| // Copyright 2008 The RE2 Authors. All Rights Reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Tested by search_test.cc, exhaustive_test.cc, tester.cc |
| |
| // Prog::SearchBitState is a regular expression search with submatch |
| // tracking for small regular expressions and texts. Similarly to |
| // testing/backtrack.cc, it allocates a bitmap with (count of |
| // lists) * (length of text) bits to make sure it never explores the |
| // same (instruction list, character position) multiple times. This |
| // limits the search to run in time linear in the length of the text. |
| // |
| // Unlike testing/backtrack.cc, SearchBitState is not recursive |
| // on the text. |
| // |
| // SearchBitState is a fast replacement for the NFA code on small |
| // regexps and texts when SearchOnePass cannot be used. |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <string.h> |
| #include <limits> |
| #include <utility> |
| |
| #include "util/logging.h" |
| #include "re2/pod_array.h" |
| #include "re2/prog.h" |
| #include "re2/regexp.h" |
| |
| namespace re2 { |
| |
| struct Job { |
| int id; |
| int rle; // run length encoding |
| const char* p; |
| }; |
| |
| class BitState { |
| public: |
| explicit BitState(Prog* prog); |
| |
| // The usual Search prototype. |
| // Can only call Search once per BitState. |
| bool Search(absl::string_view text, absl::string_view context, bool anchored, |
| bool longest, absl::string_view* submatch, int nsubmatch); |
| |
| private: |
| inline bool ShouldVisit(int id, const char* p); |
| void Push(int id, const char* p); |
| void GrowStack(); |
| bool TrySearch(int id, const char* p); |
| |
| // Search parameters |
| Prog* prog_; // program being run |
| absl::string_view text_; // text being searched |
| absl::string_view context_; // greater context of text being searched |
| bool anchored_; // whether search is anchored at text.begin() |
| bool longest_; // whether search wants leftmost-longest match |
| bool endmatch_; // whether match must end at text.end() |
| absl::string_view* submatch_; // submatches to fill in |
| int nsubmatch_; // # of submatches to fill in |
| |
| // Search state |
| static constexpr int kVisitedBits = 64; |
| PODArray<uint64_t> visited_; // bitmap: (list ID, char*) pairs visited |
| PODArray<const char*> cap_; // capture registers |
| PODArray<Job> job_; // stack of text positions to explore |
| int njob_; // stack size |
| |
| BitState(const BitState&) = delete; |
| BitState& operator=(const BitState&) = delete; |
| }; |
| |
| BitState::BitState(Prog* prog) |
| : prog_(prog), |
| anchored_(false), |
| longest_(false), |
| endmatch_(false), |
| submatch_(NULL), |
| nsubmatch_(0), |
| njob_(0) { |
| } |
| |
| // Given id, which *must* be a list head, we can look up its list ID. |
| // Then the question is: Should the search visit the (list ID, p) pair? |
| // If so, remember that it was visited so that the next time, |
| // we don't repeat the visit. |
| bool BitState::ShouldVisit(int id, const char* p) { |
| int n = prog_->list_heads()[id] * static_cast<int>(text_.size()+1) + |
| static_cast<int>(p-text_.data()); |
| if (visited_[n/kVisitedBits] & (uint64_t{1} << (n & (kVisitedBits-1)))) |
| return false; |
| visited_[n/kVisitedBits] |= uint64_t{1} << (n & (kVisitedBits-1)); |
| return true; |
| } |
| |
| // Grow the stack. |
| void BitState::GrowStack() { |
| PODArray<Job> tmp(2*job_.size()); |
| memmove(tmp.data(), job_.data(), njob_*sizeof job_[0]); |
| job_ = std::move(tmp); |
| } |
| |
| // Push (id, p) onto the stack, growing it if necessary. |
| void BitState::Push(int id, const char* p) { |
| if (njob_ >= job_.size()) { |
| GrowStack(); |
| if (njob_ >= job_.size()) { |
| LOG(DFATAL) << "GrowStack() failed: " |
| << "njob_ = " << njob_ << ", " |
| << "job_.size() = " << job_.size(); |
| return; |
| } |
| } |
| |
| // If id < 0, it's undoing a Capture, |
| // so we mustn't interfere with that. |
| if (id >= 0 && njob_ > 0) { |
| Job* top = &job_[njob_-1]; |
| if (id == top->id && |
| p == top->p + top->rle + 1 && |
| top->rle < std::numeric_limits<int>::max()) { |
| ++top->rle; |
| return; |
| } |
| } |
| |
| Job* top = &job_[njob_++]; |
| top->id = id; |
| top->rle = 0; |
| top->p = p; |
| } |
| |
| // Try a search from instruction id0 in state p0. |
| // Return whether it succeeded. |
| bool BitState::TrySearch(int id0, const char* p0) { |
| bool matched = false; |
| const char* end = text_.data() + text_.size(); |
| njob_ = 0; |
| // Push() no longer checks ShouldVisit(), |
| // so we must perform the check ourselves. |
| if (ShouldVisit(id0, p0)) |
| Push(id0, p0); |
| while (njob_ > 0) { |
| // Pop job off stack. |
| --njob_; |
| int id = job_[njob_].id; |
| int& rle = job_[njob_].rle; |
| const char* p = job_[njob_].p; |
| |
| if (id < 0) { |
| // Undo the Capture. |
| cap_[prog_->inst(-id)->cap()] = p; |
| continue; |
| } |
| |
| if (rle > 0) { |
| p += rle; |
| // Revivify job on stack. |
| --rle; |
| ++njob_; |
| } |
| |
| Loop: |
| // Visit id, p. |
| Prog::Inst* ip = prog_->inst(id); |
| switch (ip->opcode()) { |
| default: |
| LOG(DFATAL) << "Unexpected opcode: " << ip->opcode(); |
| return false; |
| |
| case kInstFail: |
| break; |
| |
| case kInstAltMatch: |
| if (ip->greedy(prog_)) { |
| // out1 is the Match instruction. |
| id = ip->out1(); |
| p = end; |
| goto Loop; |
| } |
| if (longest_) { |
| // ip must be non-greedy... |
| // out is the Match instruction. |
| id = ip->out(); |
| p = end; |
| goto Loop; |
| } |
| goto Next; |
| |
| case kInstByteRange: { |
| int c = -1; |
| if (p < end) |
| c = *p & 0xFF; |
| if (!ip->Matches(c)) |
| goto Next; |
| |
| if (ip->hint() != 0) |
| Push(id+ip->hint(), p); // try the next when we're done |
| id = ip->out(); |
| p++; |
| goto CheckAndLoop; |
| } |
| |
| case kInstCapture: |
| if (!ip->last()) |
| Push(id+1, p); // try the next when we're done |
| |
| if (0 <= ip->cap() && ip->cap() < cap_.size()) { |
| // Capture p to register, but save old value first. |
| Push(-id, cap_[ip->cap()]); // undo when we're done |
| cap_[ip->cap()] = p; |
| } |
| |
| id = ip->out(); |
| goto CheckAndLoop; |
| |
| case kInstEmptyWidth: |
| if (ip->empty() & ~Prog::EmptyFlags(context_, p)) |
| goto Next; |
| |
| if (!ip->last()) |
| Push(id+1, p); // try the next when we're done |
| id = ip->out(); |
| goto CheckAndLoop; |
| |
| case kInstNop: |
| if (!ip->last()) |
| Push(id+1, p); // try the next when we're done |
| id = ip->out(); |
| |
| CheckAndLoop: |
| // Sanity check: id is the head of its list, which must |
| // be the case if id-1 is the last of *its* list. :) |
| DCHECK(id == 0 || prog_->inst(id-1)->last()); |
| if (ShouldVisit(id, p)) |
| goto Loop; |
| break; |
| |
| case kInstMatch: { |
| if (endmatch_ && p != end) |
| goto Next; |
| |
| // We found a match. If the caller doesn't care |
| // where the match is, no point going further. |
| if (nsubmatch_ == 0) |
| return true; |
| |
| // Record best match so far. |
| // Only need to check end point, because this entire |
| // call is only considering one start position. |
| matched = true; |
| cap_[1] = p; |
| if (submatch_[0].data() == NULL || |
| (longest_ && p > submatch_[0].data() + submatch_[0].size())) { |
| for (int i = 0; i < nsubmatch_; i++) |
| submatch_[i] = absl::string_view( |
| cap_[2 * i], |
| static_cast<size_t>(cap_[2 * i + 1] - cap_[2 * i])); |
| } |
| |
| // If going for first match, we're done. |
| if (!longest_) |
| return true; |
| |
| // If we used the entire text, no longer match is possible. |
| if (p == end) |
| return true; |
| |
| // Otherwise, continue on in hope of a longer match. |
| // Note the absence of the ShouldVisit() check here |
| // due to execution remaining in the same list. |
| Next: |
| if (!ip->last()) { |
| id++; |
| goto Loop; |
| } |
| break; |
| } |
| } |
| } |
| return matched; |
| } |
| |
| // Search text (within context) for prog_. |
| bool BitState::Search(absl::string_view text, absl::string_view context, |
| bool anchored, bool longest, absl::string_view* submatch, |
| int nsubmatch) { |
| // Search parameters. |
| text_ = text; |
| context_ = context; |
| if (context_.data() == NULL) |
| context_ = text; |
| if (prog_->anchor_start() && BeginPtr(context_) != BeginPtr(text)) |
| return false; |
| if (prog_->anchor_end() && EndPtr(context_) != EndPtr(text)) |
| return false; |
| anchored_ = anchored || prog_->anchor_start(); |
| longest_ = longest || prog_->anchor_end(); |
| endmatch_ = prog_->anchor_end(); |
| submatch_ = submatch; |
| nsubmatch_ = nsubmatch; |
| for (int i = 0; i < nsubmatch_; i++) |
| submatch_[i] = absl::string_view(); |
| |
| // Allocate scratch space. |
| int nvisited = prog_->list_count() * static_cast<int>(text.size()+1); |
| nvisited = (nvisited + kVisitedBits-1) / kVisitedBits; |
| visited_ = PODArray<uint64_t>(nvisited); |
| memset(visited_.data(), 0, nvisited*sizeof visited_[0]); |
| |
| int ncap = 2*nsubmatch; |
| if (ncap < 2) |
| ncap = 2; |
| cap_ = PODArray<const char*>(ncap); |
| memset(cap_.data(), 0, ncap*sizeof cap_[0]); |
| |
| // When sizeof(Job) == 16, we start with a nice round 1KiB. :) |
| job_ = PODArray<Job>(64); |
| |
| // Anchored search must start at text.begin(). |
| if (anchored_) { |
| cap_[0] = text.data(); |
| return TrySearch(prog_->start(), text.data()); |
| } |
| |
| // Unanchored search, starting from each possible text position. |
| // Notice that we have to try the empty string at the end of |
| // the text, so the loop condition is p <= text.end(), not p < text.end(). |
| // This looks like it's quadratic in the size of the text, |
| // but we are not clearing visited_ between calls to TrySearch, |
| // so no work is duplicated and it ends up still being linear. |
| const char* etext = text.data() + text.size(); |
| for (const char* p = text.data(); p <= etext; p++) { |
| // Try to use prefix accel (e.g. memchr) to skip ahead. |
| if (p < etext && prog_->can_prefix_accel()) { |
| p = reinterpret_cast<const char*>(prog_->PrefixAccel(p, etext - p)); |
| if (p == NULL) |
| p = etext; |
| } |
| |
| cap_[0] = p; |
| if (TrySearch(prog_->start(), p)) // Match must be leftmost; done. |
| return true; |
| // Avoid invoking undefined behavior (arithmetic on a null pointer) |
| // by simply not continuing the loop. |
| if (p == NULL) |
| break; |
| } |
| return false; |
| } |
| |
| // Bit-state search. |
| bool Prog::SearchBitState(absl::string_view text, absl::string_view context, |
| Anchor anchor, MatchKind kind, |
| absl::string_view* match, int nmatch) { |
| // If full match, we ask for an anchored longest match |
| // and then check that match[0] == text. |
| // So make sure match[0] exists. |
| absl::string_view sp0; |
| if (kind == kFullMatch) { |
| anchor = kAnchored; |
| if (nmatch < 1) { |
| match = &sp0; |
| nmatch = 1; |
| } |
| } |
| |
| // Run the search. |
| BitState b(this); |
| bool anchored = anchor == kAnchored; |
| bool longest = kind != kFirstMatch; |
| if (!b.Search(text, context, anchored, longest, match, nmatch)) |
| return false; |
| if (kind == kFullMatch && EndPtr(match[0]) != EndPtr(text)) |
| return false; |
| return true; |
| } |
| |
| } // namespace re2 |