blob: 41923f314205436eb6c9f746b3c7003918722282 [file] [log] [blame]
// Copyright 2007 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef RE2_PROG_H_
#define RE2_PROG_H_
// Compiled representation of regular expressions.
// See regexp.h for the Regexp class, which represents a regular
// expression symbolically.
#include <stdint.h>
#include <functional>
#include <string>
#include <vector>
#include <type_traits>
#include "absl/base/call_once.h"
#include "absl/strings/string_view.h"
#include "util/logging.h"
#include "re2/pod_array.h"
#include "re2/re2.h"
#include "re2/sparse_array.h"
#include "re2/sparse_set.h"
namespace re2 {
// Opcodes for Inst
enum InstOp {
kInstAlt = 0, // choose between out_ and out1_
kInstAltMatch, // Alt: out_ is [00-FF] and back, out1_ is match; or vice versa.
kInstByteRange, // next (possible case-folded) byte must be in [lo_, hi_]
kInstCapture, // capturing parenthesis number cap_
kInstEmptyWidth, // empty-width special (^ $ ...); bit(s) set in empty_
kInstMatch, // found a match!
kInstNop, // no-op; occasionally unavoidable
kInstFail, // never match; occasionally unavoidable
kNumInst,
};
// Bit flags for empty-width specials
enum EmptyOp {
kEmptyBeginLine = 1<<0, // ^ - beginning of line
kEmptyEndLine = 1<<1, // $ - end of line
kEmptyBeginText = 1<<2, // \A - beginning of text
kEmptyEndText = 1<<3, // \z - end of text
kEmptyWordBoundary = 1<<4, // \b - word boundary
kEmptyNonWordBoundary = 1<<5, // \B - not \b
kEmptyAllFlags = (1<<6)-1,
};
class DFA;
class Regexp;
// Compiled form of regexp program.
class Prog {
public:
Prog();
~Prog();
// Single instruction in regexp program.
class Inst {
public:
// See the assertion below for why this is so.
Inst() = default;
// Copyable.
Inst(const Inst&) = default;
Inst& operator=(const Inst&) = default;
// Constructors per opcode
void InitAlt(uint32_t out, uint32_t out1);
void InitByteRange(int lo, int hi, int foldcase, uint32_t out);
void InitCapture(int cap, uint32_t out);
void InitEmptyWidth(EmptyOp empty, uint32_t out);
void InitMatch(int id);
void InitNop(uint32_t out);
void InitFail();
// Getters
int id(Prog* p) { return static_cast<int>(this - p->inst_.data()); }
InstOp opcode() { return static_cast<InstOp>(out_opcode_&7); }
int last() { return (out_opcode_>>3)&1; }
int out() { return out_opcode_>>4; }
int out1() { DCHECK(opcode() == kInstAlt || opcode() == kInstAltMatch); return out1_; }
int cap() { DCHECK_EQ(opcode(), kInstCapture); return cap_; }
int lo() { DCHECK_EQ(opcode(), kInstByteRange); return lo_; }
int hi() { DCHECK_EQ(opcode(), kInstByteRange); return hi_; }
int foldcase() { DCHECK_EQ(opcode(), kInstByteRange); return hint_foldcase_&1; }
int hint() { DCHECK_EQ(opcode(), kInstByteRange); return hint_foldcase_>>1; }
int match_id() { DCHECK_EQ(opcode(), kInstMatch); return match_id_; }
EmptyOp empty() { DCHECK_EQ(opcode(), kInstEmptyWidth); return empty_; }
bool greedy(Prog* p) {
DCHECK_EQ(opcode(), kInstAltMatch);
return p->inst(out())->opcode() == kInstByteRange ||
(p->inst(out())->opcode() == kInstNop &&
p->inst(p->inst(out())->out())->opcode() == kInstByteRange);
}
// Does this inst (an kInstByteRange) match c?
inline bool Matches(int c) {
DCHECK_EQ(opcode(), kInstByteRange);
if (foldcase() && 'A' <= c && c <= 'Z')
c += 'a' - 'A';
return lo_ <= c && c <= hi_;
}
// Returns string representation for debugging.
std::string Dump();
// Maximum instruction id.
// (Must fit in out_opcode_. PatchList/last steal another bit.)
static const int kMaxInst = (1<<28) - 1;
private:
void set_opcode(InstOp opcode) {
out_opcode_ = (out()<<4) | (last()<<3) | opcode;
}
void set_last() {
out_opcode_ = (out()<<4) | (1<<3) | opcode();
}
void set_out(int out) {
out_opcode_ = (out<<4) | (last()<<3) | opcode();
}
void set_out_opcode(int out, InstOp opcode) {
out_opcode_ = (out<<4) | (last()<<3) | opcode;
}
uint32_t out_opcode_; // 28 bits: out, 1 bit: last, 3 (low) bits: opcode
union { // additional instruction arguments:
uint32_t out1_; // opcode == kInstAlt
// alternate next instruction
int32_t cap_; // opcode == kInstCapture
// Index of capture register (holds text
// position recorded by capturing parentheses).
// For \n (the submatch for the nth parentheses),
// the left parenthesis captures into register 2*n
// and the right one captures into register 2*n+1.
int32_t match_id_; // opcode == kInstMatch
// Match ID to identify this match (for re2::Set).
struct { // opcode == kInstByteRange
uint8_t lo_; // byte range is lo_-hi_ inclusive
uint8_t hi_; //
uint16_t hint_foldcase_; // 15 bits: hint, 1 (low) bit: foldcase
// hint to execution engines: the delta to the
// next instruction (in the current list) worth
// exploring iff this instruction matched; 0
// means there are no remaining possibilities,
// which is most likely for character classes.
// foldcase: A-Z -> a-z before checking range.
};
EmptyOp empty_; // opcode == kInstEmptyWidth
// empty_ is bitwise OR of kEmpty* flags above.
};
friend class Compiler;
friend struct PatchList;
friend class Prog;
};
// Inst must be trivial so that we can freely clear it with memset(3).
// Arrays of Inst are initialised by copying the initial elements with
// memmove(3) and then clearing any remaining elements with memset(3).
static_assert(std::is_trivial<Inst>::value, "Inst must be trivial");
// Whether to anchor the search.
enum Anchor {
kUnanchored, // match anywhere
kAnchored, // match only starting at beginning of text
};
// Kind of match to look for (for anchor != kFullMatch)
//
// kLongestMatch mode finds the overall longest
// match but still makes its submatch choices the way
// Perl would, not in the way prescribed by POSIX.
// The POSIX rules are much more expensive to implement,
// and no one has needed them.
//
// kFullMatch is not strictly necessary -- we could use
// kLongestMatch and then check the length of the match -- but
// the matching code can run faster if it knows to consider only
// full matches.
enum MatchKind {
kFirstMatch, // like Perl, PCRE
kLongestMatch, // like egrep or POSIX
kFullMatch, // match only entire text; implies anchor==kAnchored
kManyMatch // for SearchDFA, records set of matches
};
Inst *inst(int id) { return &inst_[id]; }
int start() { return start_; }
void set_start(int start) { start_ = start; }
int start_unanchored() { return start_unanchored_; }
void set_start_unanchored(int start) { start_unanchored_ = start; }
int size() { return size_; }
bool reversed() { return reversed_; }
void set_reversed(bool reversed) { reversed_ = reversed; }
int list_count() { return list_count_; }
int inst_count(InstOp op) { return inst_count_[op]; }
uint16_t* list_heads() { return list_heads_.data(); }
size_t bit_state_text_max_size() { return bit_state_text_max_size_; }
int64_t dfa_mem() { return dfa_mem_; }
void set_dfa_mem(int64_t dfa_mem) { dfa_mem_ = dfa_mem; }
bool anchor_start() { return anchor_start_; }
void set_anchor_start(bool b) { anchor_start_ = b; }
bool anchor_end() { return anchor_end_; }
void set_anchor_end(bool b) { anchor_end_ = b; }
int bytemap_range() { return bytemap_range_; }
const uint8_t* bytemap() { return bytemap_; }
bool can_prefix_accel() { return prefix_size_ != 0; }
// Accelerates to the first likely occurrence of the prefix.
// Returns a pointer to the first byte or NULL if not found.
const void* PrefixAccel(const void* data, size_t size) {
DCHECK(can_prefix_accel());
if (prefix_foldcase_) {
return PrefixAccel_ShiftDFA(data, size);
} else if (prefix_size_ != 1) {
return PrefixAccel_FrontAndBack(data, size);
} else {
return memchr(data, prefix_front_, size);
}
}
// Configures prefix accel using the analysis performed during compilation.
void ConfigurePrefixAccel(const std::string& prefix, bool prefix_foldcase);
// An implementation of prefix accel that uses prefix_dfa_ to perform
// case-insensitive search.
const void* PrefixAccel_ShiftDFA(const void* data, size_t size);
// An implementation of prefix accel that looks for prefix_front_ and
// prefix_back_ to return fewer false positives than memchr(3) alone.
const void* PrefixAccel_FrontAndBack(const void* data, size_t size);
// Returns string representation of program for debugging.
std::string Dump();
std::string DumpUnanchored();
std::string DumpByteMap();
// Returns the set of kEmpty flags that are in effect at
// position p within context.
static uint32_t EmptyFlags(absl::string_view context, const char* p);
// Returns whether byte c is a word character: ASCII only.
// Used by the implementation of \b and \B.
// This is not right for Unicode, but:
// - it's hard to get right in a byte-at-a-time matching world
// (the DFA has only one-byte lookahead).
// - even if the lookahead were possible, the Progs would be huge.
// This crude approximation is the same one PCRE uses.
static bool IsWordChar(uint8_t c) {
return ('A' <= c && c <= 'Z') ||
('a' <= c && c <= 'z') ||
('0' <= c && c <= '9') ||
c == '_';
}
// Execution engines. They all search for the regexp (run the prog)
// in text, which is in the larger context (used for ^ $ \b etc).
// Anchor and kind control the kind of search.
// Returns true if match found, false if not.
// If match found, fills match[0..nmatch-1] with submatch info.
// match[0] is overall match, match[1] is first set of parens, etc.
// If a particular submatch is not matched during the regexp match,
// it is set to NULL.
//
// Matching text == absl::string_view() is treated as any other empty
// string, but note that on return, it will not be possible to distinguish
// submatches that matched that empty string from submatches that didn't
// match anything. Either way, match[i] == NULL.
// Search using NFA: can find submatches but kind of slow.
bool SearchNFA(absl::string_view text, absl::string_view context,
Anchor anchor, MatchKind kind, absl::string_view* match,
int nmatch);
// Search using DFA: much faster than NFA but only finds
// end of match and can use a lot more memory.
// Returns whether a match was found.
// If the DFA runs out of memory, sets *failed to true and returns false.
// If matches != NULL and kind == kManyMatch and there is a match,
// SearchDFA fills matches with the match IDs of the final matching state.
bool SearchDFA(absl::string_view text, absl::string_view context,
Anchor anchor, MatchKind kind, absl::string_view* match0,
bool* failed, SparseSet* matches);
// The callback issued after building each DFA state with BuildEntireDFA().
// If next is null, then the memory budget has been exhausted and building
// will halt. Otherwise, the state has been built and next points to an array
// of bytemap_range()+1 slots holding the next states as per the bytemap and
// kByteEndText. The number of the state is implied by the callback sequence:
// the first callback is for state 0, the second callback is for state 1, ...
// match indicates whether the state is a matching state.
using DFAStateCallback = std::function<void(const int* next, bool match)>;
// Build the entire DFA for the given match kind.
// Usually the DFA is built out incrementally, as needed, which
// avoids lots of unnecessary work.
// If cb is not empty, it receives one callback per state built.
// Returns the number of states built.
// FOR TESTING OR EXPERIMENTAL PURPOSES ONLY.
int BuildEntireDFA(MatchKind kind, const DFAStateCallback& cb);
// Compute bytemap.
void ComputeByteMap();
// Run peep-hole optimizer on program.
void Optimize();
// One-pass NFA: only correct if IsOnePass() is true,
// but much faster than NFA (competitive with PCRE)
// for those expressions.
bool IsOnePass();
bool SearchOnePass(absl::string_view text, absl::string_view context,
Anchor anchor, MatchKind kind, absl::string_view* match,
int nmatch);
// Bit-state backtracking. Fast on small cases but uses memory
// proportional to the product of the list count and the text size.
bool CanBitState() { return list_heads_.data() != NULL; }
bool SearchBitState(absl::string_view text, absl::string_view context,
Anchor anchor, MatchKind kind, absl::string_view* match,
int nmatch);
static const int kMaxOnePassCapture = 5; // $0 through $4
// Backtracking search: the gold standard against which the other
// implementations are checked. FOR TESTING ONLY.
// It allocates a ton of memory to avoid running forever.
// It is also recursive, so can't use in production (will overflow stacks).
// The name "Unsafe" here is supposed to be a flag that
// you should not be using this function.
bool UnsafeSearchBacktrack(absl::string_view text, absl::string_view context,
Anchor anchor, MatchKind kind,
absl::string_view* match, int nmatch);
// Computes range for any strings matching regexp. The min and max can in
// some cases be arbitrarily precise, so the caller gets to specify the
// maximum desired length of string returned.
//
// Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
// string s that is an anchored match for this regexp satisfies
// min <= s && s <= max.
//
// Note that PossibleMatchRange() will only consider the first copy of an
// infinitely repeated element (i.e., any regexp element followed by a '*' or
// '+' operator). Regexps with "{N}" constructions are not affected, as those
// do not compile down to infinite repetitions.
//
// Returns true on success, false on error.
bool PossibleMatchRange(std::string* min, std::string* max, int maxlen);
// Outputs the program fanout into the given sparse array.
void Fanout(SparseArray<int>* fanout);
// Compiles a collection of regexps to Prog. Each regexp will have
// its own Match instruction recording the index in the output vector.
static Prog* CompileSet(Regexp* re, RE2::Anchor anchor, int64_t max_mem);
// Flattens the Prog from "tree" form to "list" form. This is an in-place
// operation in the sense that the old instructions are lost.
void Flatten();
// Walks the Prog; the "successor roots" or predecessors of the reachable
// instructions are marked in rootmap or predmap/predvec, respectively.
// reachable and stk are preallocated scratch structures.
void MarkSuccessors(SparseArray<int>* rootmap,
SparseArray<int>* predmap,
std::vector<std::vector<int>>* predvec,
SparseSet* reachable, std::vector<int>* stk);
// Walks the Prog from the given "root" instruction; the "dominator root"
// of the reachable instructions (if such exists) is marked in rootmap.
// reachable and stk are preallocated scratch structures.
void MarkDominator(int root, SparseArray<int>* rootmap,
SparseArray<int>* predmap,
std::vector<std::vector<int>>* predvec,
SparseSet* reachable, std::vector<int>* stk);
// Walks the Prog from the given "root" instruction; the reachable
// instructions are emitted in "list" form and appended to flat.
// reachable and stk are preallocated scratch structures.
void EmitList(int root, SparseArray<int>* rootmap,
std::vector<Inst>* flat,
SparseSet* reachable, std::vector<int>* stk);
// Computes hints for ByteRange instructions in [begin, end).
void ComputeHints(std::vector<Inst>* flat, int begin, int end);
// Controls whether the DFA should bail out early if the NFA would be faster.
// FOR TESTING ONLY.
static void TESTING_ONLY_set_dfa_should_bail_when_slow(bool b);
private:
friend class Compiler;
DFA* GetDFA(MatchKind kind);
void DeleteDFA(DFA* dfa);
bool anchor_start_; // regexp has explicit start anchor
bool anchor_end_; // regexp has explicit end anchor
bool reversed_; // whether program runs backward over input
bool did_flatten_; // has Flatten been called?
bool did_onepass_; // has IsOnePass been called?
int start_; // entry point for program
int start_unanchored_; // unanchored entry point for program
int size_; // number of instructions
int bytemap_range_; // bytemap_[x] < bytemap_range_
bool prefix_foldcase_; // whether prefix is case-insensitive
size_t prefix_size_; // size of prefix (0 if no prefix)
union {
uint64_t* prefix_dfa_; // "Shift DFA" for prefix
struct {
int prefix_front_; // first byte of prefix
int prefix_back_; // last byte of prefix
};
};
int list_count_; // count of lists (see above)
int inst_count_[kNumInst]; // count of instructions by opcode
PODArray<uint16_t> list_heads_; // sparse array enumerating list heads
// not populated if size_ is overly large
size_t bit_state_text_max_size_; // upper bound (inclusive) on text.size()
PODArray<Inst> inst_; // pointer to instruction array
PODArray<uint8_t> onepass_nodes_; // data for OnePass nodes
int64_t dfa_mem_; // Maximum memory for DFAs.
DFA* dfa_first_; // DFA cached for kFirstMatch/kManyMatch
DFA* dfa_longest_; // DFA cached for kLongestMatch/kFullMatch
uint8_t bytemap_[256]; // map from input bytes to byte classes
absl::once_flag dfa_first_once_;
absl::once_flag dfa_longest_once_;
Prog(const Prog&) = delete;
Prog& operator=(const Prog&) = delete;
};
// std::string_view in MSVC has iterators that aren't just pointers and
// that don't allow comparisons between different objects - not even if
// those objects are views into the same string! Thus, we provide these
// conversion functions for convenience.
static inline const char* BeginPtr(absl::string_view s) {
return s.data();
}
static inline const char* EndPtr(absl::string_view s) {
return s.data() + s.size();
}
} // namespace re2
#endif // RE2_PROG_H_