| // Copyright 2003-2009 The RE2 Authors. All Rights Reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #ifndef RE2_RE2_H_ |
| #define RE2_RE2_H_ |
| |
| // C++ interface to the re2 regular-expression library. |
| // RE2 supports Perl-style regular expressions (with extensions like |
| // \d, \w, \s, ...). |
| // |
| // ----------------------------------------------------------------------- |
| // REGEXP SYNTAX: |
| // |
| // This module uses the re2 library and hence supports |
| // its syntax for regular expressions, which is similar to Perl's with |
| // some of the more complicated things thrown away. In particular, |
| // backreferences and generalized assertions are not available, nor is \Z. |
| // |
| // See https://github.com/google/re2/wiki/Syntax for the syntax |
| // supported by RE2, and a comparison with PCRE and PERL regexps. |
| // |
| // For those not familiar with Perl's regular expressions, |
| // here are some examples of the most commonly used extensions: |
| // |
| // "hello (\\w+) world" -- \w matches a "word" character |
| // "version (\\d+)" -- \d matches a digit |
| // "hello\\s+world" -- \s matches any whitespace character |
| // "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary |
| // "(?i)hello" -- (?i) turns on case-insensitive matching |
| // "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible |
| // |
| // The double backslashes are needed when writing C++ string literals. |
| // However, they should NOT be used when writing C++11 raw string literals: |
| // |
| // R"(hello (\w+) world)" -- \w matches a "word" character |
| // R"(version (\d+))" -- \d matches a digit |
| // R"(hello\s+world)" -- \s matches any whitespace character |
| // R"(\b(\w+)\b)" -- \b matches non-empty string at word boundary |
| // R"((?i)hello)" -- (?i) turns on case-insensitive matching |
| // R"(/\*(.*?)\*/)" -- .*? matches . minimum no. of times possible |
| // |
| // When using UTF-8 encoding, case-insensitive matching will perform |
| // simple case folding, not full case folding. |
| // |
| // ----------------------------------------------------------------------- |
| // MATCHING INTERFACE: |
| // |
| // The "FullMatch" operation checks that supplied text matches a |
| // supplied pattern exactly. |
| // |
| // Example: successful match |
| // CHECK(RE2::FullMatch("hello", "h.*o")); |
| // |
| // Example: unsuccessful match (requires full match): |
| // CHECK(!RE2::FullMatch("hello", "e")); |
| // |
| // ----------------------------------------------------------------------- |
| // UTF-8 AND THE MATCHING INTERFACE: |
| // |
| // By default, the pattern and input text are interpreted as UTF-8. |
| // The RE2::Latin1 option causes them to be interpreted as Latin-1. |
| // |
| // Example: |
| // CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern))); |
| // CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1))); |
| // |
| // ----------------------------------------------------------------------- |
| // SUBMATCH EXTRACTION: |
| // |
| // You can supply extra pointer arguments to extract submatches. |
| // On match failure, none of the pointees will have been modified. |
| // On match success, the submatches will be converted (as necessary) and |
| // their values will be assigned to their pointees until all conversions |
| // have succeeded or one conversion has failed. |
| // On conversion failure, the pointees will be in an indeterminate state |
| // because the caller has no way of knowing which conversion failed. |
| // However, conversion cannot fail for types like string and string_view |
| // that do not inspect the submatch contents. Hence, in the common case |
| // where all of the pointees are of such types, failure is always due to |
| // match failure and thus none of the pointees will have been modified. |
| // |
| // Example: extracts "ruby" into "s" and 1234 into "i" |
| // int i; |
| // std::string s; |
| // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i)); |
| // |
| // Example: fails because string cannot be stored in integer |
| // CHECK(!RE2::FullMatch("ruby", "(.*)", &i)); |
| // |
| // Example: fails because there aren't enough sub-patterns |
| // CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s)); |
| // |
| // Example: does not try to extract any extra sub-patterns |
| // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s)); |
| // |
| // Example: does not try to extract into NULL |
| // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i)); |
| // |
| // Example: integer overflow causes failure |
| // CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i)); |
| // |
| // NOTE(rsc): Asking for submatches slows successful matches quite a bit. |
| // This may get a little faster in the future, but right now is slower |
| // than PCRE. On the other hand, failed matches run *very* fast (faster |
| // than PCRE), as do matches without submatch extraction. |
| // |
| // ----------------------------------------------------------------------- |
| // PARTIAL MATCHES |
| // |
| // You can use the "PartialMatch" operation when you want the pattern |
| // to match any substring of the text. |
| // |
| // Example: simple search for a string: |
| // CHECK(RE2::PartialMatch("hello", "ell")); |
| // |
| // Example: find first number in a string |
| // int number; |
| // CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number)); |
| // CHECK_EQ(number, 100); |
| // |
| // ----------------------------------------------------------------------- |
| // PRE-COMPILED REGULAR EXPRESSIONS |
| // |
| // RE2 makes it easy to use any string as a regular expression, without |
| // requiring a separate compilation step. |
| // |
| // If speed is of the essence, you can create a pre-compiled "RE2" |
| // object from the pattern and use it multiple times. If you do so, |
| // you can typically parse text faster than with sscanf. |
| // |
| // Example: precompile pattern for faster matching: |
| // RE2 pattern("h.*o"); |
| // while (ReadLine(&str)) { |
| // if (RE2::FullMatch(str, pattern)) ...; |
| // } |
| // |
| // ----------------------------------------------------------------------- |
| // SCANNING TEXT INCREMENTALLY |
| // |
| // The "Consume" operation may be useful if you want to repeatedly |
| // match regular expressions at the front of a string and skip over |
| // them as they match. This requires use of the string_view type, |
| // which represents a sub-range of a real string. |
| // |
| // Example: read lines of the form "var = value" from a string. |
| // std::string contents = ...; // Fill string somehow |
| // absl::string_view input(contents); // Wrap a string_view around it |
| // |
| // std::string var; |
| // int value; |
| // while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) { |
| // ...; |
| // } |
| // |
| // Each successful call to "Consume" will set "var/value", and also |
| // advance "input" so it points past the matched text. Note that if the |
| // regular expression matches an empty string, input will advance |
| // by 0 bytes. If the regular expression being used might match |
| // an empty string, the loop body must check for this case and either |
| // advance the string or break out of the loop. |
| // |
| // The "FindAndConsume" operation is similar to "Consume" but does not |
| // anchor your match at the beginning of the string. For example, you |
| // could extract all words from a string by repeatedly calling |
| // RE2::FindAndConsume(&input, "(\\w+)", &word) |
| // |
| // ----------------------------------------------------------------------- |
| // USING VARIABLE NUMBER OF ARGUMENTS |
| // |
| // The above operations require you to know the number of arguments |
| // when you write the code. This is not always possible or easy (for |
| // example, the regular expression may be calculated at run time). |
| // You can use the "N" version of the operations when the number of |
| // match arguments are determined at run time. |
| // |
| // Example: |
| // const RE2::Arg* args[10]; |
| // int n; |
| // // ... populate args with pointers to RE2::Arg values ... |
| // // ... set n to the number of RE2::Arg objects ... |
| // bool match = RE2::FullMatchN(input, pattern, args, n); |
| // |
| // The last statement is equivalent to |
| // |
| // bool match = RE2::FullMatch(input, pattern, |
| // *args[0], *args[1], ..., *args[n - 1]); |
| // |
| // ----------------------------------------------------------------------- |
| // PARSING HEX/OCTAL/C-RADIX NUMBERS |
| // |
| // By default, if you pass a pointer to a numeric value, the |
| // corresponding text is interpreted as a base-10 number. You can |
| // instead wrap the pointer with a call to one of the operators Hex(), |
| // Octal(), or CRadix() to interpret the text in another base. The |
| // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16) |
| // prefixes, but defaults to base-10. |
| // |
| // Example: |
| // int a, b, c, d; |
| // CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)", |
| // RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d)); |
| // will leave 64 in a, b, c, and d. |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <algorithm> |
| #include <map> |
| #include <string> |
| #include <type_traits> |
| #include <vector> |
| |
| #if defined(__APPLE__) |
| #include <TargetConditionals.h> |
| #endif |
| |
| #include "absl/base/call_once.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/types/optional.h" |
| #include "re2/stringpiece.h" |
| |
| namespace re2 { |
| class Prog; |
| class Regexp; |
| } // namespace re2 |
| |
| namespace re2 { |
| |
| // Interface for regular expression matching. Also corresponds to a |
| // pre-compiled regular expression. An "RE2" object is safe for |
| // concurrent use by multiple threads. |
| class RE2 { |
| public: |
| // We convert user-passed pointers into special Arg objects |
| class Arg; |
| class Options; |
| |
| // Defined in set.h. |
| class Set; |
| |
| enum ErrorCode { |
| NoError = 0, |
| |
| // Unexpected error |
| ErrorInternal, |
| |
| // Parse errors |
| ErrorBadEscape, // bad escape sequence |
| ErrorBadCharClass, // bad character class |
| ErrorBadCharRange, // bad character class range |
| ErrorMissingBracket, // missing closing ] |
| ErrorMissingParen, // missing closing ) |
| ErrorUnexpectedParen, // unexpected closing ) |
| ErrorTrailingBackslash, // trailing \ at end of regexp |
| ErrorRepeatArgument, // repeat argument missing, e.g. "*" |
| ErrorRepeatSize, // bad repetition argument |
| ErrorRepeatOp, // bad repetition operator |
| ErrorBadPerlOp, // bad perl operator |
| ErrorBadUTF8, // invalid UTF-8 in regexp |
| ErrorBadNamedCapture, // bad named capture group |
| ErrorPatternTooLarge // pattern too large (compile failed) |
| }; |
| |
| // Predefined common options. |
| // If you need more complicated things, instantiate |
| // an Option class, possibly passing one of these to |
| // the Option constructor, change the settings, and pass that |
| // Option class to the RE2 constructor. |
| enum CannedOptions { |
| DefaultOptions = 0, |
| Latin1, // treat input as Latin-1 (default UTF-8) |
| POSIX, // POSIX syntax, leftmost-longest match |
| Quiet // do not log about regexp parse errors |
| }; |
| |
| // Need to have the const char* and const std::string& forms for implicit |
| // conversions when passing string literals to FullMatch and PartialMatch. |
| // Otherwise the absl::string_view form would be sufficient. |
| RE2(const char* pattern); |
| RE2(const std::string& pattern); |
| RE2(absl::string_view pattern); |
| RE2(absl::string_view pattern, const Options& options); |
| ~RE2(); |
| |
| // Not copyable. |
| // RE2 objects are expensive. You should probably use std::shared_ptr<RE2> |
| // instead. If you really must copy, RE2(first.pattern(), first.options()) |
| // effectively does so: it produces a second object that mimics the first. |
| RE2(const RE2&) = delete; |
| RE2& operator=(const RE2&) = delete; |
| // Not movable. |
| // RE2 objects are thread-safe and logically immutable. You should probably |
| // use std::unique_ptr<RE2> instead. Otherwise, consider std::deque<RE2> if |
| // direct emplacement into a container is desired. If you really must move, |
| // be prepared to submit a design document along with your feature request. |
| RE2(RE2&&) = delete; |
| RE2& operator=(RE2&&) = delete; |
| |
| // Returns whether RE2 was created properly. |
| bool ok() const { return error_code() == NoError; } |
| |
| // The string specification for this RE2. E.g. |
| // RE2 re("ab*c?d+"); |
| // re.pattern(); // "ab*c?d+" |
| const std::string& pattern() const { return *pattern_; } |
| |
| // If RE2 could not be created properly, returns an error string. |
| // Else returns the empty string. |
| const std::string& error() const { return *error_; } |
| |
| // If RE2 could not be created properly, returns an error code. |
| // Else returns RE2::NoError (== 0). |
| ErrorCode error_code() const { return error_code_; } |
| |
| // If RE2 could not be created properly, returns the offending |
| // portion of the regexp. |
| const std::string& error_arg() const { return *error_arg_; } |
| |
| // Returns the program size, a very approximate measure of a regexp's "cost". |
| // Larger numbers are more expensive than smaller numbers. |
| int ProgramSize() const; |
| int ReverseProgramSize() const; |
| |
| // If histogram is not null, outputs the program fanout |
| // as a histogram bucketed by powers of 2. |
| // Returns the number of the largest non-empty bucket. |
| int ProgramFanout(std::vector<int>* histogram) const; |
| int ReverseProgramFanout(std::vector<int>* histogram) const; |
| |
| // Returns the underlying Regexp; not for general use. |
| // Returns entire_regexp_ so that callers don't need |
| // to know about prefix_ and prefix_foldcase_. |
| re2::Regexp* Regexp() const { return entire_regexp_; } |
| |
| /***** The array-based matching interface ******/ |
| |
| // The functions here have names ending in 'N' and are used to implement |
| // the functions whose names are the prefix before the 'N'. It is sometimes |
| // useful to invoke them directly, but the syntax is awkward, so the 'N'-less |
| // versions should be preferred. |
| static bool FullMatchN(absl::string_view text, const RE2& re, |
| const Arg* const args[], int n); |
| static bool PartialMatchN(absl::string_view text, const RE2& re, |
| const Arg* const args[], int n); |
| static bool ConsumeN(absl::string_view* input, const RE2& re, |
| const Arg* const args[], int n); |
| static bool FindAndConsumeN(absl::string_view* input, const RE2& re, |
| const Arg* const args[], int n); |
| |
| private: |
| template <typename F, typename SP> |
| static inline bool Apply(F f, SP sp, const RE2& re) { |
| return f(sp, re, NULL, 0); |
| } |
| |
| template <typename F, typename SP, typename... A> |
| static inline bool Apply(F f, SP sp, const RE2& re, const A&... a) { |
| const Arg* const args[] = {&a...}; |
| const int n = sizeof...(a); |
| return f(sp, re, args, n); |
| } |
| |
| public: |
| // In order to allow FullMatch() et al. to be called with a varying number |
| // of arguments of varying types, we use two layers of variadic templates. |
| // The first layer constructs the temporary Arg objects. The second layer |
| // (above) constructs the array of pointers to the temporary Arg objects. |
| |
| /***** The useful part: the matching interface *****/ |
| |
| // Matches "text" against "re". If pointer arguments are |
| // supplied, copies matched sub-patterns into them. |
| // |
| // You can pass in a "const char*" or a "std::string" for "text". |
| // You can pass in a "const char*" or a "std::string" or a "RE2" for "re". |
| // |
| // The provided pointer arguments can be pointers to any scalar numeric |
| // type, or one of: |
| // std::string (matched piece is copied to string) |
| // absl::string_view (string_view is mutated to point to matched piece) |
| // T ("bool T::ParseFrom(const char*, size_t)" must exist) |
| // (void*)NULL (the corresponding matched sub-pattern is not copied) |
| // |
| // Returns true iff all of the following conditions are satisfied: |
| // a. "text" matches "re" fully - from the beginning to the end of "text". |
| // b. The number of matched sub-patterns is >= number of supplied pointers. |
| // c. The "i"th argument has a suitable type for holding the |
| // string captured as the "i"th sub-pattern. If you pass in |
| // NULL for the "i"th argument, or pass fewer arguments than |
| // number of sub-patterns, the "i"th captured sub-pattern is |
| // ignored. |
| // |
| // CAVEAT: An optional sub-pattern that does not exist in the |
| // matched string is assigned the empty string. Therefore, the |
| // following will return false (because the empty string is not a |
| // valid number): |
| // int number; |
| // RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number); |
| template <typename... A> |
| static bool FullMatch(absl::string_view text, const RE2& re, A&&... a) { |
| return Apply(FullMatchN, text, re, Arg(std::forward<A>(a))...); |
| } |
| |
| // Like FullMatch(), except that "re" is allowed to match a substring |
| // of "text". |
| // |
| // Returns true iff all of the following conditions are satisfied: |
| // a. "text" matches "re" partially - for some substring of "text". |
| // b. The number of matched sub-patterns is >= number of supplied pointers. |
| // c. The "i"th argument has a suitable type for holding the |
| // string captured as the "i"th sub-pattern. If you pass in |
| // NULL for the "i"th argument, or pass fewer arguments than |
| // number of sub-patterns, the "i"th captured sub-pattern is |
| // ignored. |
| template <typename... A> |
| static bool PartialMatch(absl::string_view text, const RE2& re, A&&... a) { |
| return Apply(PartialMatchN, text, re, Arg(std::forward<A>(a))...); |
| } |
| |
| // Like FullMatch() and PartialMatch(), except that "re" has to match |
| // a prefix of the text, and "input" is advanced past the matched |
| // text. Note: "input" is modified iff this routine returns true |
| // and "re" matched a non-empty substring of "input". |
| // |
| // Returns true iff all of the following conditions are satisfied: |
| // a. "input" matches "re" partially - for some prefix of "input". |
| // b. The number of matched sub-patterns is >= number of supplied pointers. |
| // c. The "i"th argument has a suitable type for holding the |
| // string captured as the "i"th sub-pattern. If you pass in |
| // NULL for the "i"th argument, or pass fewer arguments than |
| // number of sub-patterns, the "i"th captured sub-pattern is |
| // ignored. |
| template <typename... A> |
| static bool Consume(absl::string_view* input, const RE2& re, A&&... a) { |
| return Apply(ConsumeN, input, re, Arg(std::forward<A>(a))...); |
| } |
| |
| // Like Consume(), but does not anchor the match at the beginning of |
| // the text. That is, "re" need not start its match at the beginning |
| // of "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds |
| // the next word in "s" and stores it in "word". |
| // |
| // Returns true iff all of the following conditions are satisfied: |
| // a. "input" matches "re" partially - for some substring of "input". |
| // b. The number of matched sub-patterns is >= number of supplied pointers. |
| // c. The "i"th argument has a suitable type for holding the |
| // string captured as the "i"th sub-pattern. If you pass in |
| // NULL for the "i"th argument, or pass fewer arguments than |
| // number of sub-patterns, the "i"th captured sub-pattern is |
| // ignored. |
| template <typename... A> |
| static bool FindAndConsume(absl::string_view* input, const RE2& re, A&&... a) { |
| return Apply(FindAndConsumeN, input, re, Arg(std::forward<A>(a))...); |
| } |
| |
| // Replace the first match of "re" in "str" with "rewrite". |
| // Within "rewrite", backslash-escaped digits (\1 to \9) can be |
| // used to insert text matching corresponding parenthesized group |
| // from the pattern. \0 in "rewrite" refers to the entire matching |
| // text. E.g., |
| // |
| // std::string s = "yabba dabba doo"; |
| // CHECK(RE2::Replace(&s, "b+", "d")); |
| // |
| // will leave "s" containing "yada dabba doo" |
| // |
| // Returns true if the pattern matches and a replacement occurs, |
| // false otherwise. |
| static bool Replace(std::string* str, |
| const RE2& re, |
| absl::string_view rewrite); |
| |
| // Like Replace(), except replaces successive non-overlapping occurrences |
| // of the pattern in the string with the rewrite. E.g. |
| // |
| // std::string s = "yabba dabba doo"; |
| // CHECK(RE2::GlobalReplace(&s, "b+", "d")); |
| // |
| // will leave "s" containing "yada dada doo" |
| // Replacements are not subject to re-matching. |
| // |
| // Because GlobalReplace only replaces non-overlapping matches, |
| // replacing "ana" within "banana" makes only one replacement, not two. |
| // |
| // Returns the number of replacements made. |
| static int GlobalReplace(std::string* str, |
| const RE2& re, |
| absl::string_view rewrite); |
| |
| // Like Replace, except that if the pattern matches, "rewrite" |
| // is copied into "out" with substitutions. The non-matching |
| // portions of "text" are ignored. |
| // |
| // Returns true iff a match occurred and the extraction happened |
| // successfully; if no match occurs, the string is left unaffected. |
| // |
| // REQUIRES: "text" must not alias any part of "*out". |
| static bool Extract(absl::string_view text, |
| const RE2& re, |
| absl::string_view rewrite, |
| std::string* out); |
| |
| // Escapes all potentially meaningful regexp characters in |
| // 'unquoted'. The returned string, used as a regular expression, |
| // will match exactly the original string. For example, |
| // 1.5-2.0? |
| // may become: |
| // 1\.5\-2\.0\? |
| static std::string QuoteMeta(absl::string_view unquoted); |
| |
| // Computes range for any strings matching regexp. The min and max can in |
| // some cases be arbitrarily precise, so the caller gets to specify the |
| // maximum desired length of string returned. |
| // |
| // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any |
| // string s that is an anchored match for this regexp satisfies |
| // min <= s && s <= max. |
| // |
| // Note that PossibleMatchRange() will only consider the first copy of an |
| // infinitely repeated element (i.e., any regexp element followed by a '*' or |
| // '+' operator). Regexps with "{N}" constructions are not affected, as those |
| // do not compile down to infinite repetitions. |
| // |
| // Returns true on success, false on error. |
| bool PossibleMatchRange(std::string* min, std::string* max, |
| int maxlen) const; |
| |
| // Generic matching interface |
| |
| // Type of match. |
| enum Anchor { |
| UNANCHORED, // No anchoring |
| ANCHOR_START, // Anchor at start only |
| ANCHOR_BOTH // Anchor at start and end |
| }; |
| |
| // Return the number of capturing subpatterns, or -1 if the |
| // regexp wasn't valid on construction. The overall match ($0) |
| // does not count: if the regexp is "(a)(b)", returns 2. |
| int NumberOfCapturingGroups() const { return num_captures_; } |
| |
| // Return a map from names to capturing indices. |
| // The map records the index of the leftmost group |
| // with the given name. |
| // Only valid until the re is deleted. |
| const std::map<std::string, int>& NamedCapturingGroups() const; |
| |
| // Return a map from capturing indices to names. |
| // The map has no entries for unnamed groups. |
| // Only valid until the re is deleted. |
| const std::map<int, std::string>& CapturingGroupNames() const; |
| |
| // General matching routine. |
| // Match against text starting at offset startpos |
| // and stopping the search at offset endpos. |
| // Returns true if match found, false if not. |
| // On a successful match, fills in submatch[] (up to nsubmatch entries) |
| // with information about submatches. |
| // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true, with |
| // submatch[0] = "barbaz", submatch[1].data() = NULL, submatch[2] = "bar", |
| // submatch[3].data() = NULL, ..., up to submatch[nsubmatch-1].data() = NULL. |
| // Caveat: submatch[] may be clobbered even on match failure. |
| // |
| // Don't ask for more match information than you will use: |
| // runs much faster with nsubmatch == 1 than nsubmatch > 1, and |
| // runs even faster if nsubmatch == 0. |
| // Doesn't make sense to use nsubmatch > 1 + NumberOfCapturingGroups(), |
| // but will be handled correctly. |
| // |
| // Passing text == absl::string_view() will be handled like any other |
| // empty string, but note that on return, it will not be possible to tell |
| // whether submatch i matched the empty string or did not match: |
| // either way, submatch[i].data() == NULL. |
| bool Match(absl::string_view text, |
| size_t startpos, |
| size_t endpos, |
| Anchor re_anchor, |
| absl::string_view* submatch, |
| int nsubmatch) const; |
| |
| // Check that the given rewrite string is suitable for use with this |
| // regular expression. It checks that: |
| // * The regular expression has enough parenthesized subexpressions |
| // to satisfy all of the \N tokens in rewrite |
| // * The rewrite string doesn't have any syntax errors. E.g., |
| // '\' followed by anything other than a digit or '\'. |
| // A true return value guarantees that Replace() and Extract() won't |
| // fail because of a bad rewrite string. |
| bool CheckRewriteString(absl::string_view rewrite, |
| std::string* error) const; |
| |
| // Returns the maximum submatch needed for the rewrite to be done by |
| // Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2. |
| static int MaxSubmatch(absl::string_view rewrite); |
| |
| // Append the "rewrite" string, with backslash substitutions from "vec", |
| // to string "out". |
| // Returns true on success. This method can fail because of a malformed |
| // rewrite string. CheckRewriteString guarantees that the rewrite will |
| // be sucessful. |
| bool Rewrite(std::string* out, |
| absl::string_view rewrite, |
| const absl::string_view* vec, |
| int veclen) const; |
| |
| // Constructor options |
| class Options { |
| public: |
| // The options are (defaults in parentheses): |
| // |
| // utf8 (true) text and pattern are UTF-8; otherwise Latin-1 |
| // posix_syntax (false) restrict regexps to POSIX egrep syntax |
| // longest_match (false) search for longest match, not first match |
| // log_errors (true) log syntax and execution errors to ERROR |
| // max_mem (see below) approx. max memory footprint of RE2 |
| // literal (false) interpret string as literal, not regexp |
| // never_nl (false) never match \n, even if it is in regexp |
| // dot_nl (false) dot matches everything including new line |
| // never_capture (false) parse all parens as non-capturing |
| // case_sensitive (true) match is case-sensitive (regexp can override |
| // with (?i) unless in posix_syntax mode) |
| // |
| // The following options are only consulted when posix_syntax == true. |
| // When posix_syntax == false, these features are always enabled and |
| // cannot be turned off; to perform multi-line matching in that case, |
| // begin the regexp with (?m). |
| // perl_classes (false) allow Perl's \d \s \w \D \S \W |
| // word_boundary (false) allow Perl's \b \B (word boundary and not) |
| // one_line (false) ^ and $ only match beginning and end of text |
| // |
| // The max_mem option controls how much memory can be used |
| // to hold the compiled form of the regexp (the Prog) and |
| // its cached DFA graphs. Code Search placed limits on the number |
| // of Prog instructions and DFA states: 10,000 for both. |
| // In RE2, those limits would translate to about 240 KB per Prog |
| // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a |
| // better job of keeping them small than Code Search did). |
| // Each RE2 has two Progs (one forward, one reverse), and each Prog |
| // can have two DFAs (one first match, one longest match). |
| // That makes 4 DFAs: |
| // |
| // forward, first-match - used for UNANCHORED or ANCHOR_START searches |
| // if opt.longest_match() == false |
| // forward, longest-match - used for all ANCHOR_BOTH searches, |
| // and the other two kinds if |
| // opt.longest_match() == true |
| // reverse, first-match - never used |
| // reverse, longest-match - used as second phase for unanchored searches |
| // |
| // The RE2 memory budget is statically divided between the two |
| // Progs and then the DFAs: two thirds to the forward Prog |
| // and one third to the reverse Prog. The forward Prog gives half |
| // of what it has left over to each of its DFAs. The reverse Prog |
| // gives it all to its longest-match DFA. |
| // |
| // Once a DFA fills its budget, it flushes its cache and starts over. |
| // If this happens too often, RE2 falls back on the NFA implementation. |
| |
| // For now, make the default budget something close to Code Search. |
| static const int kDefaultMaxMem = 8<<20; |
| |
| enum Encoding { |
| EncodingUTF8 = 1, |
| EncodingLatin1 |
| }; |
| |
| Options() : |
| max_mem_(kDefaultMaxMem), |
| encoding_(EncodingUTF8), |
| posix_syntax_(false), |
| longest_match_(false), |
| log_errors_(true), |
| literal_(false), |
| never_nl_(false), |
| dot_nl_(false), |
| never_capture_(false), |
| case_sensitive_(true), |
| perl_classes_(false), |
| word_boundary_(false), |
| one_line_(false) { |
| } |
| |
| /*implicit*/ Options(CannedOptions); |
| |
| int64_t max_mem() const { return max_mem_; } |
| void set_max_mem(int64_t m) { max_mem_ = m; } |
| |
| Encoding encoding() const { return encoding_; } |
| void set_encoding(Encoding encoding) { encoding_ = encoding; } |
| |
| bool posix_syntax() const { return posix_syntax_; } |
| void set_posix_syntax(bool b) { posix_syntax_ = b; } |
| |
| bool longest_match() const { return longest_match_; } |
| void set_longest_match(bool b) { longest_match_ = b; } |
| |
| bool log_errors() const { return log_errors_; } |
| void set_log_errors(bool b) { log_errors_ = b; } |
| |
| bool literal() const { return literal_; } |
| void set_literal(bool b) { literal_ = b; } |
| |
| bool never_nl() const { return never_nl_; } |
| void set_never_nl(bool b) { never_nl_ = b; } |
| |
| bool dot_nl() const { return dot_nl_; } |
| void set_dot_nl(bool b) { dot_nl_ = b; } |
| |
| bool never_capture() const { return never_capture_; } |
| void set_never_capture(bool b) { never_capture_ = b; } |
| |
| bool case_sensitive() const { return case_sensitive_; } |
| void set_case_sensitive(bool b) { case_sensitive_ = b; } |
| |
| bool perl_classes() const { return perl_classes_; } |
| void set_perl_classes(bool b) { perl_classes_ = b; } |
| |
| bool word_boundary() const { return word_boundary_; } |
| void set_word_boundary(bool b) { word_boundary_ = b; } |
| |
| bool one_line() const { return one_line_; } |
| void set_one_line(bool b) { one_line_ = b; } |
| |
| void Copy(const Options& src) { |
| *this = src; |
| } |
| |
| int ParseFlags() const; |
| |
| private: |
| int64_t max_mem_; |
| Encoding encoding_; |
| bool posix_syntax_; |
| bool longest_match_; |
| bool log_errors_; |
| bool literal_; |
| bool never_nl_; |
| bool dot_nl_; |
| bool never_capture_; |
| bool case_sensitive_; |
| bool perl_classes_; |
| bool word_boundary_; |
| bool one_line_; |
| }; |
| |
| // Returns the options set in the constructor. |
| const Options& options() const { return options_; } |
| |
| // Argument converters; see below. |
| template <typename T> |
| static Arg CRadix(T* ptr); |
| template <typename T> |
| static Arg Hex(T* ptr); |
| template <typename T> |
| static Arg Octal(T* ptr); |
| |
| // Controls the maximum count permitted by GlobalReplace(); -1 is unlimited. |
| // FOR FUZZING ONLY. |
| static void FUZZING_ONLY_set_maximum_global_replace_count(int i); |
| |
| private: |
| void Init(absl::string_view pattern, const Options& options); |
| |
| bool DoMatch(absl::string_view text, |
| Anchor re_anchor, |
| size_t* consumed, |
| const Arg* const args[], |
| int n) const; |
| |
| re2::Prog* ReverseProg() const; |
| |
| // First cache line is relatively cold fields. |
| const std::string* pattern_; // string regular expression |
| Options options_; // option flags |
| re2::Regexp* entire_regexp_; // parsed regular expression |
| re2::Regexp* suffix_regexp_; // parsed regular expression, prefix_ removed |
| const std::string* error_; // error indicator (or points to empty string) |
| const std::string* error_arg_; // fragment of regexp showing error (or ditto) |
| |
| // Second cache line is relatively hot fields. |
| // These are ordered oddly to pack everything. |
| int num_captures_; // number of capturing groups |
| ErrorCode error_code_ : 29; // error code (29 bits is more than enough) |
| bool longest_match_ : 1; // cached copy of options_.longest_match() |
| bool is_one_pass_ : 1; // can use prog_->SearchOnePass? |
| bool prefix_foldcase_ : 1; // prefix_ is ASCII case-insensitive |
| std::string prefix_; // required prefix (before suffix_regexp_) |
| re2::Prog* prog_; // compiled program for regexp |
| |
| // Reverse Prog for DFA execution only |
| mutable re2::Prog* rprog_; |
| // Map from capture names to indices |
| mutable const std::map<std::string, int>* named_groups_; |
| // Map from capture indices to names |
| mutable const std::map<int, std::string>* group_names_; |
| |
| mutable absl::once_flag rprog_once_; |
| mutable absl::once_flag named_groups_once_; |
| mutable absl::once_flag group_names_once_; |
| }; |
| |
| /***** Implementation details *****/ |
| |
| namespace re2_internal { |
| |
| // Types for which the 3-ary Parse() function template has specializations. |
| template <typename T> struct Parse3ary : public std::false_type {}; |
| template <> struct Parse3ary<void> : public std::true_type {}; |
| template <> struct Parse3ary<std::string> : public std::true_type {}; |
| template <> struct Parse3ary<absl::string_view> : public std::true_type {}; |
| template <> struct Parse3ary<char> : public std::true_type {}; |
| template <> struct Parse3ary<signed char> : public std::true_type {}; |
| template <> struct Parse3ary<unsigned char> : public std::true_type {}; |
| template <> struct Parse3ary<float> : public std::true_type {}; |
| template <> struct Parse3ary<double> : public std::true_type {}; |
| |
| template <typename T> |
| bool Parse(const char* str, size_t n, T* dest); |
| |
| // Types for which the 4-ary Parse() function template has specializations. |
| template <typename T> struct Parse4ary : public std::false_type {}; |
| template <> struct Parse4ary<long> : public std::true_type {}; |
| template <> struct Parse4ary<unsigned long> : public std::true_type {}; |
| template <> struct Parse4ary<short> : public std::true_type {}; |
| template <> struct Parse4ary<unsigned short> : public std::true_type {}; |
| template <> struct Parse4ary<int> : public std::true_type {}; |
| template <> struct Parse4ary<unsigned int> : public std::true_type {}; |
| template <> struct Parse4ary<long long> : public std::true_type {}; |
| template <> struct Parse4ary<unsigned long long> : public std::true_type {}; |
| |
| template <typename T> |
| bool Parse(const char* str, size_t n, T* dest, int radix); |
| |
| // Support absl::optional<T> for all T with a stock parser. |
| template <typename T> struct Parse3ary<absl::optional<T>> : public Parse3ary<T> {}; |
| template <typename T> struct Parse4ary<absl::optional<T>> : public Parse4ary<T> {}; |
| |
| template <typename T> |
| bool Parse(const char* str, size_t n, absl::optional<T>* dest) { |
| if (str == NULL) { |
| if (dest != NULL) |
| dest->reset(); |
| return true; |
| } |
| T tmp; |
| if (Parse(str, n, &tmp)) { |
| if (dest != NULL) |
| dest->emplace(std::move(tmp)); |
| return true; |
| } |
| return false; |
| } |
| |
| template <typename T> |
| bool Parse(const char* str, size_t n, absl::optional<T>* dest, int radix) { |
| if (str == NULL) { |
| if (dest != NULL) |
| dest->reset(); |
| return true; |
| } |
| T tmp; |
| if (Parse(str, n, &tmp, radix)) { |
| if (dest != NULL) |
| dest->emplace(std::move(tmp)); |
| return true; |
| } |
| return false; |
| } |
| |
| } // namespace re2_internal |
| |
| class RE2::Arg { |
| private: |
| template <typename T> |
| using CanParse3ary = typename std::enable_if< |
| re2_internal::Parse3ary<T>::value, |
| int>::type; |
| |
| template <typename T> |
| using CanParse4ary = typename std::enable_if< |
| re2_internal::Parse4ary<T>::value, |
| int>::type; |
| |
| #if !defined(_MSC_VER) |
| template <typename T> |
| using CanParseFrom = typename std::enable_if< |
| std::is_member_function_pointer< |
| decltype(static_cast<bool (T::*)(const char*, size_t)>( |
| &T::ParseFrom))>::value, |
| int>::type; |
| #endif |
| |
| public: |
| Arg() : Arg(nullptr) {} |
| Arg(std::nullptr_t ptr) : arg_(ptr), parser_(DoNothing) {} |
| |
| template <typename T, CanParse3ary<T> = 0> |
| Arg(T* ptr) : arg_(ptr), parser_(DoParse3ary<T>) {} |
| |
| template <typename T, CanParse4ary<T> = 0> |
| Arg(T* ptr) : arg_(ptr), parser_(DoParse4ary<T>) {} |
| |
| #if !defined(_MSC_VER) |
| template <typename T, CanParseFrom<T> = 0> |
| Arg(T* ptr) : arg_(ptr), parser_(DoParseFrom<T>) {} |
| #endif |
| |
| typedef bool (*Parser)(const char* str, size_t n, void* dest); |
| |
| template <typename T> |
| Arg(T* ptr, Parser parser) : arg_(ptr), parser_(parser) {} |
| |
| bool Parse(const char* str, size_t n) const { |
| return (*parser_)(str, n, arg_); |
| } |
| |
| private: |
| static bool DoNothing(const char* /*str*/, size_t /*n*/, void* /*dest*/) { |
| return true; |
| } |
| |
| template <typename T> |
| static bool DoParse3ary(const char* str, size_t n, void* dest) { |
| return re2_internal::Parse(str, n, reinterpret_cast<T*>(dest)); |
| } |
| |
| template <typename T> |
| static bool DoParse4ary(const char* str, size_t n, void* dest) { |
| return re2_internal::Parse(str, n, reinterpret_cast<T*>(dest), 10); |
| } |
| |
| #if !defined(_MSC_VER) |
| template <typename T> |
| static bool DoParseFrom(const char* str, size_t n, void* dest) { |
| if (dest == NULL) return true; |
| return reinterpret_cast<T*>(dest)->ParseFrom(str, n); |
| } |
| #endif |
| |
| void* arg_; |
| Parser parser_; |
| }; |
| |
| template <typename T> |
| inline RE2::Arg RE2::CRadix(T* ptr) { |
| return RE2::Arg(ptr, [](const char* str, size_t n, void* dest) -> bool { |
| return re2_internal::Parse(str, n, reinterpret_cast<T*>(dest), 0); |
| }); |
| } |
| |
| template <typename T> |
| inline RE2::Arg RE2::Hex(T* ptr) { |
| return RE2::Arg(ptr, [](const char* str, size_t n, void* dest) -> bool { |
| return re2_internal::Parse(str, n, reinterpret_cast<T*>(dest), 16); |
| }); |
| } |
| |
| template <typename T> |
| inline RE2::Arg RE2::Octal(T* ptr) { |
| return RE2::Arg(ptr, [](const char* str, size_t n, void* dest) -> bool { |
| return re2_internal::Parse(str, n, reinterpret_cast<T*>(dest), 8); |
| }); |
| } |
| |
| // Silence warnings about missing initializers for members of LazyRE2. |
| #if !defined(__clang__) && defined(__GNUC__) |
| #pragma GCC diagnostic ignored "-Wmissing-field-initializers" |
| #endif |
| |
| // Helper for writing global or static RE2s safely. |
| // Write |
| // static LazyRE2 re = {".*"}; |
| // and then use *re instead of writing |
| // static RE2 re(".*"); |
| // The former is more careful about multithreaded |
| // situations than the latter. |
| // |
| // N.B. This class never deletes the RE2 object that |
| // it constructs: that's a feature, so that it can be used |
| // for global and function static variables. |
| class LazyRE2 { |
| private: |
| struct NoArg {}; |
| |
| public: |
| typedef RE2 element_type; // support std::pointer_traits |
| |
| // Constructor omitted to preserve braced initialization in C++98. |
| |
| // Pretend to be a pointer to Type (never NULL due to on-demand creation): |
| RE2& operator*() const { return *get(); } |
| RE2* operator->() const { return get(); } |
| |
| // Named accessor/initializer: |
| RE2* get() const { |
| absl::call_once(once_, &LazyRE2::Init, this); |
| return ptr_; |
| } |
| |
| // All data fields must be public to support {"foo"} initialization. |
| const char* pattern_; |
| RE2::CannedOptions options_; |
| NoArg barrier_against_excess_initializers_; |
| |
| mutable RE2* ptr_; |
| mutable absl::once_flag once_; |
| |
| private: |
| static void Init(const LazyRE2* lazy_re2) { |
| lazy_re2->ptr_ = new RE2(lazy_re2->pattern_, lazy_re2->options_); |
| } |
| |
| void operator=(const LazyRE2&); // disallowed |
| }; |
| |
| namespace hooks { |
| |
| // Most platforms support thread_local. Older versions of iOS don't support |
| // thread_local, but for the sake of brevity, we lump together all versions |
| // of Apple platforms that aren't macOS. If an iOS application really needs |
| // the context pointee someday, we can get more specific then... |
| // |
| // As per https://github.com/google/re2/issues/325, thread_local support in |
| // MinGW seems to be buggy. (FWIW, Abseil folks also avoid it.) |
| #define RE2_HAVE_THREAD_LOCAL |
| #if (defined(__APPLE__) && !(defined(TARGET_OS_OSX) && TARGET_OS_OSX)) || defined(__MINGW32__) |
| #undef RE2_HAVE_THREAD_LOCAL |
| #endif |
| |
| // A hook must not make any assumptions regarding the lifetime of the context |
| // pointee beyond the current invocation of the hook. Pointers and references |
| // obtained via the context pointee should be considered invalidated when the |
| // hook returns. Hence, any data about the context pointee (e.g. its pattern) |
| // would have to be copied in order for it to be kept for an indefinite time. |
| // |
| // A hook must not use RE2 for matching. Control flow reentering RE2::Match() |
| // could result in infinite mutual recursion. To discourage that possibility, |
| // RE2 will not maintain the context pointer correctly when used in that way. |
| #ifdef RE2_HAVE_THREAD_LOCAL |
| extern thread_local const RE2* context; |
| #endif |
| |
| struct DFAStateCacheReset { |
| int64_t state_budget; |
| size_t state_cache_size; |
| }; |
| |
| struct DFASearchFailure { |
| // Nothing yet... |
| }; |
| |
| #define DECLARE_HOOK(type) \ |
| using type##Callback = void(const type&); \ |
| void Set##type##Hook(type##Callback* cb); \ |
| type##Callback* Get##type##Hook(); |
| |
| DECLARE_HOOK(DFAStateCacheReset) |
| DECLARE_HOOK(DFASearchFailure) |
| |
| #undef DECLARE_HOOK |
| |
| } // namespace hooks |
| |
| } // namespace re2 |
| |
| using re2::RE2; |
| using re2::LazyRE2; |
| |
| #endif // RE2_RE2_H_ |