blob: 4bdbaa5985905a9fe3d3ff9be18b53cacc52b20c [file] [log] [blame]
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "benchmark/macros.h"
#include "internal_macros.h"
#include "walltime.h"
#if defined(BENCHMARK_OS_WINDOWS)
#include <time.h>
#include <winsock.h> // for timeval
#else
#include <sys/time.h>
#endif
#include <cstdio>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <atomic>
#include <chrono>
#include <limits>
#include "arraysize.h"
#include "check.h"
#include "cycleclock.h"
#include "log.h"
#include "sysinfo.h"
namespace benchmark {
namespace walltime {
namespace {
#if defined(HAVE_STEADY_CLOCK)
template <bool HighResIsSteady = std::chrono::high_resolution_clock::is_steady>
struct ChooseSteadyClock {
typedef std::chrono::high_resolution_clock type;
};
template <>
struct ChooseSteadyClock<false> {
typedef std::chrono::steady_clock type;
};
#endif
struct ChooseClockType {
#if defined(HAVE_STEADY_CLOCK)
typedef ChooseSteadyClock<>::type type;
#else
typedef std::chrono::high_resolution_clock type;
#endif
};
class WallTimeImp
{
public:
WallTime Now();
static WallTimeImp& GetWallTimeImp() {
static WallTimeImp* imp = new WallTimeImp();
return *imp;
}
private:
WallTimeImp();
// Helper routines to load/store a float from an AtomicWord. Required because
// g++ < 4.7 doesn't support std::atomic<float> correctly. I cannot wait to
// get rid of this horror show.
void SetDrift(float f) {
int32_t w;
memcpy(&w, &f, sizeof(f));
std::atomic_store(&drift_adjust_, w);
}
float GetDrift() const {
float f;
int32_t w = std::atomic_load(&drift_adjust_);
memcpy(&f, &w, sizeof(f));
return f;
}
WallTime Slow() const {
struct timeval tv;
#if defined(BENCHMARK_OS_WINDOWS)
FILETIME file_time;
SYSTEMTIME system_time;
ULARGE_INTEGER ularge;
const unsigned __int64 epoch = 116444736000000000LL;
GetSystemTime(&system_time);
SystemTimeToFileTime(&system_time, &file_time);
ularge.LowPart = file_time.dwLowDateTime;
ularge.HighPart = file_time.dwHighDateTime;
tv.tv_sec = (long)((ularge.QuadPart - epoch) / (10L * 1000 * 1000));
tv.tv_usec = (long)(system_time.wMilliseconds * 1000);
#else
gettimeofday(&tv, nullptr);
#endif
return tv.tv_sec + tv.tv_usec * 1e-6;
}
private:
static_assert(sizeof(float) <= sizeof(int32_t),
"type sizes don't allow the drift_adjust hack");
WallTime base_walltime_;
int64_t base_cycletime_;
int64_t cycles_per_second_;
double seconds_per_cycle_;
uint32_t last_adjust_time_;
std::atomic<int32_t> drift_adjust_;
int64_t max_interval_cycles_;
BENCHMARK_DISALLOW_COPY_AND_ASSIGN(WallTimeImp);
};
WallTime WallTimeImp::Now() {
WallTime now = 0.0;
WallTime result = 0.0;
int64_t ct = 0;
uint32_t top_bits = 0;
do {
ct = cycleclock::Now();
int64_t cycle_delta = ct - base_cycletime_;
result = base_walltime_ + cycle_delta * seconds_per_cycle_;
top_bits = static_cast<uint32_t>(uint64_t(ct) >> 32);
// Recompute drift no more often than every 2^32 cycles.
// I.e., @2GHz, ~ every two seconds
if (top_bits == last_adjust_time_) { // don't need to recompute drift
return result + GetDrift();
}
now = Slow();
} while (cycleclock::Now() - ct > max_interval_cycles_);
// We are now sure that "now" and "result" were produced within
// kMaxErrorInterval of one another.
SetDrift(static_cast<float>(now - result));
last_adjust_time_ = top_bits;
return now;
}
WallTimeImp::WallTimeImp()
: base_walltime_(0.0), base_cycletime_(0),
cycles_per_second_(0), seconds_per_cycle_(0.0),
last_adjust_time_(0), drift_adjust_(0),
max_interval_cycles_(0) {
const double kMaxErrorInterval = 100e-6;
cycles_per_second_ = static_cast<int64_t>(CyclesPerSecond());
CHECK(cycles_per_second_ != 0);
seconds_per_cycle_ = 1.0 / cycles_per_second_;
max_interval_cycles_ =
static_cast<int64_t>(cycles_per_second_ * kMaxErrorInterval);
do {
base_cycletime_ = cycleclock::Now();
base_walltime_ = Slow();
} while (cycleclock::Now() - base_cycletime_ > max_interval_cycles_);
// We are now sure that "base_walltime" and "base_cycletime" were produced
// within kMaxErrorInterval of one another.
SetDrift(0.0);
last_adjust_time_ = static_cast<uint32_t>(uint64_t(base_cycletime_) >> 32);
}
WallTime CPUWalltimeNow() {
static WallTimeImp& imp = WallTimeImp::GetWallTimeImp();
return imp.Now();
}
WallTime ChronoWalltimeNow() {
typedef ChooseClockType::type Clock;
typedef std::chrono::duration<WallTime, std::chrono::seconds::period>
FPSeconds;
static_assert(std::chrono::treat_as_floating_point<WallTime>::value,
"This type must be treated as a floating point type.");
auto now = Clock::now().time_since_epoch();
return std::chrono::duration_cast<FPSeconds>(now).count();
}
bool UseCpuCycleClock() {
bool useWallTime = !CpuScalingEnabled();
if (useWallTime) {
VLOG(1) << "Using the CPU cycle clock to provide walltime::Now().\n";
} else {
VLOG(1) << "Using std::chrono to provide walltime::Now().\n";
}
return useWallTime;
}
} // end anonymous namespace
// WallTimeImp doesn't work when CPU Scaling is enabled. If CPU Scaling is
// enabled at the start of the program then std::chrono::system_clock is used
// instead.
WallTime Now()
{
static bool useCPUClock = UseCpuCycleClock();
if (useCPUClock) {
return CPUWalltimeNow();
} else {
return ChronoWalltimeNow();
}
}
} // end namespace walltime
namespace {
std::string DateTimeString(bool local) {
typedef std::chrono::system_clock Clock;
std::time_t now = Clock::to_time_t(Clock::now());
char storage[128];
std::size_t written;
if (local) {
#if defined(BENCHMARK_OS_WINDOWS)
written = std::strftime(storage, sizeof(storage), "%x %X", ::localtime(&now));
#else
std::tm timeinfo;
std::memset(&timeinfo, 0, sizeof(std::tm));
::localtime_r(&now, &timeinfo);
written = std::strftime(storage, sizeof(storage), "%F %T", &timeinfo);
#endif
} else {
#if defined(BENCHMARK_OS_WINDOWS)
written = std::strftime(storage, sizeof(storage), "%x %X", ::gmtime(&now));
#else
std::tm timeinfo;
std::memset(&timeinfo, 0, sizeof(std::tm));
::gmtime_r(&now, &timeinfo);
written = std::strftime(storage, sizeof(storage), "%F %T", &timeinfo);
#endif
}
CHECK(written < arraysize(storage));
((void)written); // prevent unused variable in optimized mode.
return std::string(storage);
}
} // end namespace
std::string LocalDateTimeString() {
return DateTimeString(true);
}
} // end namespace benchmark