blob: 7261e2a96b9e860cfa5cb45877c37b819c1c36c9 [file] [log] [blame]
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "internal_macros.h"
#ifdef BENCHMARK_OS_WINDOWS
#if !defined(WINVER) || WINVER < 0x0600
#undef WINVER
#define WINVER 0x0600
#endif // WINVER handling
#include <shlwapi.h>
#undef StrCat // Don't let StrCat in string_util.h be renamed to lstrcatA
#include <versionhelpers.h>
#include <windows.h>
#include <codecvt>
#else
#include <fcntl.h>
#if !defined(BENCHMARK_OS_FUCHSIA) && !defined(BENCHMARK_OS_QURT)
#include <sys/resource.h>
#endif
#include <sys/time.h>
#include <sys/types.h> // this header must be included before 'sys/sysctl.h' to avoid compilation error on FreeBSD
#include <unistd.h>
#if defined BENCHMARK_OS_FREEBSD || defined BENCHMARK_OS_MACOSX || \
defined BENCHMARK_OS_NETBSD || defined BENCHMARK_OS_OPENBSD || \
defined BENCHMARK_OS_DRAGONFLY
#define BENCHMARK_HAS_SYSCTL
#include <sys/sysctl.h>
#endif
#endif
#if defined(BENCHMARK_OS_SOLARIS)
#include <kstat.h>
#include <netdb.h>
#endif
#if defined(BENCHMARK_OS_QNX)
#include <sys/syspage.h>
#endif
#if defined(BENCHMARK_OS_QURT)
#include <qurt.h>
#endif
#if defined(BENCHMARK_HAS_PTHREAD_AFFINITY)
#include <pthread.h>
#endif
#include <algorithm>
#include <array>
#include <bitset>
#include <cerrno>
#include <climits>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <iterator>
#include <limits>
#include <locale>
#include <memory>
#include <random>
#include <sstream>
#include <utility>
#include "benchmark/benchmark.h"
#include "check.h"
#include "cycleclock.h"
#include "internal_macros.h"
#include "log.h"
#include "string_util.h"
#include "timers.h"
namespace benchmark {
namespace {
void PrintImp(std::ostream& out) { out << std::endl; }
template <class First, class... Rest>
void PrintImp(std::ostream& out, First&& f, Rest&&... rest) {
out << std::forward<First>(f);
PrintImp(out, std::forward<Rest>(rest)...);
}
template <class... Args>
BENCHMARK_NORETURN void PrintErrorAndDie(Args&&... args) {
PrintImp(std::cerr, std::forward<Args>(args)...);
std::exit(EXIT_FAILURE);
}
#ifdef BENCHMARK_HAS_SYSCTL
/// ValueUnion - A type used to correctly alias the byte-for-byte output of
/// `sysctl` with the result type it's to be interpreted as.
struct ValueUnion {
union DataT {
int32_t int32_value;
int64_t int64_value;
// For correct aliasing of union members from bytes.
char bytes[8];
};
using DataPtr = std::unique_ptr<DataT, decltype(&std::free)>;
// The size of the data union member + its trailing array size.
std::size_t size;
DataPtr buff;
public:
ValueUnion() : size(0), buff(nullptr, &std::free) {}
explicit ValueUnion(std::size_t buff_size)
: size(sizeof(DataT) + buff_size),
buff(::new (std::malloc(size)) DataT(), &std::free) {}
ValueUnion(ValueUnion&& other) = default;
explicit operator bool() const { return bool(buff); }
char* data() const { return buff->bytes; }
std::string GetAsString() const { return std::string(data()); }
int64_t GetAsInteger() const {
if (size == sizeof(buff->int32_value))
return buff->int32_value;
else if (size == sizeof(buff->int64_value))
return buff->int64_value;
BENCHMARK_UNREACHABLE();
}
template <class T, int N>
std::array<T, N> GetAsArray() {
const int arr_size = sizeof(T) * N;
BM_CHECK_LE(arr_size, size);
std::array<T, N> arr;
std::memcpy(arr.data(), data(), arr_size);
return arr;
}
};
ValueUnion GetSysctlImp(std::string const& name) {
#if defined BENCHMARK_OS_OPENBSD
int mib[2];
mib[0] = CTL_HW;
if ((name == "hw.ncpu") || (name == "hw.cpuspeed")) {
ValueUnion buff(sizeof(int));
if (name == "hw.ncpu") {
mib[1] = HW_NCPU;
} else {
mib[1] = HW_CPUSPEED;
}
if (sysctl(mib, 2, buff.data(), &buff.size, nullptr, 0) == -1) {
return ValueUnion();
}
return buff;
}
return ValueUnion();
#else
std::size_t cur_buff_size = 0;
if (sysctlbyname(name.c_str(), nullptr, &cur_buff_size, nullptr, 0) == -1)
return ValueUnion();
ValueUnion buff(cur_buff_size);
if (sysctlbyname(name.c_str(), buff.data(), &buff.size, nullptr, 0) == 0)
return buff;
return ValueUnion();
#endif
}
BENCHMARK_MAYBE_UNUSED
bool GetSysctl(std::string const& name, std::string* out) {
out->clear();
auto buff = GetSysctlImp(name);
if (!buff) return false;
out->assign(buff.data());
return true;
}
template <class Tp,
class = typename std::enable_if<std::is_integral<Tp>::value>::type>
bool GetSysctl(std::string const& name, Tp* out) {
*out = 0;
auto buff = GetSysctlImp(name);
if (!buff) return false;
*out = static_cast<Tp>(buff.GetAsInteger());
return true;
}
template <class Tp, size_t N>
bool GetSysctl(std::string const& name, std::array<Tp, N>* out) {
auto buff = GetSysctlImp(name);
if (!buff) return false;
*out = buff.GetAsArray<Tp, N>();
return true;
}
#endif
template <class ArgT>
bool ReadFromFile(std::string const& fname, ArgT* arg) {
*arg = ArgT();
std::ifstream f(fname.c_str());
if (!f.is_open()) return false;
f >> *arg;
return f.good();
}
CPUInfo::Scaling CpuScaling(int num_cpus) {
// We don't have a valid CPU count, so don't even bother.
if (num_cpus <= 0) return CPUInfo::Scaling::UNKNOWN;
#if defined(BENCHMARK_OS_QNX)
return CPUInfo::Scaling::UNKNOWN;
#elif !defined(BENCHMARK_OS_WINDOWS)
// On Linux, the CPUfreq subsystem exposes CPU information as files on the
// local file system. If reading the exported files fails, then we may not be
// running on Linux, so we silently ignore all the read errors.
std::string res;
for (int cpu = 0; cpu < num_cpus; ++cpu) {
std::string governor_file =
StrCat("/sys/devices/system/cpu/cpu", cpu, "/cpufreq/scaling_governor");
if (ReadFromFile(governor_file, &res) && res != "performance")
return CPUInfo::Scaling::ENABLED;
}
return CPUInfo::Scaling::DISABLED;
#else
return CPUInfo::Scaling::UNKNOWN;
#endif
}
int CountSetBitsInCPUMap(std::string val) {
auto CountBits = [](std::string part) {
using CPUMask = std::bitset<sizeof(std::uintptr_t) * CHAR_BIT>;
part = "0x" + part;
CPUMask mask(benchmark::stoul(part, nullptr, 16));
return static_cast<int>(mask.count());
};
std::size_t pos;
int total = 0;
while ((pos = val.find(',')) != std::string::npos) {
total += CountBits(val.substr(0, pos));
val = val.substr(pos + 1);
}
if (!val.empty()) {
total += CountBits(val);
}
return total;
}
BENCHMARK_MAYBE_UNUSED
std::vector<CPUInfo::CacheInfo> GetCacheSizesFromKVFS() {
std::vector<CPUInfo::CacheInfo> res;
std::string dir = "/sys/devices/system/cpu/cpu0/cache/";
int idx = 0;
while (true) {
CPUInfo::CacheInfo info;
std::string fpath = StrCat(dir, "index", idx++, "/");
std::ifstream f(StrCat(fpath, "size").c_str());
if (!f.is_open()) break;
std::string suffix;
f >> info.size;
if (f.fail())
PrintErrorAndDie("Failed while reading file '", fpath, "size'");
if (f.good()) {
f >> suffix;
if (f.bad())
PrintErrorAndDie(
"Invalid cache size format: failed to read size suffix");
else if (f && suffix != "K")
PrintErrorAndDie("Invalid cache size format: Expected bytes ", suffix);
else if (suffix == "K")
info.size *= 1024;
}
if (!ReadFromFile(StrCat(fpath, "type"), &info.type))
PrintErrorAndDie("Failed to read from file ", fpath, "type");
if (!ReadFromFile(StrCat(fpath, "level"), &info.level))
PrintErrorAndDie("Failed to read from file ", fpath, "level");
std::string map_str;
if (!ReadFromFile(StrCat(fpath, "shared_cpu_map"), &map_str))
PrintErrorAndDie("Failed to read from file ", fpath, "shared_cpu_map");
info.num_sharing = CountSetBitsInCPUMap(map_str);
res.push_back(info);
}
return res;
}
#ifdef BENCHMARK_OS_MACOSX
std::vector<CPUInfo::CacheInfo> GetCacheSizesMacOSX() {
std::vector<CPUInfo::CacheInfo> res;
std::array<int, 4> cache_counts{{0, 0, 0, 0}};
GetSysctl("hw.cacheconfig", &cache_counts);
struct {
std::string name;
std::string type;
int level;
int num_sharing;
} cases[] = {{"hw.l1dcachesize", "Data", 1, cache_counts[1]},
{"hw.l1icachesize", "Instruction", 1, cache_counts[1]},
{"hw.l2cachesize", "Unified", 2, cache_counts[2]},
{"hw.l3cachesize", "Unified", 3, cache_counts[3]}};
for (auto& c : cases) {
int val;
if (!GetSysctl(c.name, &val)) continue;
CPUInfo::CacheInfo info;
info.type = c.type;
info.level = c.level;
info.size = val;
info.num_sharing = c.num_sharing;
res.push_back(std::move(info));
}
return res;
}
#elif defined(BENCHMARK_OS_WINDOWS)
std::vector<CPUInfo::CacheInfo> GetCacheSizesWindows() {
std::vector<CPUInfo::CacheInfo> res;
DWORD buffer_size = 0;
using PInfo = SYSTEM_LOGICAL_PROCESSOR_INFORMATION;
using CInfo = CACHE_DESCRIPTOR;
using UPtr = std::unique_ptr<PInfo, decltype(&std::free)>;
GetLogicalProcessorInformation(nullptr, &buffer_size);
UPtr buff(static_cast<PInfo*>(std::malloc(buffer_size)), &std::free);
if (!GetLogicalProcessorInformation(buff.get(), &buffer_size))
PrintErrorAndDie("Failed during call to GetLogicalProcessorInformation: ",
GetLastError());
PInfo* it = buff.get();
PInfo* end = buff.get() + (buffer_size / sizeof(PInfo));
for (; it != end; ++it) {
if (it->Relationship != RelationCache) continue;
using BitSet = std::bitset<sizeof(ULONG_PTR) * CHAR_BIT>;
BitSet b(it->ProcessorMask);
// To prevent duplicates, only consider caches where CPU 0 is specified
if (!b.test(0)) continue;
const CInfo& cache = it->Cache;
CPUInfo::CacheInfo C;
C.num_sharing = static_cast<int>(b.count());
C.level = cache.Level;
C.size = static_cast<int>(cache.Size);
C.type = "Unknown";
switch (cache.Type) {
case CacheUnified:
C.type = "Unified";
break;
case CacheInstruction:
C.type = "Instruction";
break;
case CacheData:
C.type = "Data";
break;
case CacheTrace:
C.type = "Trace";
break;
}
res.push_back(C);
}
return res;
}
#elif BENCHMARK_OS_QNX
std::vector<CPUInfo::CacheInfo> GetCacheSizesQNX() {
std::vector<CPUInfo::CacheInfo> res;
struct cacheattr_entry* cache = SYSPAGE_ENTRY(cacheattr);
uint32_t const elsize = SYSPAGE_ELEMENT_SIZE(cacheattr);
int num = SYSPAGE_ENTRY_SIZE(cacheattr) / elsize;
for (int i = 0; i < num; ++i) {
CPUInfo::CacheInfo info;
switch (cache->flags) {
case CACHE_FLAG_INSTR:
info.type = "Instruction";
info.level = 1;
break;
case CACHE_FLAG_DATA:
info.type = "Data";
info.level = 1;
break;
case CACHE_FLAG_UNIFIED:
info.type = "Unified";
info.level = 2;
break;
case CACHE_FLAG_SHARED:
info.type = "Shared";
info.level = 3;
break;
default:
continue;
break;
}
info.size = cache->line_size * cache->num_lines;
info.num_sharing = 0;
res.push_back(std::move(info));
cache = SYSPAGE_ARRAY_ADJ_OFFSET(cacheattr, cache, elsize);
}
return res;
}
#endif
std::vector<CPUInfo::CacheInfo> GetCacheSizes() {
#ifdef BENCHMARK_OS_MACOSX
return GetCacheSizesMacOSX();
#elif defined(BENCHMARK_OS_WINDOWS)
return GetCacheSizesWindows();
#elif defined(BENCHMARK_OS_QNX)
return GetCacheSizesQNX();
#elif defined(BENCHMARK_OS_QURT)
return std::vector<CPUInfo::CacheInfo>();
#else
return GetCacheSizesFromKVFS();
#endif
}
std::string GetSystemName() {
#if defined(BENCHMARK_OS_WINDOWS)
std::string str;
static constexpr int COUNT = MAX_COMPUTERNAME_LENGTH + 1;
TCHAR hostname[COUNT] = {'\0'};
DWORD DWCOUNT = COUNT;
if (!GetComputerName(hostname, &DWCOUNT)) return std::string("");
#ifndef UNICODE
str = std::string(hostname, DWCOUNT);
#else
// `WideCharToMultiByte` returns `0` when conversion fails.
int len = WideCharToMultiByte(CP_UTF8, WC_ERR_INVALID_CHARS, hostname,
DWCOUNT, NULL, 0, NULL, NULL);
str.resize(len);
WideCharToMultiByte(CP_UTF8, WC_ERR_INVALID_CHARS, hostname, DWCOUNT, &str[0],
str.size(), NULL, NULL);
#endif
return str;
#elif defined(BENCHMARK_OS_QURT)
std::string str = "Hexagon DSP";
qurt_arch_version_t arch_version_struct;
if (qurt_sysenv_get_arch_version(&arch_version_struct) == QURT_EOK) {
str += " v";
str += std::to_string(arch_version_struct.arch_version);
}
return str;
#else
#ifndef HOST_NAME_MAX
#ifdef BENCHMARK_HAS_SYSCTL // BSD/Mac doesn't have HOST_NAME_MAX defined
#define HOST_NAME_MAX 64
#elif defined(BENCHMARK_OS_NACL)
#define HOST_NAME_MAX 64
#elif defined(BENCHMARK_OS_QNX)
#define HOST_NAME_MAX 154
#elif defined(BENCHMARK_OS_RTEMS)
#define HOST_NAME_MAX 256
#elif defined(BENCHMARK_OS_SOLARIS)
#define HOST_NAME_MAX MAXHOSTNAMELEN
#elif defined(BENCHMARK_OS_ZOS)
#define HOST_NAME_MAX _POSIX_HOST_NAME_MAX
#else
#pragma message("HOST_NAME_MAX not defined. using 64")
#define HOST_NAME_MAX 64
#endif
#endif // def HOST_NAME_MAX
char hostname[HOST_NAME_MAX];
int retVal = gethostname(hostname, HOST_NAME_MAX);
if (retVal != 0) return std::string("");
return std::string(hostname);
#endif // Catch-all POSIX block.
}
int GetNumCPUsImpl() {
#ifdef BENCHMARK_HAS_SYSCTL
int num_cpu = -1;
if (GetSysctl("hw.ncpu", &num_cpu)) return num_cpu;
PrintErrorAndDie("Err: ", strerror(errno));
#elif defined(BENCHMARK_OS_WINDOWS)
SYSTEM_INFO sysinfo;
// Use memset as opposed to = {} to avoid GCC missing initializer false
// positives.
std::memset(&sysinfo, 0, sizeof(SYSTEM_INFO));
GetSystemInfo(&sysinfo);
// number of logical processors in the current group
return static_cast<int>(sysinfo.dwNumberOfProcessors);
#elif defined(BENCHMARK_OS_SOLARIS)
// Returns -1 in case of a failure.
long num_cpu = sysconf(_SC_NPROCESSORS_ONLN);
if (num_cpu < 0) {
PrintErrorAndDie("sysconf(_SC_NPROCESSORS_ONLN) failed with error: ",
strerror(errno));
}
return (int)num_cpu;
#elif defined(BENCHMARK_OS_QNX)
return static_cast<int>(_syspage_ptr->num_cpu);
#elif defined(BENCHMARK_OS_QURT)
qurt_sysenv_max_hthreads_t hardware_threads;
if (qurt_sysenv_get_max_hw_threads(&hardware_threads) != QURT_EOK) {
hardware_threads.max_hthreads = 1;
}
return hardware_threads.max_hthreads;
#else
int num_cpus = 0;
int max_id = -1;
std::ifstream f("/proc/cpuinfo");
if (!f.is_open()) {
PrintErrorAndDie("Failed to open /proc/cpuinfo");
}
#if defined(__alpha__)
const std::string Key = "cpus detected";
#else
const std::string Key = "processor";
#endif
std::string ln;
while (std::getline(f, ln)) {
if (ln.empty()) continue;
std::size_t split_idx = ln.find(':');
std::string value;
#if defined(__s390__)
// s390 has another format in /proc/cpuinfo
// it needs to be parsed differently
if (split_idx != std::string::npos)
value = ln.substr(Key.size() + 1, split_idx - Key.size() - 1);
#else
if (split_idx != std::string::npos) value = ln.substr(split_idx + 1);
#endif
if (ln.size() >= Key.size() && ln.compare(0, Key.size(), Key) == 0) {
num_cpus++;
if (!value.empty()) {
const int cur_id = benchmark::stoi(value);
max_id = std::max(cur_id, max_id);
}
}
}
if (f.bad()) {
PrintErrorAndDie("Failure reading /proc/cpuinfo");
}
if (!f.eof()) {
PrintErrorAndDie("Failed to read to end of /proc/cpuinfo");
}
f.close();
if ((max_id + 1) != num_cpus) {
fprintf(stderr,
"CPU ID assignments in /proc/cpuinfo seem messed up."
" This is usually caused by a bad BIOS.\n");
}
return num_cpus;
#endif
BENCHMARK_UNREACHABLE();
}
int GetNumCPUs() {
const int num_cpus = GetNumCPUsImpl();
if (num_cpus < 1) {
PrintErrorAndDie(
"Unable to extract number of CPUs. If your platform uses "
"/proc/cpuinfo, custom support may need to be added.");
}
return num_cpus;
}
class ThreadAffinityGuard final {
public:
ThreadAffinityGuard() : reset_affinity(SetAffinity()) {
if (!reset_affinity)
std::cerr << "***WARNING*** Failed to set thread affinity. Estimated CPU "
"frequency may be incorrect."
<< std::endl;
}
~ThreadAffinityGuard() {
if (!reset_affinity) return;
#if defined(BENCHMARK_HAS_PTHREAD_AFFINITY)
int ret = pthread_setaffinity_np(self, sizeof(previous_affinity),
&previous_affinity);
if (ret == 0) return;
#elif defined(BENCHMARK_OS_WINDOWS_WIN32)
DWORD_PTR ret = SetThreadAffinityMask(self, previous_affinity);
if (ret != 0) return;
#endif // def BENCHMARK_HAS_PTHREAD_AFFINITY
PrintErrorAndDie("Failed to reset thread affinity");
}
ThreadAffinityGuard(ThreadAffinityGuard&&) = delete;
ThreadAffinityGuard(const ThreadAffinityGuard&) = delete;
ThreadAffinityGuard& operator=(ThreadAffinityGuard&&) = delete;
ThreadAffinityGuard& operator=(const ThreadAffinityGuard&) = delete;
private:
bool SetAffinity() {
#if defined(BENCHMARK_HAS_PTHREAD_AFFINITY)
int ret;
self = pthread_self();
ret = pthread_getaffinity_np(self, sizeof(previous_affinity),
&previous_affinity);
if (ret != 0) return false;
cpu_set_t affinity;
memcpy(&affinity, &previous_affinity, sizeof(affinity));
bool is_first_cpu = true;
for (int i = 0; i < CPU_SETSIZE; ++i)
if (CPU_ISSET(i, &affinity)) {
if (is_first_cpu)
is_first_cpu = false;
else
CPU_CLR(i, &affinity);
}
if (is_first_cpu) return false;
ret = pthread_setaffinity_np(self, sizeof(affinity), &affinity);
return ret == 0;
#elif defined(BENCHMARK_OS_WINDOWS_WIN32)
self = GetCurrentThread();
DWORD_PTR mask = static_cast<DWORD_PTR>(1) << GetCurrentProcessorNumber();
previous_affinity = SetThreadAffinityMask(self, mask);
return previous_affinity != 0;
#else
return false;
#endif // def BENCHMARK_HAS_PTHREAD_AFFINITY
}
#if defined(BENCHMARK_HAS_PTHREAD_AFFINITY)
pthread_t self;
cpu_set_t previous_affinity;
#elif defined(BENCHMARK_OS_WINDOWS_WIN32)
HANDLE self;
DWORD_PTR previous_affinity;
#endif // def BENCHMARK_HAS_PTHREAD_AFFINITY
bool reset_affinity;
};
double GetCPUCyclesPerSecond(CPUInfo::Scaling scaling) {
// Currently, scaling is only used on linux path here,
// suppress diagnostics about it being unused on other paths.
(void)scaling;
#if defined BENCHMARK_OS_LINUX || defined BENCHMARK_OS_CYGWIN
long freq;
// If the kernel is exporting the tsc frequency use that. There are issues
// where cpuinfo_max_freq cannot be relied on because the BIOS may be
// exporintg an invalid p-state (on x86) or p-states may be used to put the
// processor in a new mode (turbo mode). Essentially, those frequencies
// cannot always be relied upon. The same reasons apply to /proc/cpuinfo as
// well.
if (ReadFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)
// If CPU scaling is disabled, use the *current* frequency.
// Note that we specifically don't want to read cpuinfo_cur_freq,
// because it is only readable by root.
|| (scaling == CPUInfo::Scaling::DISABLED &&
ReadFromFile("/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq",
&freq))
// Otherwise, if CPU scaling may be in effect, we want to use
// the *maximum* frequency, not whatever CPU speed some random processor
// happens to be using now.
|| ReadFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
&freq)) {
// The value is in kHz (as the file name suggests). For example, on a
// 2GHz warpstation, the file contains the value "2000000".
return static_cast<double>(freq) * 1000.0;
}
const double error_value = -1;
double bogo_clock = error_value;
std::ifstream f("/proc/cpuinfo");
if (!f.is_open()) {
std::cerr << "failed to open /proc/cpuinfo\n";
return error_value;
}
auto StartsWithKey = [](std::string const& Value, std::string const& Key) {
if (Key.size() > Value.size()) return false;
auto Cmp = [&](char X, char Y) {
return std::tolower(X) == std::tolower(Y);
};
return std::equal(Key.begin(), Key.end(), Value.begin(), Cmp);
};
std::string ln;
while (std::getline(f, ln)) {
if (ln.empty()) continue;
std::size_t split_idx = ln.find(':');
std::string value;
if (split_idx != std::string::npos) value = ln.substr(split_idx + 1);
// When parsing the "cpu MHz" and "bogomips" (fallback) entries, we only
// accept positive values. Some environments (virtual machines) report zero,
// which would cause infinite looping in WallTime_Init.
if (StartsWithKey(ln, "cpu MHz")) {
if (!value.empty()) {
double cycles_per_second = benchmark::stod(value) * 1000000.0;
if (cycles_per_second > 0) return cycles_per_second;
}
} else if (StartsWithKey(ln, "bogomips")) {
if (!value.empty()) {
bogo_clock = benchmark::stod(value) * 1000000.0;
if (bogo_clock < 0.0) bogo_clock = error_value;
}
}
}
if (f.bad()) {
std::cerr << "Failure reading /proc/cpuinfo\n";
return error_value;
}
if (!f.eof()) {
std::cerr << "Failed to read to end of /proc/cpuinfo\n";
return error_value;
}
f.close();
// If we found the bogomips clock, but nothing better, we'll use it (but
// we're not happy about it); otherwise, fallback to the rough estimation
// below.
if (bogo_clock >= 0.0) return bogo_clock;
#elif defined BENCHMARK_HAS_SYSCTL
constexpr auto* freqStr =
#if defined(BENCHMARK_OS_FREEBSD) || defined(BENCHMARK_OS_NETBSD)
"machdep.tsc_freq";
#elif defined BENCHMARK_OS_OPENBSD
"hw.cpuspeed";
#elif defined BENCHMARK_OS_DRAGONFLY
"hw.tsc_frequency";
#else
"hw.cpufrequency";
#endif
unsigned long long hz = 0;
#if defined BENCHMARK_OS_OPENBSD
if (GetSysctl(freqStr, &hz)) return static_cast<double>(hz * 1000000);
#else
if (GetSysctl(freqStr, &hz)) return static_cast<double>(hz);
#endif
fprintf(stderr, "Unable to determine clock rate from sysctl: %s: %s\n",
freqStr, strerror(errno));
fprintf(stderr,
"This does not affect benchmark measurements, only the "
"metadata output.\n");
#elif defined BENCHMARK_OS_WINDOWS_WIN32
// In NT, read MHz from the registry. If we fail to do so or we're in win9x
// then make a crude estimate.
DWORD data, data_size = sizeof(data);
if (IsWindowsXPOrGreater() &&
SUCCEEDED(
SHGetValueA(HKEY_LOCAL_MACHINE,
"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0",
"~MHz", nullptr, &data, &data_size)))
return static_cast<double>(static_cast<int64_t>(data) *
static_cast<int64_t>(1000 * 1000)); // was mhz
#elif defined(BENCHMARK_OS_SOLARIS)
kstat_ctl_t* kc = kstat_open();
if (!kc) {
std::cerr << "failed to open /dev/kstat\n";
return -1;
}
kstat_t* ksp = kstat_lookup(kc, const_cast<char*>("cpu_info"), -1,
const_cast<char*>("cpu_info0"));
if (!ksp) {
std::cerr << "failed to lookup in /dev/kstat\n";
return -1;
}
if (kstat_read(kc, ksp, NULL) < 0) {
std::cerr << "failed to read from /dev/kstat\n";
return -1;
}
kstat_named_t* knp = (kstat_named_t*)kstat_data_lookup(
ksp, const_cast<char*>("current_clock_Hz"));
if (!knp) {
std::cerr << "failed to lookup data in /dev/kstat\n";
return -1;
}
if (knp->data_type != KSTAT_DATA_UINT64) {
std::cerr << "current_clock_Hz is of unexpected data type: "
<< knp->data_type << "\n";
return -1;
}
double clock_hz = knp->value.ui64;
kstat_close(kc);
return clock_hz;
#elif defined(BENCHMARK_OS_QNX)
return static_cast<double>(
static_cast<int64_t>(SYSPAGE_ENTRY(cpuinfo)->speed) *
static_cast<int64_t>(1000 * 1000));
#elif defined(BENCHMARK_OS_QURT)
// QuRT doesn't provide any API to query Hexagon frequency.
return 1000000000;
#endif
// If we've fallen through, attempt to roughly estimate the CPU clock rate.
// Make sure to use the same cycle counter when starting and stopping the
// cycle timer. We just pin the current thread to a cpu in the previous
// affinity set.
ThreadAffinityGuard affinity_guard;
static constexpr double estimate_time_s = 1.0;
const double start_time = ChronoClockNow();
const auto start_ticks = cycleclock::Now();
// Impose load instead of calling sleep() to make sure the cycle counter
// works.
using PRNG = std::minstd_rand;
using Result = PRNG::result_type;
PRNG rng(static_cast<Result>(start_ticks));
Result state = 0;
do {
static constexpr size_t batch_size = 10000;
rng.discard(batch_size);
state += rng();
} while (ChronoClockNow() - start_time < estimate_time_s);
DoNotOptimize(state);
const auto end_ticks = cycleclock::Now();
const double end_time = ChronoClockNow();
return static_cast<double>(end_ticks - start_ticks) / (end_time - start_time);
// Reset the affinity of current thread when the lifetime of affinity_guard
// ends.
}
std::vector<double> GetLoadAvg() {
#if (defined BENCHMARK_OS_FREEBSD || defined(BENCHMARK_OS_LINUX) || \
defined BENCHMARK_OS_MACOSX || defined BENCHMARK_OS_NETBSD || \
defined BENCHMARK_OS_OPENBSD || defined BENCHMARK_OS_DRAGONFLY) && \
!(defined(__ANDROID__) && __ANDROID_API__ < 29)
static constexpr int kMaxSamples = 3;
std::vector<double> res(kMaxSamples, 0.0);
const size_t nelem = static_cast<size_t>(getloadavg(res.data(), kMaxSamples));
if (nelem < 1) {
res.clear();
} else {
res.resize(nelem);
}
return res;
#else
return {};
#endif
}
} // end namespace
const CPUInfo& CPUInfo::Get() {
static const CPUInfo* info = new CPUInfo();
return *info;
}
CPUInfo::CPUInfo()
: num_cpus(GetNumCPUs()),
scaling(CpuScaling(num_cpus)),
cycles_per_second(GetCPUCyclesPerSecond(scaling)),
caches(GetCacheSizes()),
load_avg(GetLoadAvg()) {}
const SystemInfo& SystemInfo::Get() {
static const SystemInfo* info = new SystemInfo();
return *info;
}
SystemInfo::SystemInfo() : name(GetSystemName()) {}
} // end namespace benchmark