| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/base/internal/sysinfo.h" |
| |
| #include "absl/base/attributes.h" |
| |
| #ifdef _WIN32 |
| #include <windows.h> |
| #else |
| #include <fcntl.h> |
| #include <pthread.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| #endif |
| |
| #ifdef __linux__ |
| #include <sys/syscall.h> |
| #endif |
| |
| #if defined(__APPLE__) || defined(__FreeBSD__) |
| #include <sys/sysctl.h> |
| #endif |
| |
| #ifdef __FreeBSD__ |
| #include <pthread_np.h> |
| #endif |
| |
| #ifdef __NetBSD__ |
| #include <lwp.h> |
| #endif |
| |
| #if defined(__myriad2__) |
| #include <rtems.h> |
| #endif |
| |
| #if defined(__Fuchsia__) |
| #include <zircon/process.h> |
| #endif |
| |
| #include <string.h> |
| |
| #include <cassert> |
| #include <cerrno> |
| #include <cstdint> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <ctime> |
| #include <limits> |
| #include <thread> // NOLINT(build/c++11) |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/base/call_once.h" |
| #include "absl/base/config.h" |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/base/internal/spinlock.h" |
| #include "absl/base/internal/unscaledcycleclock.h" |
| #include "absl/base/thread_annotations.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace base_internal { |
| |
| namespace { |
| |
| #if defined(_WIN32) |
| |
| // Returns number of bits set in `bitMask` |
| DWORD Win32CountSetBits(ULONG_PTR bitMask) { |
| for (DWORD bitSetCount = 0; ; ++bitSetCount) { |
| if (bitMask == 0) return bitSetCount; |
| bitMask &= bitMask - 1; |
| } |
| } |
| |
| // Returns the number of logical CPUs using GetLogicalProcessorInformation(), or |
| // 0 if the number of processors is not available or can not be computed. |
| // https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getlogicalprocessorinformation |
| int Win32NumCPUs() { |
| #pragma comment(lib, "kernel32.lib") |
| using Info = SYSTEM_LOGICAL_PROCESSOR_INFORMATION; |
| |
| DWORD info_size = sizeof(Info); |
| Info* info(static_cast<Info*>(malloc(info_size))); |
| if (info == nullptr) return 0; |
| |
| bool success = GetLogicalProcessorInformation(info, &info_size); |
| if (!success && GetLastError() == ERROR_INSUFFICIENT_BUFFER) { |
| free(info); |
| info = static_cast<Info*>(malloc(info_size)); |
| if (info == nullptr) return 0; |
| success = GetLogicalProcessorInformation(info, &info_size); |
| } |
| |
| DWORD logicalProcessorCount = 0; |
| if (success) { |
| Info* ptr = info; |
| DWORD byteOffset = 0; |
| while (byteOffset + sizeof(Info) <= info_size) { |
| switch (ptr->Relationship) { |
| case RelationProcessorCore: |
| logicalProcessorCount += Win32CountSetBits(ptr->ProcessorMask); |
| break; |
| |
| case RelationNumaNode: |
| case RelationCache: |
| case RelationProcessorPackage: |
| // Ignore other entries |
| break; |
| |
| default: |
| // Ignore unknown entries |
| break; |
| } |
| byteOffset += sizeof(Info); |
| ptr++; |
| } |
| } |
| free(info); |
| return static_cast<int>(logicalProcessorCount); |
| } |
| |
| #endif |
| |
| } // namespace |
| |
| static int GetNumCPUs() { |
| #if defined(__myriad2__) |
| return 1; |
| #elif defined(_WIN32) |
| const int hardware_concurrency = Win32NumCPUs(); |
| return hardware_concurrency ? hardware_concurrency : 1; |
| #elif defined(_AIX) |
| return sysconf(_SC_NPROCESSORS_ONLN); |
| #else |
| // Other possibilities: |
| // - Read /sys/devices/system/cpu/online and use cpumask_parse() |
| // - sysconf(_SC_NPROCESSORS_ONLN) |
| return static_cast<int>(std::thread::hardware_concurrency()); |
| #endif |
| } |
| |
| #if defined(_WIN32) |
| |
| static double GetNominalCPUFrequency() { |
| #if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && \ |
| !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) |
| // UWP apps don't have access to the registry and currently don't provide an |
| // API informing about CPU nominal frequency. |
| return 1.0; |
| #else |
| #pragma comment(lib, "advapi32.lib") // For Reg* functions. |
| HKEY key; |
| // Use the Reg* functions rather than the SH functions because shlwapi.dll |
| // pulls in gdi32.dll which makes process destruction much more costly. |
| if (RegOpenKeyExA(HKEY_LOCAL_MACHINE, |
| "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0, |
| KEY_READ, &key) == ERROR_SUCCESS) { |
| DWORD type = 0; |
| DWORD data = 0; |
| DWORD data_size = sizeof(data); |
| auto result = RegQueryValueExA(key, "~MHz", nullptr, &type, |
| reinterpret_cast<LPBYTE>(&data), &data_size); |
| RegCloseKey(key); |
| if (result == ERROR_SUCCESS && type == REG_DWORD && |
| data_size == sizeof(data)) { |
| return data * 1e6; // Value is MHz. |
| } |
| } |
| return 1.0; |
| #endif // WINAPI_PARTITION_APP && !WINAPI_PARTITION_DESKTOP |
| } |
| |
| #elif defined(CTL_HW) && defined(HW_CPU_FREQ) |
| |
| static double GetNominalCPUFrequency() { |
| unsigned freq; |
| size_t size = sizeof(freq); |
| int mib[2] = {CTL_HW, HW_CPU_FREQ}; |
| if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) { |
| return static_cast<double>(freq); |
| } |
| return 1.0; |
| } |
| |
| #else |
| |
| // Helper function for reading a long from a file. Returns true if successful |
| // and the memory location pointed to by value is set to the value read. |
| static bool ReadLongFromFile(const char *file, long *value) { |
| bool ret = false; |
| #if defined(_POSIX_C_SOURCE) |
| const int file_mode = (O_RDONLY | O_CLOEXEC); |
| #else |
| const int file_mode = O_RDONLY; |
| #endif |
| |
| int fd = open(file, file_mode); |
| if (fd != -1) { |
| char line[1024]; |
| char *err; |
| memset(line, '\0', sizeof(line)); |
| ssize_t len; |
| do { |
| len = read(fd, line, sizeof(line) - 1); |
| } while (len < 0 && errno == EINTR); |
| if (len <= 0) { |
| ret = false; |
| } else { |
| const long temp_value = strtol(line, &err, 10); |
| if (line[0] != '\0' && (*err == '\n' || *err == '\0')) { |
| *value = temp_value; |
| ret = true; |
| } |
| } |
| close(fd); |
| } |
| return ret; |
| } |
| |
| #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY) |
| |
| // Reads a monotonic time source and returns a value in |
| // nanoseconds. The returned value uses an arbitrary epoch, not the |
| // Unix epoch. |
| static int64_t ReadMonotonicClockNanos() { |
| struct timespec t; |
| #ifdef CLOCK_MONOTONIC_RAW |
| int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t); |
| #else |
| int rc = clock_gettime(CLOCK_MONOTONIC, &t); |
| #endif |
| if (rc != 0) { |
| ABSL_INTERNAL_LOG( |
| FATAL, "clock_gettime() failed: (" + std::to_string(errno) + ")"); |
| } |
| return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec; |
| } |
| |
| class UnscaledCycleClockWrapperForInitializeFrequency { |
| public: |
| static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); } |
| }; |
| |
| struct TimeTscPair { |
| int64_t time; // From ReadMonotonicClockNanos(). |
| int64_t tsc; // From UnscaledCycleClock::Now(). |
| }; |
| |
| // Returns a pair of values (monotonic kernel time, TSC ticks) that |
| // approximately correspond to each other. This is accomplished by |
| // doing several reads and picking the reading with the lowest |
| // latency. This approach is used to minimize the probability that |
| // our thread was preempted between clock reads. |
| static TimeTscPair GetTimeTscPair() { |
| int64_t best_latency = std::numeric_limits<int64_t>::max(); |
| TimeTscPair best; |
| for (int i = 0; i < 10; ++i) { |
| int64_t t0 = ReadMonotonicClockNanos(); |
| int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now(); |
| int64_t t1 = ReadMonotonicClockNanos(); |
| int64_t latency = t1 - t0; |
| if (latency < best_latency) { |
| best_latency = latency; |
| best.time = t0; |
| best.tsc = tsc; |
| } |
| } |
| return best; |
| } |
| |
| // Measures and returns the TSC frequency by taking a pair of |
| // measurements approximately `sleep_nanoseconds` apart. |
| static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) { |
| auto t0 = GetTimeTscPair(); |
| struct timespec ts; |
| ts.tv_sec = 0; |
| ts.tv_nsec = sleep_nanoseconds; |
| while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {} |
| auto t1 = GetTimeTscPair(); |
| double elapsed_ticks = t1.tsc - t0.tsc; |
| double elapsed_time = (t1.time - t0.time) * 1e-9; |
| return elapsed_ticks / elapsed_time; |
| } |
| |
| // Measures and returns the TSC frequency by calling |
| // MeasureTscFrequencyWithSleep(), doubling the sleep interval until the |
| // frequency measurement stabilizes. |
| static double MeasureTscFrequency() { |
| double last_measurement = -1.0; |
| int sleep_nanoseconds = 1000000; // 1 millisecond. |
| for (int i = 0; i < 8; ++i) { |
| double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds); |
| if (measurement * 0.99 < last_measurement && |
| last_measurement < measurement * 1.01) { |
| // Use the current measurement if it is within 1% of the |
| // previous measurement. |
| return measurement; |
| } |
| last_measurement = measurement; |
| sleep_nanoseconds *= 2; |
| } |
| return last_measurement; |
| } |
| |
| #endif // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY |
| |
| static double GetNominalCPUFrequency() { |
| long freq = 0; |
| |
| // Google's production kernel has a patch to export the TSC |
| // frequency through sysfs. If the kernel is exporting the TSC |
| // frequency use that. There are issues where cpuinfo_max_freq |
| // cannot be relied on because the BIOS may be exporting an invalid |
| // p-state (on x86) or p-states may be used to put the processor in |
| // a new mode (turbo mode). Essentially, those frequencies cannot |
| // always be relied upon. The same reasons apply to /proc/cpuinfo as |
| // well. |
| if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) { |
| return freq * 1e3; // Value is kHz. |
| } |
| |
| #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY) |
| // On these platforms, the TSC frequency is the nominal CPU |
| // frequency. But without having the kernel export it directly |
| // though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no |
| // other way to reliably get the TSC frequency, so we have to |
| // measure it ourselves. Some CPUs abuse cpuinfo_max_freq by |
| // exporting "fake" frequencies for implementing new features. For |
| // example, Intel's turbo mode is enabled by exposing a p-state |
| // value with a higher frequency than that of the real TSC |
| // rate. Because of this, we prefer to measure the TSC rate |
| // ourselves on i386 and x86-64. |
| return MeasureTscFrequency(); |
| #else |
| |
| // If CPU scaling is in effect, we want to use the *maximum* |
| // frequency, not whatever CPU speed some random processor happens |
| // to be using now. |
| if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", |
| &freq)) { |
| return freq * 1e3; // Value is kHz. |
| } |
| |
| return 1.0; |
| #endif // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY |
| } |
| |
| #endif |
| |
| ABSL_CONST_INIT static once_flag init_num_cpus_once; |
| ABSL_CONST_INIT static int num_cpus = 0; |
| |
| // NumCPUs() may be called before main() and before malloc is properly |
| // initialized, therefore this must not allocate memory. |
| int NumCPUs() { |
| base_internal::LowLevelCallOnce( |
| &init_num_cpus_once, []() { num_cpus = GetNumCPUs(); }); |
| return num_cpus; |
| } |
| |
| // A default frequency of 0.0 might be dangerous if it is used in division. |
| ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once; |
| ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0; |
| |
| // NominalCPUFrequency() may be called before main() and before malloc is |
| // properly initialized, therefore this must not allocate memory. |
| double NominalCPUFrequency() { |
| base_internal::LowLevelCallOnce( |
| &init_nominal_cpu_frequency_once, |
| []() { nominal_cpu_frequency = GetNominalCPUFrequency(); }); |
| return nominal_cpu_frequency; |
| } |
| |
| #if defined(_WIN32) |
| |
| pid_t GetTID() { |
| return pid_t{GetCurrentThreadId()}; |
| } |
| |
| #elif defined(__linux__) |
| |
| #ifndef SYS_gettid |
| #define SYS_gettid __NR_gettid |
| #endif |
| |
| pid_t GetTID() { |
| return static_cast<pid_t>(syscall(SYS_gettid)); |
| } |
| |
| #elif defined(__akaros__) |
| |
| pid_t GetTID() { |
| // Akaros has a concept of "vcore context", which is the state the program |
| // is forced into when we need to make a user-level scheduling decision, or |
| // run a signal handler. This is analogous to the interrupt context that a |
| // CPU might enter if it encounters some kind of exception. |
| // |
| // There is no current thread context in vcore context, but we need to give |
| // a reasonable answer if asked for a thread ID (e.g., in a signal handler). |
| // Thread 0 always exists, so if we are in vcore context, we return that. |
| // |
| // Otherwise, we know (since we are using pthreads) that the uthread struct |
| // current_uthread is pointing to is the first element of a |
| // struct pthread_tcb, so we extract and return the thread ID from that. |
| // |
| // TODO(dcross): Akaros anticipates moving the thread ID to the uthread |
| // structure at some point. We should modify this code to remove the cast |
| // when that happens. |
| if (in_vcore_context()) |
| return 0; |
| return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id; |
| } |
| |
| #elif defined(__myriad2__) |
| |
| pid_t GetTID() { |
| uint32_t tid; |
| rtems_task_ident(RTEMS_SELF, 0, &tid); |
| return tid; |
| } |
| |
| #elif defined(__APPLE__) |
| |
| pid_t GetTID() { |
| uint64_t tid; |
| // `nullptr` here implies this thread. This only fails if the specified |
| // thread is invalid or the pointer-to-tid is null, so we needn't worry about |
| // it. |
| pthread_threadid_np(nullptr, &tid); |
| return static_cast<pid_t>(tid); |
| } |
| |
| #elif defined(__FreeBSD__) |
| |
| pid_t GetTID() { return static_cast<pid_t>(pthread_getthreadid_np()); } |
| |
| #elif defined(__OpenBSD__) |
| |
| pid_t GetTID() { return getthrid(); } |
| |
| #elif defined(__NetBSD__) |
| |
| pid_t GetTID() { return static_cast<pid_t>(_lwp_self()); } |
| |
| #elif defined(__native_client__) |
| |
| pid_t GetTID() { |
| auto* thread = pthread_self(); |
| static_assert(sizeof(pid_t) == sizeof(thread), |
| "In NaCL int expected to be the same size as a pointer"); |
| return reinterpret_cast<pid_t>(thread); |
| } |
| |
| #elif defined(__Fuchsia__) |
| |
| pid_t GetTID() { |
| // Use our thread handle as the TID, which should be unique within this |
| // process (but may not be globally unique). The handle value was chosen over |
| // a kernel object ID (KOID) because zx_handle_t (32-bits) can be cast to a |
| // pid_t type without loss of precision, but a zx_koid_t (64-bits) cannot. |
| return static_cast<pid_t>(zx_thread_self()); |
| } |
| |
| #else |
| |
| // Fallback implementation of `GetTID` using `pthread_self`. |
| pid_t GetTID() { |
| // `pthread_t` need not be arithmetic per POSIX; platforms where it isn't |
| // should be handled above. |
| return static_cast<pid_t>(pthread_self()); |
| } |
| |
| #endif |
| |
| // GetCachedTID() caches the thread ID in thread-local storage (which is a |
| // userspace construct) to avoid unnecessary system calls. Without this caching, |
| // it can take roughly 98ns, while it takes roughly 1ns with this caching. |
| pid_t GetCachedTID() { |
| #ifdef ABSL_HAVE_THREAD_LOCAL |
| static thread_local pid_t thread_id = GetTID(); |
| return thread_id; |
| #else |
| return GetTID(); |
| #endif // ABSL_HAVE_THREAD_LOCAL |
| } |
| |
| } // namespace base_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |