT |
| uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; |
| |
| /* Check input buffer size */ |
| assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); |
| #endif /* USE_FULL_ASSERT */ |
| |
| if (hcryp->State == HAL_CRYP_STATE_READY) |
| { |
| /* Change state Busy */ |
| hcryp->State = HAL_CRYP_STATE_BUSY; |
| |
| /* Process locked */ |
| __HAL_LOCK(hcryp); |
| |
| /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ |
| hcryp->CrypInCount = 0U; |
| hcryp->CrypOutCount = 0U; |
| hcryp->pCrypInBuffPtr = Input; |
| hcryp->pCrypOutBuffPtr = Output; |
| |
| /* Calculate Size parameter in Byte*/ |
| if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
| { |
| hcryp->Size = Size * 4U; |
| } |
| else |
| { |
| hcryp->Size = Size; |
| } |
| |
| /* Set Decryption operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
| |
| /* algo get algorithm selected */ |
| algo = hcryp->Instance->CR & AES_CR_CHMOD; |
| |
| switch (algo) |
| { |
| |
| case CRYP_AES_ECB: |
| case CRYP_AES_CBC: |
| case CRYP_AES_CTR: |
| |
| /* AES decryption */ |
| status = CRYP_AES_Decrypt(hcryp, Timeout); |
| break; |
| |
| case CRYP_AES_GCM_GMAC: |
| |
| /* AES GCM decryption */ |
| status = CRYP_AESGCM_Process(hcryp, Timeout) ; |
| break; |
| |
| case CRYP_AES_CCM: |
| |
| /* AES CCM decryption */ |
| status = CRYP_AESCCM_Process(hcryp, Timeout); |
| break; |
| |
| default: |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
| status = HAL_ERROR; |
| break; |
| } |
| |
| if (status == HAL_OK) |
| { |
| /* Change the CRYP peripheral state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| } |
| else |
| { |
| /* Busy error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
| status = HAL_ERROR; |
| } |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Encryption in interrupt mode. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param Input Pointer to the input buffer (plaintext) |
| * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) |
| * @param Output Pointer to the output buffer(ciphertext) |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) |
| { |
| HAL_StatusTypeDef status; |
| uint32_t algo; |
| #ifdef USE_FULL_ASSERT |
| uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; |
| |
| /* Check input buffer size */ |
| assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); |
| #endif /* USE_FULL_ASSERT */ |
| |
| if (hcryp->State == HAL_CRYP_STATE_READY) |
| { |
| /* Change state Busy */ |
| hcryp->State = HAL_CRYP_STATE_BUSY; |
| |
| /* Process locked */ |
| __HAL_LOCK(hcryp); |
| |
| /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| if (hcryp->ResumingFlag == 1U) |
| { |
| hcryp->ResumingFlag = 0U; |
| if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED) |
| { |
| hcryp->CrypInCount = (uint16_t) hcryp->CrypInCount_saved; |
| hcryp->CrypOutCount = (uint16_t) hcryp->CrypOutCount_saved; |
| } |
| else |
| { |
| hcryp->CrypInCount = 0U; |
| hcryp->CrypOutCount = 0U; |
| } |
| } |
| else |
| #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
| { |
| hcryp->CrypInCount = 0U; |
| hcryp->CrypOutCount = 0U; |
| } |
| |
| hcryp->pCrypInBuffPtr = Input; |
| hcryp->pCrypOutBuffPtr = Output; |
| |
| /* Calculate Size parameter in Byte*/ |
| if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
| { |
| hcryp->Size = Size * 4U; |
| } |
| else |
| { |
| hcryp->Size = Size; |
| } |
| |
| /* Set encryption operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); |
| |
| /* algo get algorithm selected */ |
| algo = hcryp->Instance->CR & AES_CR_CHMOD; |
| |
| switch (algo) |
| { |
| |
| case CRYP_AES_ECB: |
| case CRYP_AES_CBC: |
| case CRYP_AES_CTR: |
| |
| /* AES encryption */ |
| status = CRYP_AES_Encrypt_IT(hcryp); |
| break; |
| |
| case CRYP_AES_GCM_GMAC: |
| |
| /* AES GCM encryption */ |
| status = CRYP_AESGCM_Process_IT(hcryp) ; |
| break; |
| |
| case CRYP_AES_CCM: |
| |
| /* AES CCM encryption */ |
| status = CRYP_AESCCM_Process_IT(hcryp); |
| break; |
| |
| default: |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Busy error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
| status = HAL_ERROR; |
| } |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Decryption in interrupt mode. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param Input Pointer to the input buffer (ciphertext ) |
| * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) |
| * @param Output Pointer to the output buffer(plaintext) |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) |
| { |
| HAL_StatusTypeDef status; |
| uint32_t algo; |
| #ifdef USE_FULL_ASSERT |
| uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; |
| |
| /* Check input buffer size */ |
| assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); |
| #endif /* USE_FULL_ASSERT */ |
| |
| if (hcryp->State == HAL_CRYP_STATE_READY) |
| { |
| /* Change state Busy */ |
| hcryp->State = HAL_CRYP_STATE_BUSY; |
| |
| /* Process locked */ |
| __HAL_LOCK(hcryp); |
| |
| /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| if (hcryp->ResumingFlag == 1U) |
| { |
| hcryp->ResumingFlag = 0U; |
| if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED) |
| { |
| hcryp->CrypInCount = (uint16_t) hcryp->CrypInCount_saved; |
| hcryp->CrypOutCount = (uint16_t) hcryp->CrypOutCount_saved; |
| } |
| else |
| { |
| hcryp->CrypInCount = 0U; |
| hcryp->CrypOutCount = 0U; |
| } |
| } |
| else |
| #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
| { |
| hcryp->CrypInCount = 0U; |
| hcryp->CrypOutCount = 0U; |
| } |
| hcryp->pCrypInBuffPtr = Input; |
| hcryp->pCrypOutBuffPtr = Output; |
| |
| /* Calculate Size parameter in Byte*/ |
| if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
| { |
| hcryp->Size = Size * 4U; |
| } |
| else |
| { |
| hcryp->Size = Size; |
| } |
| |
| /* Set decryption operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
| |
| /* algo get algorithm selected */ |
| algo = hcryp->Instance->CR & AES_CR_CHMOD; |
| |
| switch (algo) |
| { |
| |
| case CRYP_AES_ECB: |
| case CRYP_AES_CBC: |
| case CRYP_AES_CTR: |
| |
| /* AES decryption */ |
| status = CRYP_AES_Decrypt_IT(hcryp); |
| break; |
| |
| case CRYP_AES_GCM_GMAC: |
| |
| /* AES GCM decryption */ |
| status = CRYP_AESGCM_Process_IT(hcryp) ; |
| break; |
| |
| case CRYP_AES_CCM: |
| |
| /* AES CCM decryption */ |
| status = CRYP_AESCCM_Process_IT(hcryp); |
| break; |
| |
| default: |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Busy error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
| status = HAL_ERROR; |
| } |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Encryption in DMA mode. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param Input Pointer to the input buffer (plaintext) |
| * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) |
| * @param Output Pointer to the output buffer(ciphertext) |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) |
| { |
| HAL_StatusTypeDef status; |
| uint32_t algo; |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| #ifdef USE_FULL_ASSERT |
| uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; |
| |
| /* Check input buffer size */ |
| assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); |
| #endif /* USE_FULL_ASSERT */ |
| |
| if (hcryp->State == HAL_CRYP_STATE_READY) |
| { |
| /* Change state Busy */ |
| hcryp->State = HAL_CRYP_STATE_BUSY; |
| |
| /* Process locked */ |
| __HAL_LOCK(hcryp); |
| |
| /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ |
| hcryp->CrypInCount = 0U; |
| hcryp->CrypOutCount = 0U; |
| hcryp->pCrypInBuffPtr = Input; |
| hcryp->pCrypOutBuffPtr = Output; |
| |
| /* Calculate Size parameter in Byte*/ |
| if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
| { |
| hcryp->Size = Size * 4U; |
| } |
| else |
| { |
| hcryp->Size = Size; |
| } |
| |
| /* Set encryption operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); |
| |
| /* algo get algorithm selected */ |
| algo = hcryp->Instance->CR & AES_CR_CHMOD; |
| |
| switch (algo) |
| { |
| |
| case CRYP_AES_ECB: |
| case CRYP_AES_CBC: |
| case CRYP_AES_CTR: |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| } |
| } |
| |
| if (DoKeyIVConfig == 1U) |
| { |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Set the Initialization Vector*/ |
| if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
| { |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
| } |
| } /* if (DoKeyIVConfig == 1U) */ |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| /* Start DMA process transfer for AES */ |
| CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), \ |
| (uint32_t)(hcryp->pCrypOutBuffPtr)); |
| status = HAL_OK; |
| break; |
| |
| case CRYP_AES_GCM_GMAC: |
| |
| /* AES GCM encryption */ |
| status = CRYP_AESGCM_Process_DMA(hcryp) ; |
| break; |
| |
| case CRYP_AES_CCM: |
| |
| /* AES CCM encryption */ |
| status = CRYP_AESCCM_Process_DMA(hcryp); |
| break; |
| |
| default: |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Busy error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
| status = HAL_ERROR; |
| } |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Decryption in DMA mode. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param Input Pointer to the input buffer (ciphertext ) |
| * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) |
| * @param Output Pointer to the output buffer(plaintext) |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) |
| { |
| HAL_StatusTypeDef status; |
| uint32_t algo; |
| #ifdef USE_FULL_ASSERT |
| uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; |
| |
| /* Check input buffer size */ |
| assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); |
| #endif /* USE_FULL_ASSERT */ |
| |
| if (hcryp->State == HAL_CRYP_STATE_READY) |
| { |
| |
| /* Change state Busy */ |
| hcryp->State = HAL_CRYP_STATE_BUSY; |
| |
| /* Process locked */ |
| __HAL_LOCK(hcryp); |
| |
| /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/ |
| hcryp->CrypInCount = 0U; |
| hcryp->CrypOutCount = 0U; |
| hcryp->pCrypInBuffPtr = Input; |
| hcryp->pCrypOutBuffPtr = Output; |
| |
| /* Calculate Size parameter in Byte*/ |
| if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
| { |
| hcryp->Size = Size * 4U; |
| } |
| else |
| { |
| hcryp->Size = Size; |
| } |
| |
| /* Set decryption operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
| |
| /* algo get algorithm selected */ |
| algo = hcryp->Instance->CR & AES_CR_CHMOD; |
| |
| switch (algo) |
| { |
| |
| case CRYP_AES_ECB: |
| case CRYP_AES_CBC: |
| case CRYP_AES_CTR: |
| |
| /* AES decryption */ |
| status = CRYP_AES_Decrypt_DMA(hcryp); |
| break; |
| |
| case CRYP_AES_GCM_GMAC: |
| |
| /* AES GCM decryption */ |
| status = CRYP_AESGCM_Process_DMA(hcryp) ; |
| break; |
| |
| case CRYP_AES_CCM: |
| |
| /* AES CCM decryption */ |
| status = CRYP_AESCCM_Process_DMA(hcryp); |
| break; |
| |
| default: |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Busy error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
| status = HAL_ERROR; |
| } |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management |
| * @brief CRYP IRQ handler. |
| * |
| @verbatim |
| ============================================================================== |
| ##### CRYP IRQ handler management ##### |
| ============================================================================== |
| [..] This section provides CRYP IRQ handler and callback functions. |
| (+) HAL_CRYP_IRQHandler CRYP interrupt request |
| (+) HAL_CRYP_InCpltCallback input data transfer complete callback |
| (+) HAL_CRYP_OutCpltCallback output data transfer complete callback |
| (+) HAL_CRYP_ErrorCallback CRYP error callback |
| (+) HAL_CRYP_GetState return the CRYP state |
| (+) HAL_CRYP_GetError return the CRYP error code |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief This function handles cryptographic interrupt request. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval None |
| */ |
| void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) |
| { |
| uint32_t itsource = hcryp->Instance->CR; |
| uint32_t itflag = hcryp->Instance->SR; |
| |
| /* Check if error occurred */ |
| if ((itsource & CRYP_IT_ERRIE) == CRYP_IT_ERRIE) |
| { |
| /* If write Error occurred */ |
| if ((itflag & CRYP_IT_WRERR) == CRYP_IT_WRERR) |
| { |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_WRITE; |
| } |
| /* If read Error occurred */ |
| if ((itflag & CRYP_IT_RDERR) == CRYP_IT_RDERR) |
| { |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_READ; |
| } |
| } |
| |
| if ((itflag & CRYP_IT_CCF) == CRYP_IT_CCF) |
| { |
| if ((itsource & CRYP_IT_CCFIE) == CRYP_IT_CCFIE) |
| { |
| /* Clear computation complete flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| if ((hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) || (hcryp->Init.Algorithm == CRYP_AES_CCM)) |
| { |
| |
| /* if header phase */ |
| if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER) |
| { |
| CRYP_GCMCCM_SetHeaderPhase_IT(hcryp); |
| } |
| else /* if payload phase */ |
| { |
| CRYP_GCMCCM_SetPayloadPhase_IT(hcryp); |
| } |
| } |
| else /* AES Algorithm ECB,CBC or CTR*/ |
| { |
| CRYP_AES_IT(hcryp); |
| } |
| } |
| } |
| } |
| |
| /** |
| * @brief Return the CRYP error code. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for the CRYP peripheral |
| * @retval CRYP error code |
| */ |
| uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp) |
| { |
| return hcryp->ErrorCode; |
| } |
| |
| /** |
| * @brief Returns the CRYP state. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @retval HAL state |
| */ |
| HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) |
| { |
| return hcryp->State; |
| } |
| |
| /** |
| * @brief Input FIFO transfer completed callback. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @retval None |
| */ |
| __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hcryp); |
| |
| /* NOTE : This function should not be modified; when the callback is needed, |
| the HAL_CRYP_InCpltCallback can be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Output FIFO transfer completed callback. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @retval None |
| */ |
| __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hcryp); |
| |
| /* NOTE : This function should not be modified; when the callback is needed, |
| the HAL_CRYP_OutCpltCallback can be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief CRYP error callback. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @retval None |
| */ |
| __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hcryp); |
| |
| /* NOTE : This function should not be modified; when the callback is needed, |
| the HAL_CRYP_ErrorCallback can be implemented in the user file |
| */ |
| } |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /* Private functions ---------------------------------------------------------*/ |
| /** @addtogroup CRYP_Private_Functions |
| * @{ |
| */ |
| |
| /** |
| * @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure |
| * @param Timeout specify Timeout value |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
| { |
| uint16_t incount; /* Temporary CrypInCount Value */ |
| uint16_t outcount; /* Temporary CrypOutCount Value */ |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| } |
| } |
| |
| if (DoKeyIVConfig == 1U) |
| { |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
| { |
| /* Set the Initialization Vector*/ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
| } |
| } /* if (DoKeyIVConfig == 1U) */ |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| /* Enable CRYP */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| incount = hcryp->CrypInCount; |
| outcount = hcryp->CrypOutCount; |
| while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U))) |
| { |
| /* Write plain Ddta and get cipher data */ |
| CRYP_AES_ProcessData(hcryp, Timeout); |
| incount = hcryp->CrypInCount; |
| outcount = hcryp->CrypOutCount; |
| } |
| |
| /* Disable CRYP */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp) |
| { |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| } |
| } |
| |
| if (DoKeyIVConfig == 1U) |
| { |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
| { |
| /* Set the Initialization Vector*/ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
| } |
| } /* if (DoKeyIVConfig == 1U) */ |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| if (hcryp->Size != 0U) |
| { |
| |
| /* Enable computation complete flag and error interrupts */ |
| __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Enable CRYP */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* Increment the pointer before writing the input block in the IN FIFO to make sure that |
| when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value |
| and it is ready for the next operation. */ |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| } |
| else |
| { |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Decryption in ECB/CBC & CTR mode with AES Standard |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure |
| * @param Timeout Specify Timeout value |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
| { |
| uint16_t incount; /* Temporary CrypInCount Value */ |
| uint16_t outcount; /* Temporary CrypOutCount Value */ |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| } |
| } |
| |
| if (DoKeyIVConfig == 1U) |
| { |
| /* Key preparation for ECB/CBC */ |
| if (hcryp->Init.Algorithm != CRYP_AES_CTR) /*ECB or CBC*/ |
| { |
| if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/ |
| { |
| /* Set key preparation for decryption operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION); |
| |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Enable CRYP */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* Wait for CCF flag to be raised */ |
| if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state & error code*/ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| /* Clear CCF Flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /* Return to decryption operating mode(Mode 3)*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
| } |
| else /*Mode 4 : decryption & Key preparation*/ |
| { |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Set decryption & Key preparation operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT); |
| } |
| } |
| else /*Algorithm CTR */ |
| { |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| } |
| |
| /* Set IV */ |
| if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
| { |
| /* Set the Initialization Vector*/ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
| } |
| } /* if (DoKeyIVConfig == 1U) */ |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| /* Enable CRYP */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| incount = hcryp->CrypInCount; |
| outcount = hcryp->CrypOutCount; |
| while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U))) |
| { |
| /* Write plain data and get cipher data */ |
| CRYP_AES_ProcessData(hcryp, Timeout); |
| incount = hcryp->CrypInCount; |
| outcount = hcryp->CrypOutCount; |
| } |
| |
| /* Disable CRYP */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| /** |
| * @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp) |
| { |
| __IO uint32_t count = 0U; |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| } |
| } |
| |
| if (DoKeyIVConfig == 1U) |
| { |
| /* Key preparation for ECB/CBC */ |
| if (hcryp->Init.Algorithm != CRYP_AES_CTR) |
| { |
| if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/ |
| { |
| /* Set key preparation for decryption operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION); |
| |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Enable CRYP */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* Wait for CCF flag to be raised */ |
| count = CRYP_TIMEOUT_KEYPREPARATION; |
| do |
| { |
| count-- ; |
| if (count == 0U) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
| |
| /* Clear CCF Flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /* Return to decryption operating mode(Mode 3)*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
| } |
| else /*Mode 4 : decryption & key preparation*/ |
| { |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Set decryption & key preparation operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT); |
| } |
| } |
| else /*Algorithm CTR */ |
| { |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| } |
| |
| /* Set IV */ |
| if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
| { |
| /* Set the Initialization Vector*/ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
| } |
| } /* if (DoKeyIVConfig == 1U) */ |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| if (hcryp->Size != 0U) |
| { |
| /* Enable computation complete flag and error interrupts */ |
| __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Enable CRYP */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* Increment the pointer before writing the input block in the IN FIFO to make sure that |
| when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value |
| and it is ready for the next operation. */ |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| } |
| else |
| { |
| /* Process locked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| /** |
| * @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp) |
| { |
| __IO uint32_t count = 0U; |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| } |
| } |
| |
| if (DoKeyIVConfig == 1U) |
| { |
| /* Key preparation for ECB/CBC */ |
| if (hcryp->Init.Algorithm != CRYP_AES_CTR) |
| { |
| if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 key preparation*/ |
| { |
| /* Set key preparation for decryption operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION); |
| |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Enable CRYP */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* Wait for CCF flag to be raised */ |
| count = CRYP_TIMEOUT_KEYPREPARATION; |
| do |
| { |
| count-- ; |
| if (count == 0U) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
| |
| /* Clear CCF Flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /* Return to decryption operating mode(Mode 3)*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
| } |
| else /*Mode 4 : decryption & key preparation*/ |
| { |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Set decryption & Key preparation operating mode*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT); |
| } |
| } |
| else /*Algorithm CTR */ |
| { |
| /* Set the Key*/ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| } |
| |
| if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
| { |
| /* Set the Initialization Vector*/ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
| } |
| } /* if (DoKeyIVConfig == 1U) */ |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| if (hcryp->Size != 0U) |
| { |
| /* Set the input and output addresses and start DMA transfer */ |
| CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr)); |
| } |
| else |
| { |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief DMA CRYP input data process complete callback. |
| * @param hdma DMA handle |
| * @retval None |
| */ |
| static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma) |
| { |
| CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| uint32_t loopcounter; |
| uint32_t headersize_in_bytes; |
| uint32_t tmp; |
| static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ |
| 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ |
| 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU |
| }; /* 8-bit data type */ |
| |
| /* Stop the DMA transfers to the IN FIFO by clearing to "0" the DMAINEN */ |
| CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN); |
| |
| if (hcryp->Phase == CRYP_PHASE_HEADER_DMA_FEED) |
| { |
| /* DMA is disabled, CCF is meaningful. Wait for computation completion before moving forward */ |
| CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE); |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) |
| { |
| headersize_in_bytes = hcryp->Init.HeaderSize * 4U; |
| } |
| else |
| { |
| headersize_in_bytes = hcryp->Init.HeaderSize; |
| } |
| |
| if ((headersize_in_bytes % 16U) != 0U) |
| { |
| /* Write last words that couldn't be fed by DMA */ |
| hcryp->CrypHeaderCount = (uint16_t)((headersize_in_bytes / 16U) * 4U); |
| for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 4U) % 4U)); loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| } |
| /* If the header size is a multiple of words */ |
| if ((headersize_in_bytes % 4U) == 0U) |
| { |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| } |
| else |
| { |
| /* Enter last bytes, padded with zeros */ |
| tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)]; |
| hcryp->Instance->DINR = tmp; |
| loopcounter++; |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| } |
| |
| /* Wait for computation completion before moving forward */ |
| CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE); |
| } /* if ((headersize_in_bytes % 16U) != 0U) */ |
| |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
| |
| /* Select payload phase once the header phase is performed */ |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); |
| |
| /* Initiate payload DMA IN and processed data DMA OUT transfers */ |
| (void)CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp); |
| } |
| else |
| { |
| uint32_t algo; |
| /* ECB, CBC or CTR end of input data feeding |
| or |
| end of GCM/CCM payload data feeding through DMA */ |
| algo = hcryp->Instance->CR & AES_CR_CHMOD; |
| |
| /* Don't call input data transfer complete callback only if |
| it remains some input data to write to the peripheral. |
| This case can only occur for GCM and CCM with a payload length |
| not a multiple of 16 bytes */ |
| if (!(((algo == CRYP_AES_GCM_GMAC) || (algo == CRYP_AES_CCM)) && \ |
| (((hcryp->Size) % 16U) != 0U))) |
| { |
| /* Call input data transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } /* if (hcryp->Phase == CRYP_PHASE_HEADER_DMA_FEED) */ |
| } |
| |
| /** |
| * @brief DMA CRYP output data process complete callback. |
| * @param hdma DMA handle |
| * @retval None |
| */ |
| static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma) |
| { |
| uint32_t count; |
| uint32_t npblb; |
| uint32_t lastwordsize; |
| uint32_t temp[4]; /* Temporary CrypOutBuff */ |
| uint32_t mode; |
| |
| CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| /* Stop the DMA transfers to the OUT FIFO by clearing to "0" the DMAOUTEN */ |
| CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN); |
| |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /* Last block transfer in case of GCM or CCM with Size not %16*/ |
| if (((hcryp->Size) % 16U) != 0U) |
| { |
| /* set CrypInCount and CrypOutCount to exact number of word already computed via DMA */ |
| hcryp->CrypInCount = (hcryp->Size / 16U) * 4U; |
| hcryp->CrypOutCount = hcryp->CrypInCount; |
| |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); |
| |
| mode = hcryp->Instance->CR & AES_CR_MODE; |
| if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
| ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
| { |
| /* Specify the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
| } |
| |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| |
| /* Last block optionally pad the data with zeros*/ |
| for (count = 0U; count < lastwordsize; count++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| while (count < 4U) |
| { |
| /* Pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0x0U; |
| count++; |
| } |
| /* Call input data transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| |
| /*Wait on CCF flag*/ |
| CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE); |
| |
| /*Read the output block from the output FIFO */ |
| for (count = 0U; count < 4U; count++) |
| { |
| /* Read the output block from the output FIFO and put them in temporary buffer |
| then get CrypOutBuff from temporary buffer */ |
| temp[count] = hcryp->Instance->DOUTR; |
| } |
| |
| count = 0U; |
| while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (count < 4U)) |
| { |
| *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[count]; |
| hcryp->CrypOutCount++; |
| count++; |
| } |
| } |
| |
| if (((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC) |
| && ((hcryp->Init.Algorithm & CRYP_AES_CCM) != CRYP_AES_CCM)) |
| { |
| /* Disable CRYP (not allowed in GCM)*/ |
| __HAL_CRYP_DISABLE(hcryp); |
| } |
| |
| /* Change the CRYP state to ready */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Call output data transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Output complete callback*/ |
| hcryp->OutCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Output complete callback*/ |
| HAL_CRYP_OutCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA CRYP communication error callback. |
| * @param hdma DMA handle |
| * @retval None |
| */ |
| static void CRYP_DMAError(DMA_HandleTypeDef *hdma) |
| { |
| CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| /* Change the CRYP peripheral state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* DMA error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; |
| |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /* Call error callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered error callback*/ |
| hcryp->ErrorCallback(hcryp); |
| #else |
| /*Call legacy weak error callback*/ |
| HAL_CRYP_ErrorCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief Set the DMA configuration and start the DMA transfer |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param inputaddr address of the input buffer |
| * @param Size size of the input and output buffers in words, must be a multiple of 4 |
| * @param outputaddr address of the output buffer |
| * @retval None |
| */ |
| static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) |
| { |
| /* Set the CRYP DMA transfer complete callback */ |
| hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; |
| |
| /* Set the DMA input error callback */ |
| hcryp->hdmain->XferErrorCallback = CRYP_DMAError; |
| |
| /* Set the CRYP DMA transfer complete callback */ |
| hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt; |
| |
| /* Set the DMA output error callback */ |
| hcryp->hdmaout->XferErrorCallback = CRYP_DMAError; |
| |
| if ((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC) |
| { |
| /* Enable CRYP (not allowed in GCM & CCM)*/ |
| __HAL_CRYP_ENABLE(hcryp); |
| } |
| |
| /* Enable the DMA input stream */ |
| if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK) |
| { |
| /* DMA error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; |
| |
| /* Call error callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered error callback*/ |
| hcryp->ErrorCallback(hcryp); |
| #else |
| /*Call legacy weak error callback*/ |
| HAL_CRYP_ErrorCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| /* Enable the DMA output stream */ |
| if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size) != HAL_OK) |
| { |
| /* DMA error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; |
| |
| /* Call error callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered error callback*/ |
| hcryp->ErrorCallback(hcryp); |
| #else |
| /*Call legacy weak error callback*/ |
| HAL_CRYP_ErrorCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| /* Enable In and Out DMA requests */ |
| SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN)); |
| } |
| |
| /** |
| * @brief Set the DMA configuration and start the header DMA transfer |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param inputaddr address of the input buffer |
| * @param Size size of the input buffer in words, must be a multiple of 4 |
| * @retval None |
| */ |
| static HAL_StatusTypeDef CRYP_SetHeaderDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size) |
| { |
| /* Set the CRYP DMA transfer complete callback */ |
| hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; |
| |
| /* Set the DMA input error callback */ |
| hcryp->hdmain->XferErrorCallback = CRYP_DMAError; |
| |
| /* Mark that header is fed to the peripheral in DMA mode */ |
| hcryp->Phase = CRYP_PHASE_HEADER_DMA_FEED; |
| /* Enable the DMA input stream */ |
| if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK) |
| { |
| /* DMA error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| /* Call error callback */ |
| } |
| |
| /* Enable IN DMA requests */ |
| SET_BIT(hcryp->Instance->CR, AES_CR_DMAINEN); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Process Data: Write Input data in polling mode and used in AES functions. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param Timeout Specify Timeout value |
| * @retval None |
| */ |
| static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
| { |
| |
| uint32_t temp[4]; /* Temporary CrypOutBuff */ |
| uint32_t i; |
| |
| /* Write the input block in the IN FIFO */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| |
| /* Wait for CCF flag to be raised */ |
| if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| /*Call registered error callback*/ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| hcryp->ErrorCallback(hcryp); |
| #else |
| /*Call legacy weak error callback*/ |
| HAL_CRYP_ErrorCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| |
| /* Clear CCF Flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /* Read the output block from the output FIFO and put them in temporary buffer |
| then get CrypOutBuff from temporary buffer*/ |
| for (i = 0U; i < 4U; i++) |
| { |
| temp[i] = hcryp->Instance->DOUTR; |
| } |
| i = 0U; |
| while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U)) |
| { |
| *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i]; |
| hcryp->CrypOutCount++; |
| i++; |
| } |
| } |
| |
| /** |
| * @brief Handle CRYP block input/output data handling under interruption. |
| * @note The function is called under interruption only, once |
| * interruptions have been enabled by HAL_CRYP_Encrypt_IT or HAL_CRYP_Decrypt_IT. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @retval HAL status |
| */ |
| static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp) |
| { |
| uint32_t temp[4]; /* Temporary CrypOutBuff */ |
| uint32_t i; |
| |
| if (hcryp->State == HAL_CRYP_STATE_BUSY) |
| { |
| /* Read the output block from the output FIFO and put them in temporary buffer |
| then get CrypOutBuff from temporary buffer*/ |
| for (i = 0U; i < 4U; i++) |
| { |
| temp[i] = hcryp->Instance->DOUTR; |
| } |
| i = 0U; |
| while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U)) |
| { |
| *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i]; |
| hcryp->CrypOutCount++; |
| i++; |
| } |
| if (hcryp->CrypOutCount == (hcryp->Size / 4U)) |
| { |
| /* Disable Computation Complete flag and errors interrupts */ |
| __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Disable CRYP */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Call Output transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Output complete callback*/ |
| hcryp->OutCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Output complete callback*/ |
| HAL_CRYP_OutCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| /* If suspension flag has been raised, suspend processing |
| only if not already at the end of the payload */ |
| if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) |
| { |
| /* Clear CCF Flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /* reset SuspendRequest */ |
| hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; |
| /* Disable Computation Complete Flag and Errors Interrupts */ |
| __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_SUSPENDED; |
| /* Mark that the payload phase is suspended */ |
| hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| else |
| #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
| { |
| /* Write the input block in the IN FIFO */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| |
| if (hcryp->CrypInCount == (hcryp->Size / 4U)) |
| { |
| /* Call Input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| } |
| } |
| else |
| { |
| /* Busy error code field */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered error callback*/ |
| hcryp->ErrorCallback(hcryp); |
| #else |
| /*Call legacy weak error callback*/ |
| HAL_CRYP_ErrorCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /** |
| * @brief Writes Key in Key registers. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param KeySize Size of Key |
| * @note If pKey is NULL, the Key registers are not written. This configuration |
| * occurs when the key is written out of HAL scope. |
| * @retval None |
| */ |
| static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize) |
| { |
| if (hcryp->Init.pKey != NULL) |
| { |
| switch (KeySize) |
| { |
| case CRYP_KEYSIZE_256B: |
| hcryp->Instance->KEYR7 = *(uint32_t *)(hcryp->Init.pKey); |
| hcryp->Instance->KEYR6 = *(uint32_t *)(hcryp->Init.pKey + 1U); |
| hcryp->Instance->KEYR5 = *(uint32_t *)(hcryp->Init.pKey + 2U); |
| hcryp->Instance->KEYR4 = *(uint32_t *)(hcryp->Init.pKey + 3U); |
| hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey + 4U); |
| hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 5U); |
| hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 6U); |
| hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 7U); |
| break; |
| case CRYP_KEYSIZE_128B: |
| hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey); |
| hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 1U); |
| hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 2U); |
| hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 3U); |
| |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| /** |
| * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param Timeout Timeout duration |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
| { |
| uint32_t tickstart; |
| uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ; |
| uint32_t npblb; |
| uint32_t temp[4]; /* Temporary CrypOutBuff */ |
| uint32_t index; |
| uint32_t lastwordsize; |
| uint32_t incount; /* Temporary CrypInCount Value */ |
| uint32_t outcount; /* Temporary CrypOutCount Value */ |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
| } |
| } |
| else |
| { |
| hcryp->SizesSum = hcryp->Size; |
| } |
| |
| if (DoKeyIVConfig == 1U) |
| { |
| |
| /* Reset CrypHeaderCount */ |
| hcryp->CrypHeaderCount = 0U; |
| |
| /****************************** Init phase **********************************/ |
| |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
| |
| /* Set the key */ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* just wait for hash computation */ |
| if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
| { |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked & return error */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /************************ Header phase *************************************/ |
| |
| if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /*************************Payload phase ************************************/ |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| /* Select payload phase once the header phase is performed */ |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); |
| |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
| |
| } /* if (DoKeyIVConfig == 1U) */ |
| |
| if ((hcryp->Size % 16U) != 0U) |
| { |
| /* recalculate wordsize */ |
| wordsize = ((wordsize / 4U) * 4U) ; |
| } |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Write input data and get output Data */ |
| incount = hcryp->CrypInCount; |
| outcount = hcryp->CrypOutCount; |
| while ((incount < wordsize) && (outcount < wordsize)) |
| { |
| /* Write plain data and get cipher data */ |
| CRYP_AES_ProcessData(hcryp, Timeout); |
| |
| /* Check for the Timeout */ |
| if (Timeout != HAL_MAX_DELAY) |
| { |
| if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state & error code */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| } |
| incount = hcryp->CrypInCount; |
| outcount = hcryp->CrypOutCount; |
| } |
| |
| if ((hcryp->Size % 16U) != 0U) |
| { |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); |
| |
| /* Set Npblb in case of AES GCM payload encryption to get right tag*/ |
| if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) |
| { |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
| } |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| /* last block optionally pad the data with zeros*/ |
| for (index = 0U; index < lastwordsize; index ++) |
| { |
| /* Write the last Input block in the IN FIFO */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| while (index < 4U) |
| { |
| /* pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0U; |
| index++; |
| } |
| /* Wait for CCF flag to be raised */ |
| if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
| { |
| hcryp->State = HAL_CRYP_STATE_READY; |
| __HAL_UNLOCK(hcryp); |
| |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered error callback*/ |
| hcryp->ErrorCallback(hcryp); |
| #else |
| /*Call legacy weak error callback*/ |
| HAL_CRYP_ErrorCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| |
| /* Clear CCF Flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /*Read the output block from the output FIFO */ |
| for (index = 0U; index < 4U; index++) |
| { |
| /* Read the output block from the output FIFO and put them in temporary buffer |
| then get CrypOutBuff from temporary buffer */ |
| temp[index] = hcryp->Instance->DOUTR; |
| } |
| for (index = 0U; index < lastwordsize; index++) |
| { |
| *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp[index]; |
| hcryp->CrypOutCount++; |
| } |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG in interrupt mode |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp) |
| { |
| __IO uint32_t count = 0U; |
| uint32_t loopcounter; |
| uint32_t lastwordsize; |
| uint32_t npblb; |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| uint32_t headersize_in_bytes; |
| uint32_t tmp; |
| static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ |
| 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ |
| 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU |
| }; /* 8-bit data type */ |
| |
| |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED)) |
| { |
| CRYP_PhaseProcessingResume(hcryp); |
| return HAL_OK; |
| } |
| #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
| |
| /* Manage header size given in bytes to handle cases where |
| header size is not a multiple of 4 bytes */ |
| if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) |
| { |
| headersize_in_bytes = hcryp->Init.HeaderSize * 4U; |
| } |
| else |
| { |
| headersize_in_bytes = hcryp->Init.HeaderSize; |
| } |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
| } |
| } |
| else |
| { |
| hcryp->SizesSum = hcryp->Size; |
| } |
| |
| /* Configure Key, IV and process message (header and payload) */ |
| if (DoKeyIVConfig == 1U) |
| { |
| /* Reset CrypHeaderCount */ |
| hcryp->CrypHeaderCount = 0U; |
| |
| /******************************* Init phase *********************************/ |
| |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
| |
| /* Set the key */ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* just wait for hash computation */ |
| count = CRYP_TIMEOUT_GCMCCMINITPHASE; |
| do |
| { |
| count-- ; |
| if (count == 0U) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
| |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /***************************** Header phase *********************************/ |
| |
| /* Select header phase */ |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
| |
| /* Enable computation complete flag and error interrupts */ |
| __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| if (hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/ |
| { |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| /* Select payload phase once the header phase is performed */ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); |
| |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
| |
| /* Write the payload Input block in the IN FIFO */ |
| if (hcryp->Size == 0U) |
| { |
| /* Disable interrupts */ |
| __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| else if (hcryp->Size >= 16U) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) |
| { |
| /* Call Input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| else /* Size < 16Bytes : first block is the last block*/ |
| { |
| /* Workaround not implemented for TinyAES2*/ |
| /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption: |
| Workaround is implemented in polling mode, so if last block of |
| payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */ |
| |
| |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = 16U - ((uint32_t)hcryp->Size); |
| |
| if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) |
| { |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
| } |
| |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| |
| /* last block optionally pad the data with zeros*/ |
| for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| while (loopcounter < 4U) |
| { |
| /* pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| /* Call Input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| /* Enter header data */ |
| /* Cher first whether header length is small enough to enter the full header in one shot */ |
| else if (headersize_in_bytes <= 16U) |
| { |
| /* Write header data, padded with zeros if need be */ |
| for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| } |
| /* If the header size is a multiple of words */ |
| if ((headersize_in_bytes % 4U) == 0U) |
| { |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| hcryp->CrypHeaderCount++; |
| } |
| } |
| else |
| { |
| /* Enter last bytes, padded with zeros */ |
| tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)]; |
| hcryp->Instance->DINR = tmp; |
| loopcounter++; |
| hcryp->CrypHeaderCount++ ; |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| hcryp->CrypHeaderCount++; |
| } |
| } |
| } |
| else |
| { |
| /* Write the first input header block in the Input FIFO, |
| the following header data will be fed after interrupt occurrence */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| } |
| |
| } /* end of if (DoKeyIVConfig == 1U) */ |
| else /* Key and IV have already been configured, |
| header has already been processed; |
| only process here message payload */ |
| { |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
| |
| /* Write the payload Input block in the IN FIFO */ |
| if (hcryp->Size == 0U) |
| { |
| /* Disable interrupts */ |
| __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| else if (hcryp->Size >= 16U) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) |
| { |
| /* Call Input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| |
| /* Enable computation complete flag and error interrupts */ |
| __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| } |
| else /* Size < 16Bytes : first block is the last block*/ |
| { |
| /* Workaround not implemented for TinyAES2*/ |
| /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption: |
| Workaround is implemented in polling mode, so if last block of |
| payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */ |
| |
| |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = 16U - ((uint32_t)hcryp->Size); |
| |
| if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) |
| { |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
| } |
| |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| |
| /* last block optionally pad the data with zeros*/ |
| for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| while (loopcounter < 4U) |
| { |
| /* pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| /* Call Input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| |
| /* Enable computation complete flag and error interrupts */ |
| __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| } |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG using DMA |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp) |
| { |
| uint32_t count; |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
| } |
| } |
| else |
| { |
| hcryp->SizesSum = hcryp->Size; |
| } |
| |
| if (DoKeyIVConfig == 1U) |
| { |
| |
| /* Reset CrypHeaderCount */ |
| hcryp->CrypHeaderCount = 0U; |
| |
| /*************************** Init phase ************************************/ |
| |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
| |
| /* Set the key */ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* just wait for hash computation */ |
| count = CRYP_TIMEOUT_GCMCCMINITPHASE; |
| do |
| { |
| count-- ; |
| if (count == 0U) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
| |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /************************ Header phase *************************************/ |
| |
| if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| } |
| else |
| { |
| /* Initialization and header phases already done, only do payload phase */ |
| if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| } /* if (DoKeyIVConfig == 1U) */ |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief AES CCM encryption/decryption processing in polling mode |
| * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @param Timeout Timeout duration |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
| { |
| uint32_t tickstart; |
| uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ; |
| uint32_t loopcounter; |
| uint32_t npblb; |
| uint32_t lastwordsize; |
| uint32_t temp[4] ; /* Temporary CrypOutBuff */ |
| uint32_t incount; /* Temporary CrypInCount Value */ |
| uint32_t outcount; /* Temporary CrypOutCount Value */ |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
| } |
| } |
| else |
| { |
| hcryp->SizesSum = hcryp->Size; |
| } |
| |
| if (DoKeyIVConfig == 1U) |
| { |
| /* Reset CrypHeaderCount */ |
| hcryp->CrypHeaderCount = 0U; |
| |
| /********************** Init phase ******************************************/ |
| |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
| |
| /* Set the key */ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Set the initialization vector (IV) with B0 */ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* just wait for hash computation */ |
| if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
| { |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked & return error */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /************************ Header phase *************************************/ |
| /* Header block(B1) : associated data length expressed in bytes concatenated |
| with Associated Data (A)*/ |
| if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /*************************Payload phase ************************************/ |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| /* Select payload phase once the header phase is performed */ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); |
| |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
| |
| } /* if (DoKeyIVConfig == 1U) */ |
| |
| if ((hcryp->Size % 16U) != 0U) |
| { |
| /* recalculate wordsize */ |
| wordsize = ((wordsize / 4U) * 4U) ; |
| } |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Write input data and get output data */ |
| incount = hcryp->CrypInCount; |
| outcount = hcryp->CrypOutCount; |
| while ((incount < wordsize) && (outcount < wordsize)) |
| { |
| /* Write plain data and get cipher data */ |
| CRYP_AES_ProcessData(hcryp, Timeout); |
| |
| /* Check for the Timeout */ |
| if (Timeout != HAL_MAX_DELAY) |
| { |
| if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| } |
| incount = hcryp->CrypInCount; |
| outcount = hcryp->CrypOutCount; |
| } |
| |
| if ((hcryp->Size % 16U) != 0U) |
| { |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); |
| |
| if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT) |
| { |
| /* Set Npblb in case of AES CCM payload decryption to get right tag */ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20); |
| |
| } |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| |
| /* Write the last input block in the IN FIFO */ |
| for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter ++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0U; |
| loopcounter++; |
| } |
| /* just wait for hash computation */ |
| if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
| { |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked & return error */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| for (loopcounter = 0U; loopcounter < 4U; loopcounter++) |
| { |
| /* Read the output block from the output FIFO and put them in temporary buffer |
| then get CrypOutBuff from temporary buffer */ |
| temp[loopcounter] = hcryp->Instance->DOUTR; |
| } |
| for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
| { |
| *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[loopcounter]; |
| hcryp->CrypOutCount++; |
| } |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief AES CCM encryption/decryption process in interrupt mode |
| * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp) |
| { |
| __IO uint32_t count = 0U; |
| uint32_t loopcounter; |
| uint32_t lastwordsize; |
| uint32_t npblb; |
| uint32_t mode; |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| uint32_t headersize_in_bytes; |
| uint32_t tmp; |
| static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ |
| 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ |
| 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU |
| }; /* 8-bit data type */ |
| |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED)) |
| { |
| CRYP_PhaseProcessingResume(hcryp); |
| return HAL_OK; |
| } |
| #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
| } |
| } |
| else |
| { |
| hcryp->SizesSum = hcryp->Size; |
| } |
| |
| /* Configure Key, IV and process message (header and payload) */ |
| if (DoKeyIVConfig == 1U) |
| { |
| /* Reset CrypHeaderCount */ |
| hcryp->CrypHeaderCount = 0U; |
| |
| /********************** Init phase ******************************************/ |
| |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
| |
| /* Set the key */ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Set the initialization vector (IV) with B0 */ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* just wait for hash computation */ |
| count = CRYP_TIMEOUT_GCMCCMINITPHASE; |
| do |
| { |
| count-- ; |
| if (count == 0U) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
| |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /***************************** Header phase *********************************/ |
| |
| /* Select header phase */ |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
| |
| /* Enable computation complete flag and error interrupts */ |
| __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) |
| { |
| headersize_in_bytes = hcryp->Init.HeaderSize * 4U; |
| } |
| else |
| { |
| headersize_in_bytes = hcryp->Init.HeaderSize; |
| } |
| |
| if (headersize_in_bytes == 0U) /* Header phase is skipped */ |
| { |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| /* Select payload phase once the header phase is performed */ |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
| |
| if (hcryp->Init.Algorithm == CRYP_AES_CCM) |
| { |
| /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */ |
| hcryp->CrypHeaderCount++; |
| } |
| /* Write the payload Input block in the IN FIFO */ |
| if (hcryp->Size == 0U) |
| { |
| /* Disable interrupts */ |
| __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| else if (hcryp->Size >= 16U) |
| { |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| |
| if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) |
| { |
| /* Call Input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| else /* Size < 4 words : first block is the last block*/ |
| { |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = 16U - (uint32_t)hcryp->Size; |
| |
| mode = hcryp->Instance->CR & AES_CR_MODE; |
| if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
| ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
| { |
| /* Specify the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
| } |
| |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| |
| /* Last block optionally pad the data with zeros*/ |
| for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| while (loopcounter < 4U) |
| { |
| /* Pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| /* Call Input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| /* Enter header data */ |
| /* Check first whether header length is small enough to enter the full header in one shot */ |
| else if (headersize_in_bytes <= 16U) |
| { |
| for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| } |
| /* If the header size is a multiple of words */ |
| if ((headersize_in_bytes % 4U) == 0U) |
| { |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| } |
| else |
| { |
| /* Enter last bytes, padded with zeros */ |
| tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)]; |
| hcryp->Instance->DINR = tmp; |
| hcryp->CrypHeaderCount++; |
| loopcounter++; |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| } |
| /* Call Input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| /* Write the first input header block in the Input FIFO, |
| the following header data will be fed after interrupt occurrence */ |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U); |
| }/* if (hcryp->Init.HeaderSize == 0U) */ /* Header phase is skipped*/ |
| } /* end of if (dokeyivconfig == 1U) */ |
| else /* Key and IV have already been configured, |
| header has already been processed; |
| only process here message payload */ |
| { |
| /* Write the payload Input block in the IN FIFO */ |
| if (hcryp->Size == 0U) |
| { |
| /* Disable interrupts */ |
| __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| else if (hcryp->Size >= 16U) |
| { |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); |
| |
| if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) |
| { |
| /* Call Input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| else /* Size < 4 words : first block is the last block*/ |
| { |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = 16U - (uint32_t)hcryp->Size; |
| |
| mode = hcryp->Instance->CR & AES_CR_MODE; |
| if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
| ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
| { |
| /* Specify the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
| } |
| |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| |
| /* Last block optionally pad the data with zeros*/ |
| for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| while (loopcounter < 4U) |
| { |
| /* Pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| /* Call Input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief AES CCM encryption/decryption process in DMA mode |
| * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp) |
| { |
| uint32_t count; |
| uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
| |
| if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
| { |
| if (hcryp->KeyIVConfig == 1U) |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has already been done, skip it */ |
| DoKeyIVConfig = 0U; |
| hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
| } |
| else |
| { |
| /* If the Key and IV configuration has to be done only once |
| and if it has not been done already, do it and set KeyIVConfig |
| to keep track it won't have to be done again next time */ |
| hcryp->KeyIVConfig = 1U; |
| hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
| } |
| } |
| else |
| { |
| hcryp->SizesSum = hcryp->Size; |
| } |
| |
| if (DoKeyIVConfig == 1U) |
| { |
| |
| /* Reset CrypHeaderCount */ |
| hcryp->CrypHeaderCount = 0U; |
| |
| |
| /********************** Init phase ******************************************/ |
| |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
| |
| /* Set the key */ |
| CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
| |
| /* Set the initialization vector (IV) with B0 */ |
| hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0); |
| hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U); |
| hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U); |
| hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* just wait for hash computation */ |
| count = CRYP_TIMEOUT_GCMCCMINITPHASE; |
| do |
| { |
| count-- ; |
| if (count == 0U) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
| |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| |
| /********************* Header phase *****************************************/ |
| |
| if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| } |
| else |
| { |
| /* Initialization and header phases already done, only do payload phase */ |
| if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| } /* if (DoKeyIVConfig == 1U) */ |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Sets the payload phase in interrupt mode |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval state |
| */ |
| static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp) |
| { |
| uint32_t loopcounter; |
| uint32_t temp[4]; /* Temporary CrypOutBuff */ |
| uint32_t lastwordsize; |
| uint32_t npblb; |
| uint32_t mode; |
| uint16_t incount; /* Temporary CrypInCount Value */ |
| uint16_t outcount; /* Temporary CrypOutCount Value */ |
| uint32_t i; |
| |
| /***************************** Payload phase *******************************/ |
| |
| /* Read the output block from the output FIFO and put them in temporary buffer |
| then get CrypOutBuff from temporary buffer*/ |
| for (i = 0U; i < 4U; i++) |
| { |
| temp[i] = hcryp->Instance->DOUTR; |
| } |
| i = 0U; |
| while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U)) |
| { |
| *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i]; |
| hcryp->CrypOutCount++; |
| i++; |
| } |
| incount = hcryp->CrypInCount; |
| outcount = hcryp->CrypOutCount; |
| if ((outcount >= (hcryp->Size / 4U)) && ((incount * 4U) >= hcryp->Size)) |
| { |
| |
| /* When in CCM with Key and IV configuration skipped, don't disable interruptions */ |
| if (!((hcryp->Init.Algorithm == CRYP_AES_CCM) && (hcryp->KeyIVConfig == 1U))) |
| { |
| /* Disable computation complete flag and errors interrupts */ |
| __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| } |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Call output transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Output complete callback*/ |
| hcryp->OutCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Output complete callback*/ |
| HAL_CRYP_OutCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| |
| else if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U) |
| { |
| |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| /* If suspension flag has been raised, suspend processing |
| only if not already at the end of the payload */ |
| if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) |
| { |
| /* Clear CCF Flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /* reset SuspendRequest */ |
| hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; |
| /* Disable Computation Complete Flag and Errors Interrupts */ |
| __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_SUSPENDED; |
| /* Mark that the payload phase is suspended */ |
| hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| else |
| #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
| { |
| /* Write the input block in the IN FIFO */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) |
| { |
| /* Call input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| } |
| else /* Last block of payload < 128bit*/ |
| { |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); |
| |
| mode = hcryp->Instance->CR & AES_CR_MODE; |
| if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
| ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
| { |
| /* Specify the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
| } |
| |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| |
| /* Last block optionally pad the data with zeros*/ |
| for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| while (loopcounter < 4U) |
| { |
| /* pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| /* Call input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| |
| /** |
| * @brief Sets the payload phase in DMA mode |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module |
| * @retval state |
| */ |
| static HAL_StatusTypeDef CRYP_GCMCCM_SetPayloadPhase_DMA(CRYP_HandleTypeDef *hcryp) |
| { |
| uint16_t wordsize = hcryp->Size / 4U ; |
| uint32_t index; |
| uint32_t npblb; |
| uint32_t lastwordsize; |
| uint32_t temp[4]; /* Temporary CrypOutBuff */ |
| uint32_t count; |
| uint32_t reg; |
| |
| /************************ Payload phase ************************************/ |
| if (hcryp->Size == 0U) |
| { |
| /* Process unLocked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Change the CRYP state and phase */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| } |
| else if (hcryp->Size >= 16U) |
| { |
| /*DMA transfer must not include the last block in case of Size is not %16 */ |
| wordsize = wordsize - (wordsize % 4U); |
| |
| /*DMA transfer */ |
| CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), wordsize, (uint32_t)(hcryp->pCrypOutBuffPtr)); |
| } |
| else /* length of input data is < 16 */ |
| { |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = 16U - (uint32_t)hcryp->Size; |
| |
| /* Set Npblb in case of AES GCM payload encryption or AES CCM payload decryption to get right tag*/ |
| reg = hcryp->Instance->CR & (AES_CR_CHMOD | AES_CR_MODE); |
| if ((reg == (CRYP_AES_GCM_GMAC | CRYP_OPERATINGMODE_ENCRYPT)) || \ |
| (reg == (CRYP_AES_CCM | CRYP_OPERATINGMODE_DECRYPT))) |
| { |
| /* Specify the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
| } |
| |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| |
| /* last block optionally pad the data with zeros*/ |
| for (index = 0U; index < lastwordsize; index ++) |
| { |
| /* Write the last Input block in the IN FIFO */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| while (index < 4U) |
| { |
| /* pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0U; |
| index++; |
| } |
| /* Call the input data transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| /* Wait for CCF flag to be raised */ |
| count = CRYP_TIMEOUT_GCMCCMHEADERPHASE; |
| do |
| { |
| count-- ; |
| if (count == 0U) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
| |
| /* Clear CCF Flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /*Read the output block from the output FIFO */ |
| for (index = 0U; index < 4U; index++) |
| { |
| /* Read the output block from the output FIFO and put them in temporary buffer |
| then get CrypOutBuff from temporary buffer */ |
| temp[index] = hcryp->Instance->DOUTR; |
| } |
| for (index = 0U; index < lastwordsize; index++) |
| { |
| *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[index]; |
| hcryp->CrypOutCount++; |
| } |
| |
| /* Change the CRYP state to ready */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| |
| /* Call Output transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Output complete callback*/ |
| hcryp->OutCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Output complete callback*/ |
| HAL_CRYP_OutCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Sets the header phase in polling mode |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module(Header & HeaderSize) |
| * @param Timeout Timeout value |
| * @retval state |
| */ |
| static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
| { |
| uint32_t loopcounter; |
| uint32_t size_in_bytes; |
| uint32_t tmp; |
| static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ |
| 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ |
| 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU |
| }; /* 8-bit data type */ |
| |
| /***************************** Header phase for GCM/GMAC or CCM *********************************/ |
| if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) |
| { |
| size_in_bytes = hcryp->Init.HeaderSize * 4U; |
| } |
| else |
| { |
| size_in_bytes = hcryp->Init.HeaderSize; |
| } |
| |
| if ((size_in_bytes != 0U)) |
| { |
| /* Select header phase */ |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* If size_in_bytes is a multiple of blocks (a multiple of four 32-bits words ) */ |
| if ((size_in_bytes % 16U) == 0U) |
| { |
| /* No padding */ |
| for (loopcounter = 0U; (loopcounter < (size_in_bytes / 4U)); loopcounter += 4U) |
| { |
| /* Write the input block in the data input register */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| |
| if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| } |
| } |
| else |
| { |
| /* Write header block in the IN FIFO without last block */ |
| for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 16U) * 4U)); loopcounter += 4U) |
| { |
| /* Write the input block in the data input register */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| |
| if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| } |
| /* Write last complete words */ |
| for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 4U) % 4U)); loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| } |
| /* If the header size is a multiple of words */ |
| if ((size_in_bytes % 4U) == 0U) |
| { |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| } |
| else |
| { |
| /* Enter last bytes, padded with zeros */ |
| tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| tmp &= mask[(hcryp->Init.DataType * 2U) + (size_in_bytes % 4U)]; |
| hcryp->Instance->DINR = tmp; |
| loopcounter++; |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| } |
| |
| if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| } |
| } |
| else |
| { |
| /*Workaround 1: only AES, before re-enabling the peripheral, datatype can be configured.*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType); |
| |
| /* Select header phase */ |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| } |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Sets the header phase when using DMA in process |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module(Header & HeaderSize) |
| * @retval None |
| */ |
| static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp) |
| { |
| uint32_t loopcounter; |
| uint32_t headersize_in_bytes; |
| uint32_t tmp; |
| static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ |
| 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ |
| 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU |
| }; /* 8-bit data type */ |
| |
| /***************************** Header phase for GCM/GMAC or CCM *********************************/ |
| if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) |
| { |
| headersize_in_bytes = hcryp->Init.HeaderSize * 4U; |
| } |
| else |
| { |
| headersize_in_bytes = hcryp->Init.HeaderSize; |
| } |
| |
| /* Select header phase */ |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| /* If header size is at least equal to 16 bytes, feed the header through DMA. |
| If size_in_bytes is not a multiple of blocks (is not a multiple of four 32-bit words ), |
| last bytes feeding and padding will be done in CRYP_DMAInCplt() */ |
| if (headersize_in_bytes >= 16U) |
| { |
| /* Initiate header DMA transfer */ |
| if (CRYP_SetHeaderDMAConfig(hcryp, (uint32_t)(hcryp->Init.Header), |
| (uint16_t)((headersize_in_bytes / 16U) * 4U)) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| if (headersize_in_bytes != 0U) |
| { |
| /* Header length is larger than 0 and strictly less than 16 bytes */ |
| /* Write last complete words */ |
| for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| } |
| /* If the header size is a multiple of words */ |
| if ((headersize_in_bytes % 4U) == 0U) |
| { |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| } |
| else |
| { |
| /* Enter last bytes, padded with zeros */ |
| tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)]; |
| hcryp->Instance->DINR = tmp; |
| loopcounter++; |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| } |
| |
| if (CRYP_WaitOnCCFlag(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE) != HAL_OK) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| return HAL_ERROR; |
| } |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| } /* if (headersize_in_bytes != 0U) */ |
| |
| /* Move to payload phase if header length is null or |
| if the header length was less than 16 and header written by software instead of DMA */ |
| |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
| |
| /* Select payload phase once the header phase is performed */ |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); |
| |
| /* Initiate payload DMA IN and processed data DMA OUT transfers */ |
| if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| } /* if (headersize_in_bytes >= 16U) */ |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Sets the header phase in interrupt mode |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module(Header & HeaderSize) |
| * @retval None |
| */ |
| static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp) |
| { |
| uint32_t loopcounter; |
| uint32_t lastwordsize; |
| uint32_t npblb; |
| uint32_t mode; |
| uint32_t headersize_in_bytes; |
| uint32_t tmp; |
| static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ |
| 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ |
| 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU |
| }; /* 8-bit data type */ |
| |
| if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) |
| { |
| headersize_in_bytes = hcryp->Init.HeaderSize * 4U; |
| } |
| else |
| { |
| headersize_in_bytes = hcryp->Init.HeaderSize; |
| } |
| |
| /***************************** Header phase *********************************/ |
| /* Test whether or not the header phase is over. |
| If the test below is true, move to payload phase */ |
| if (headersize_in_bytes <= ((uint32_t)(hcryp->CrypHeaderCount) * 4U)) |
| { |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| /* Select payload phase */ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
| |
| if (hcryp->Init.Algorithm == CRYP_AES_CCM) |
| { |
| /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */ |
| hcryp->CrypHeaderCount++; |
| } |
| /* Write the payload Input block in the IN FIFO */ |
| if (hcryp->Size == 0U) |
| { |
| /* Disable interrupts */ |
| __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| else if (hcryp->Size >= 16U) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| |
| if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) |
| { |
| /* Call the input data transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| else /* Size < 4 words : first block is the last block*/ |
| { |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = 16U - ((uint32_t)hcryp->Size); |
| mode = hcryp->Instance->CR & AES_CR_MODE; |
| if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
| ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
| { |
| /* Specify the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
| } |
| |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| |
| /* Last block optionally pad the data with zeros*/ |
| for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| while (loopcounter < 4U) |
| { |
| /* Pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| /* Call the input data transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| else if ((((headersize_in_bytes / 4U) - (hcryp->CrypHeaderCount)) >= 4U)) |
| { |
| /* Can enter full 4 header words */ |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| /* If suspension flag has been raised, suspend processing |
| only if not already at the end of the header */ |
| if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) |
| { |
| /* Clear CCF Flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| |
| /* reset SuspendRequest */ |
| hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; |
| /* Disable Computation Complete Flag and Errors Interrupts */ |
| __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| /* Change the CRYP state */ |
| hcryp->State = HAL_CRYP_STATE_SUSPENDED; |
| /* Mark that the payload phase is suspended */ |
| hcryp->Phase = CRYP_PHASE_HEADER_SUSPENDED; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hcryp); |
| } |
| else |
| #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
| { |
| /* Write the input block in the IN FIFO */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| } |
| } |
| else /* Write last header block (4 words), padded with zeros if needed */ |
| { |
| |
| for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 4U) % 4U)); loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| } |
| /* If the header size is a multiple of words */ |
| if ((headersize_in_bytes % 4U) == 0U) |
| { |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| hcryp->CrypHeaderCount++; |
| } |
| } |
| else |
| { |
| /* Enter last bytes, padded with zeros */ |
| tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)]; |
| hcryp->Instance->DINR = tmp; |
| loopcounter++; |
| hcryp->CrypHeaderCount++; |
| /* Pad the data with zeros to have a complete block */ |
| while (loopcounter < 4U) |
| { |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| hcryp->CrypHeaderCount++; |
| } |
| } |
| } |
| } |
| |
| /** |
| * @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @param Timeout Timeout duration. |
| * @note This function can only be used in thread mode. |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
| { |
| uint32_t tickstart; |
| |
| /* Get timeout */ |
| tickstart = HAL_GetTick(); |
| |
| while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)) |
| { |
| /* Check for the Timeout */ |
| if (Timeout != HAL_MAX_DELAY) |
| { |
| if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| } |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Wait for Computation Complete Flag (CCF) to raise then clear it. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @param Timeout Timeout duration. |
| * @note This function can be used in thread or handler mode. |
| * @retval HAL status |
| */ |
| static void CRYP_ClearCCFlagWhenHigh(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
| { |
| uint32_t count = Timeout; |
| |
| do |
| { |
| count-- ; |
| if (count == 0U) |
| { |
| /* Disable the CRYP peripheral clock */ |
| __HAL_CRYP_DISABLE(hcryp); |
| |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
| /*Call registered error callback*/ |
| hcryp->ErrorCallback(hcryp); |
| #else |
| /*Call legacy weak error callback*/ |
| HAL_CRYP_ErrorCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
| |
| /* Clear CCF flag */ |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
| } |
| |
| #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
| /** |
| * @brief In case of message processing suspension, read the Initialization Vector. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @param Output Pointer to the buffer containing the saved Initialization Vector. |
| * @note This value has to be stored for reuse by writing the AES_IVRx registers |
| * as soon as the suspended processing has to be resumed. |
| * @retval None |
| */ |
| static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output) |
| { |
| uint32_t outputaddr = (uint32_t)Output; |
| |
| *(uint32_t *)(outputaddr) = hcryp->Instance->IVR3; |
| outputaddr += 4U; |
| *(uint32_t *)(outputaddr) = hcryp->Instance->IVR2; |
| outputaddr += 4U; |
| *(uint32_t *)(outputaddr) = hcryp->Instance->IVR1; |
| outputaddr += 4U; |
| *(uint32_t *)(outputaddr) = hcryp->Instance->IVR0; |
| } |
| |
| /** |
| * @brief In case of message processing resumption, rewrite the Initialization |
| * Vector in the AES_IVRx registers. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @param Input Pointer to the buffer containing the saved Initialization Vector to |
| * write back in the CRYP hardware block. |
| * @note AES must be disabled when reconfiguring the IV values. |
| * @retval None |
| */ |
| static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input) |
| { |
| uint32_t ivaddr = (uint32_t)Input; |
| |
| hcryp->Instance->IVR3 = *(uint32_t *)(ivaddr); |
| ivaddr += 4U; |
| hcryp->Instance->IVR2 = *(uint32_t *)(ivaddr); |
| ivaddr += 4U; |
| hcryp->Instance->IVR1 = *(uint32_t *)(ivaddr); |
| ivaddr += 4U; |
| hcryp->Instance->IVR0 = *(uint32_t *)(ivaddr); |
| } |
| |
| /** |
| * @brief In case of message GCM/GMAC/CCM processing suspension, |
| * read the Suspend Registers. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @param Output Pointer to the buffer containing the saved Suspend Registers. |
| * @note These values have to be stored for reuse by writing back the AES_SUSPxR registers |
| * as soon as the suspended processing has to be resumed. |
| * @retval None |
| */ |
| static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output) |
| { |
| uint32_t outputaddr = (uint32_t)Output; |
| __IO uint32_t count = 0U; |
| |
| /* In case of GCM payload phase encryption, check that suspension can be carried out */ |
| if (READ_BIT(hcryp->Instance->CR, |
| (AES_CR_CHMOD | AES_CR_GCMPH | AES_CR_MODE)) == (CRYP_AES_GCM_GMAC | AES_CR_GCMPH_1 | 0x0U)) |
| { |
| |
| /* Wait for BUSY flag to be cleared */ |
| count = 0xFFF; |
| do |
| { |
| count-- ; |
| if (count == 0U) |
| { |
| /* Change state */ |
| hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
| hcryp->State = HAL_CRYP_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hcryp); |
| HAL_CRYP_ErrorCallback(hcryp); |
| return; |
| } |
| } while (HAL_IS_BIT_SET(hcryp->Instance->SR, AES_SR_BUSY)); |
| |
| } |
| |
| |
| *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP7R; |
| outputaddr += 4U; |
| *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP6R; |
| outputaddr += 4U; |
| *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP5R; |
| outputaddr += 4U; |
| *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP4R; |
| outputaddr += 4U; |
| *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP3R; |
| outputaddr += 4U; |
| *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP2R; |
| outputaddr += 4U; |
| *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP1R; |
| outputaddr += 4U; |
| *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP0R; |
| } |
| |
| /** |
| * @brief In case of message GCM/GMAC/CCM processing resumption, rewrite the Suspend |
| * Registers in the AES_SUSPxR registers. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @param Input Pointer to the buffer containing the saved suspend registers to |
| * write back in the CRYP hardware block. |
| * @note AES must be disabled when reconfiguring the suspend registers. |
| * @retval None |
| */ |
| static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input) |
| { |
| uint32_t ivaddr = (uint32_t)Input; |
| |
| hcryp->Instance->SUSP7R = *(uint32_t *)(ivaddr); |
| ivaddr += 4U; |
| hcryp->Instance->SUSP6R = *(uint32_t *)(ivaddr); |
| ivaddr += 4U; |
| hcryp->Instance->SUSP5R = *(uint32_t *)(ivaddr); |
| ivaddr += 4U; |
| hcryp->Instance->SUSP4R = *(uint32_t *)(ivaddr); |
| ivaddr += 4U; |
| hcryp->Instance->SUSP3R = *(uint32_t *)(ivaddr); |
| ivaddr += 4U; |
| hcryp->Instance->SUSP2R = *(uint32_t *)(ivaddr); |
| ivaddr += 4U; |
| hcryp->Instance->SUSP1R = *(uint32_t *)(ivaddr); |
| ivaddr += 4U; |
| hcryp->Instance->SUSP0R = *(uint32_t *)(ivaddr); |
| } |
| |
| /** |
| * @brief In case of message GCM/GMAC/CCM processing suspension, read the Key Registers. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @param Output Pointer to the buffer containing the saved Key Registers. |
| * @param KeySize Indicates the key size (128 or 256 bits). |
| * @note These values have to be stored for reuse by writing back the AES_KEYRx registers |
| * as soon as the suspended processing has to be resumed. |
| * @retval None |
| */ |
| static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output, uint32_t KeySize) |
| { |
| uint32_t keyaddr = (uint32_t)Output; |
| |
| switch (KeySize) |
| { |
| case CRYP_KEYSIZE_256B: |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey); |
| keyaddr += 4U; |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U); |
| keyaddr += 4U; |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U); |
| keyaddr += 4U; |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U); |
| keyaddr += 4U; |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 4U); |
| keyaddr += 4U; |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 5U); |
| keyaddr += 4U; |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 6U); |
| keyaddr += 4U; |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 7U); |
| break; |
| case CRYP_KEYSIZE_128B: |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey); |
| keyaddr += 4U; |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U); |
| keyaddr += 4U; |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U); |
| keyaddr += 4U; |
| *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * @brief In case of message GCM/GMAC (CCM/CMAC when applicable) processing resumption, rewrite the Key |
| * Registers in the AES_KEYRx registers. |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module. |
| * @param Input Pointer to the buffer containing the saved key registers to |
| * write back in the CRYP hardware block. |
| * @param KeySize Indicates the key size (128 or 256 bits) |
| * @note AES must be disabled when reconfiguring the Key registers. |
| * @retval None |
| */ |
| static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint32_t KeySize) |
| { |
| uint32_t keyaddr = (uint32_t)Input; |
| |
| if (KeySize == CRYP_KEYSIZE_256B) |
| { |
| hcryp->Instance->KEYR7 = *(uint32_t *)(keyaddr); |
| keyaddr += 4U; |
| hcryp->Instance->KEYR6 = *(uint32_t *)(keyaddr); |
| keyaddr += 4U; |
| hcryp->Instance->KEYR5 = *(uint32_t *)(keyaddr); |
| keyaddr += 4U; |
| hcryp->Instance->KEYR4 = *(uint32_t *)(keyaddr); |
| keyaddr += 4U; |
| } |
| |
| hcryp->Instance->KEYR3 = *(uint32_t *)(keyaddr); |
| keyaddr += 4U; |
| hcryp->Instance->KEYR2 = *(uint32_t *)(keyaddr); |
| keyaddr += 4U; |
| hcryp->Instance->KEYR1 = *(uint32_t *)(keyaddr); |
| keyaddr += 4U; |
| hcryp->Instance->KEYR0 = *(uint32_t *)(keyaddr); |
| } |
| |
| /** |
| * @brief Authentication phase resumption in case of GCM/GMAC/CCM process in interrupt mode |
| * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
| * the configuration information for CRYP module(Header & HeaderSize) |
| * @retval None |
| */ |
| static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp) |
| { |
| uint32_t loopcounter; |
| uint16_t lastwordsize; |
| uint16_t npblb; |
| uint32_t cr_temp; |
| |
| |
| __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR | CRYP_CCF_CLEAR); |
| |
| /* Enable computation complete flag and error interrupts */ |
| __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
| |
| /* Enable the CRYP peripheral */ |
| __HAL_CRYP_ENABLE(hcryp); |
| |
| /* Case of header phase resumption =================================================*/ |
| if (hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) |
| { |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| /* Select header phase */ |
| CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
| |
| if ((((hcryp->Init.HeaderSize) - (hcryp->CrypHeaderCount)) >= 4U)) |
| { |
| /* Write the input block in the IN FIFO */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++; |
| } |
| else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/ |
| { |
| /* Last block optionally pad the data with zeros*/ |
| for (loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize % 4U); loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
| hcryp->CrypHeaderCount++ ; |
| } |
| while (loopcounter < 4U) |
| { |
| /* pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| } |
| } |
| /* Case of payload phase resumption =================================================*/ |
| else |
| { |
| if (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED) |
| { |
| |
| /* Set the phase */ |
| hcryp->Phase = CRYP_PHASE_PROCESS; |
| |
| /* Select payload phase once the header phase is performed */ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); |
| |
| /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
| |
| if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U) |
| { |
| /* Write the input block in the IN FIFO */ |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) |
| { |
| /* Call input transfer complete callback */ |
| #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1) |
| /*Call registered Input complete callback*/ |
| hcryp->InCpltCallback(hcryp); |
| #else |
| /*Call legacy weak Input complete callback*/ |
| HAL_CRYP_InCpltCallback(hcryp); |
| #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
| } |
| } |
| else /* Last block of payload < 128bit*/ |
| { |
| /* Compute the number of padding bytes in last block of payload */ |
| npblb = (((hcryp->Size / 16U) + 1U) * 16U) - (hcryp->Size); |
| cr_temp = hcryp->Instance->CR; |
| if ((((cr_temp & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
| (((cr_temp & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
| { |
| /* Specify the number of non-valid bytes using NPBLB register*/ |
| MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, ((uint32_t)npblb) << 20U); |
| } |
| |
| /* Number of valid words (lastwordsize) in last block */ |
| if ((npblb % 4U) == 0U) |
| { |
| lastwordsize = (16U - npblb) / 4U; |
| } |
| else |
| { |
| lastwordsize = ((16U - npblb) / 4U) + 1U; |
| } |
| |
| /* Last block optionally pad the data with zeros*/ |
| for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
| { |
| hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
| hcryp->CrypInCount++; |
| } |
| while (loopcounter < 4U) |
| { |
| /* pad the data with zeros to have a complete block */ |
| hcryp->Instance->DINR = 0x0U; |
| loopcounter++; |
| } |
| } |
| } |
| } |
| } |
| #endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */ |
| /** |
| * @} |
| */ |
| |
| |
| #endif /* HAL_CRYP_MODULE_ENABLED */ |
| |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |