commit | c7108df977c40c7794701c369a8cb66135d75e14 | [log] [tgz] |
---|---|---|
author | Eric Fiselier <eric@efcs.ca> | Mon May 23 20:44:10 2016 -0600 |
committer | Eric Fiselier <eric@efcs.ca> | Mon May 23 20:44:10 2016 -0600 |
tree | b1338c2a07fea198d2cdebfac128dc9d58fc3a17 | |
parent | f434ce3fb650d40db186780ea3506269d5035ffd [diff] |
Only compile and run the C++03 test when -std=c++03 is supported. Fixes #164
A library to support the benchmarking of functions, similar to unit-tests.
Discussion group: https://groups.google.com/d/forum/benchmark-discuss
IRC channel: https://freenode.net #googlebenchmark
Define a function that executes the code to be measured.
static void BM_StringCreation(benchmark::State& state) { while (state.KeepRunning()) std::string empty_string; } // Register the function as a benchmark BENCHMARK(BM_StringCreation); // Define another benchmark static void BM_StringCopy(benchmark::State& state) { std::string x = "hello"; while (state.KeepRunning()) std::string copy(x); } BENCHMARK(BM_StringCopy); BENCHMARK_MAIN();
Sometimes a family of benchmarks can be implemented with just one routine that takes an extra argument to specify which one of the family of benchmarks to run. For example, the following code defines a family of benchmarks for measuring the speed of memcpy()
calls of different lengths:
static void BM_memcpy(benchmark::State& state) { char* src = new char[state.range_x()]; char* dst = new char[state.range_x()]; memset(src, 'x', state.range_x()); while (state.KeepRunning()) memcpy(dst, src, state.range_x()); state.SetBytesProcessed(int64_t(state.iterations()) * int64_t(state.range_x())); delete[] src; delete[] dst; } BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
The preceding code is quite repetitive, and can be replaced with the following short-hand. The following invocation will pick a few appropriate arguments in the specified range and will generate a benchmark for each such argument.
BENCHMARK(BM_memcpy)->Range(8, 8<<10);
You might have a benchmark that depends on two inputs. For example, the following code defines a family of benchmarks for measuring the speed of set insertion.
static void BM_SetInsert(benchmark::State& state) { while (state.KeepRunning()) { state.PauseTiming(); std::set<int> data = ConstructRandomSet(state.range_x()); state.ResumeTiming(); for (int j = 0; j < state.range_y(); ++j) data.insert(RandomNumber()); } } BENCHMARK(BM_SetInsert) ->ArgPair(1<<10, 1) ->ArgPair(1<<10, 8) ->ArgPair(1<<10, 64) ->ArgPair(1<<10, 512) ->ArgPair(8<<10, 1) ->ArgPair(8<<10, 8) ->ArgPair(8<<10, 64) ->ArgPair(8<<10, 512);
The preceding code is quite repetitive, and can be replaced with the following short-hand. The following macro will pick a few appropriate arguments in the product of the two specified ranges and will generate a benchmark for each such pair.
BENCHMARK(BM_SetInsert)->RangePair(1<<10, 8<<10, 1, 512);
For more complex patterns of inputs, passing a custom function to Apply
allows programmatic specification of an arbitrary set of arguments on which to run the benchmark. The following example enumerates a dense range on one parameter, and a sparse range on the second.
static void CustomArguments(benchmark::internal::Benchmark* b) { for (int i = 0; i <= 10; ++i) for (int j = 32; j <= 1024*1024; j *= 8) b->ArgPair(i, j); } BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
Templated benchmarks work the same way: This example produces and consumes messages of size sizeof(v)
range_x
times. It also outputs throughput in the absence of multiprogramming.
template <class Q> int BM_Sequential(benchmark::State& state) { Q q; typename Q::value_type v; while (state.KeepRunning()) { for (int i = state.range_x(); i--; ) q.push(v); for (int e = state.range_x(); e--; ) q.Wait(&v); } // actually messages, not bytes: state.SetBytesProcessed( static_cast<int64_t>(state.iterations())*state.range_x()); } BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
Three macros are provided for adding benchmark templates.
#if __cplusplus >= 201103L // C++11 and greater. #define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters. #else // C++ < C++11 #define BENCHMARK_TEMPLATE(func, arg1) #endif #define BENCHMARK_TEMPLATE1(func, arg1) #define BENCHMARK_TEMPLATE2(func, arg1, arg2)
In a multithreaded test (benchmark invoked by multiple threads simultaneously), it is guaranteed that none of the threads will start until all have called KeepRunning
, and all will have finished before KeepRunning returns false. As such, any global setup or teardown can be wrapped in a check against the thread index:
static void BM_MultiThreaded(benchmark::State& state) { if (state.thread_index == 0) { // Setup code here. } while (state.KeepRunning()) { // Run the test as normal. } if (state.thread_index == 0) { // Teardown code here. } } BENCHMARK(BM_MultiThreaded)->Threads(2);
If the benchmarked code itself uses threads and you want to compare it to single-threaded code, you may want to use real-time (“wallclock”) measurements for latency comparisons:
BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
Without UseRealTime
, CPU time is used by default.
For benchmarking something for which neither CPU time nor real-time are correct or accurate enough, completely manual timing is supported using the UseManualTime
function.
When UseManualTime
is used, the benchmarked code must call SetIterationTime
once per iteration of the KeepRunning
loop to report the manually measured time.
An example use case for this is benchmarking GPU execution (e.g. OpenCL or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot be accurately measured using CPU time or real-time. Instead, they can be measured accurately using a dedicated API, and these measurement results can be reported back with SetIterationTime
.
static void BM_ManualTiming(benchmark::State& state) { int microseconds = state.range_x(); std::chrono::duration<double, std::micro> sleep_duration { static_cast<double>(microseconds) }; while (state.KeepRunning()) { auto start = std::chrono::high_resolution_clock::now(); // Simulate some useful workload with a sleep std::this_thread::sleep_for(sleep_duration); auto end = std::chrono::high_resolution_clock::now(); auto elapsed_seconds = std::chrono::duration_cast<std::chrono::duration<double>>( end - start); state.SetIterationTime(elapsed_seconds.count()); } } BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
To prevent a value or expression from being optimized away by the compiler the benchmark::DoNotOptimize(...)
function can be used.
static void BM_test(benchmark::State& state) { while (state.KeepRunning()) { int x = 0; for (int i=0; i < 64; ++i) { benchmark::DoNotOptimize(x += i); } } }
If a benchmark runs a few milliseconds it may be hard to visually compare the measured times, since the output data is given in nanoseconds per default. In order to manually set the time unit, you can specify it manually:
BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
In all cases, the number of iterations for which the benchmark is run is governed by the amount of time the benchmark takes. Concretely, the number of iterations is at least one, not more than 1e9, until CPU time is greater than the minimum time, or the wallclock time is 5x minimum time. The minimum time is set as a flag --benchmark_min_time
or per benchmark by calling MinTime
on the registered benchmark object.
Fixture tests are created by first defining a type that derives from ::benchmark::Fixture and then creating/registering the tests using the following macros:
BENCHMARK_F(ClassName, Method)
BENCHMARK_DEFINE_F(ClassName, Method)
BENCHMARK_REGISTER_F(ClassName, Method)
For Example:
class MyFixture : public benchmark::Fixture {}; BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) { while (st.KeepRunning()) { ... } } BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) { while (st.KeepRunning()) { ... } } /* BarTest is NOT registered */ BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2); /* BarTest is now registered */
The library supports multiple output formats. Use the --benchmark_format=<tabular|json>
flag to set the format type. tabular
is the default format.
The Tabular format is intended to be a human readable format. By default the format generates color output. Context is output on stderr and the tabular data on stdout. Example tabular output looks like:
Benchmark Time(ns) CPU(ns) Iterations ---------------------------------------------------------------------- BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s
The JSON format outputs human readable json split into two top level attributes. The context
attribute contains information about the run in general, including information about the CPU and the date. The benchmarks
attribute contains a list of ever benchmark run. Example json output looks like:
{ "context": { "date": "2015/03/17-18:40:25", "num_cpus": 40, "mhz_per_cpu": 2801, "cpu_scaling_enabled": false, "build_type": "debug" }, "benchmarks": [ { "name": "BM_SetInsert/1024/1", "iterations": 94877, "real_time": 29275, "cpu_time": 29836, "bytes_per_second": 134066, "items_per_second": 33516 }, { "name": "BM_SetInsert/1024/8", "iterations": 21609, "real_time": 32317, "cpu_time": 32429, "bytes_per_second": 986770, "items_per_second": 246693 }, { "name": "BM_SetInsert/1024/10", "iterations": 21393, "real_time": 32724, "cpu_time": 33355, "bytes_per_second": 1199226, "items_per_second": 299807 } ] }
The CSV format outputs comma-separated values. The context
is output on stderr and the CSV itself on stdout. Example CSV output looks like:
name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label "BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942, "BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115, "BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use:
cmake -DCMAKE_BUILD_TYPE=Release
To enable link-time optimisation, use
cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true
When using gcc, it is necessary to link against pthread to avoid runtime exceptions. This is due to how gcc implements std::thread. See issue #67 for more details.