| /* |
| * cifra - embedded cryptography library |
| * Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com> |
| * |
| * To the extent possible under law, the author(s) have dedicated all |
| * copyright and related and neighboring rights to this software to the |
| * public domain worldwide. This software is distributed without any |
| * warranty. |
| * |
| * You should have received a copy of the CC0 Public Domain Dedication |
| * along with this software. If not, see |
| * <http://creativecommons.org/publicdomain/zero/1.0/>. |
| */ |
| |
| #include <string.h> |
| #include <stdlib.h> |
| |
| #include "cf_config.h" |
| #include "aes.h" |
| #include "handy.h" |
| #include "bitops.h" |
| #include "tassert.h" |
| |
| static const uint8_t S[256] = |
| { |
| 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, |
| 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, |
| 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, |
| 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, |
| 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, |
| 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, |
| 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, |
| 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, |
| 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, |
| 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, |
| 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, |
| 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, |
| 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, |
| 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, |
| 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, |
| 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
| 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, |
| 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, |
| 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, |
| 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 |
| }; |
| |
| static const uint8_t Rcon[11] = |
| { |
| 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 |
| }; |
| |
| #ifdef INLINE_FUNCS |
| static inline uint32_t word4(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3) |
| { |
| return b0 << 24 | b1 << 16 | b2 << 8 | b3; |
| } |
| |
| static inline uint8_t byte(uint32_t w, unsigned x) |
| { |
| /* nb. bytes are numbered 0 (leftmost, top) |
| * to 3 (rightmost). */ |
| x = 3 - x; |
| return (w >> (x * 8)) & 0xff; |
| } |
| |
| static uint32_t round_constant(uint32_t i) |
| { |
| return Rcon[i] << 24; |
| } |
| |
| static uint32_t rot_word(uint32_t w) |
| { |
| /* Takes |
| * word [a0,a1,a2,a3] |
| * returns |
| * word [a1,a2,a3,a0] |
| * |
| */ |
| return rotl32(w, 8); |
| } |
| #endif |
| |
| #define word4(a, b, c, d) (((uint32_t)(a) << 24) | ((uint32_t)(b) << 16) | ((uint32_t)(c) << 8) | (d)) |
| #define byte(w, x) ((w >> ((3 - (x)) << 3)) & 0xff) |
| #define round_constant(i) ((uint32_t)(Rcon[i]) << 24) |
| #define rot_word(w) rotl32((w), 8) |
| |
| static uint32_t sub_word(uint32_t w, const uint8_t *sbox) |
| { |
| uint8_t a = byte(w, 0), |
| b = byte(w, 1), |
| c = byte(w, 2), |
| d = byte(w, 3); |
| #if CF_CACHE_SIDE_CHANNEL_PROTECTION |
| select_u8x4(&a, &b, &c, &d, sbox, 256); |
| #else |
| a = sbox[a]; |
| b = sbox[b]; |
| c = sbox[c]; |
| d = sbox[d]; |
| #endif |
| return word4(a, b, c, d); |
| } |
| |
| static void aes_schedule(cf_aes_context *ctx, const uint8_t *key, size_t nkey) |
| { |
| size_t i, |
| nb = AES_BLOCKSZ / 4, |
| nk = nkey / 4, |
| n = nb * (ctx->rounds + 1); |
| uint32_t *w = ctx->ks; |
| |
| /* First words are just the key. */ |
| for (i = 0; i < nk; i++) |
| { |
| w[i] = read32_be(key + i * 4); |
| } |
| |
| uint32_t i_div_nk = 1; |
| uint32_t i_mod_nk = 0; |
| |
| for (; i < n; i++, i_mod_nk++) |
| { |
| uint32_t temp = w[i - 1]; |
| |
| if (i_mod_nk == nk) |
| { |
| i_div_nk++; |
| i_mod_nk = 0; |
| } |
| |
| if (i_mod_nk == 0) |
| temp = sub_word(rot_word(temp), S) ^ round_constant(i_div_nk); |
| else if (nk > 6 && i_mod_nk == 4) |
| temp = sub_word(temp, S); |
| |
| w[i] = w[i - nk] ^ temp; |
| } |
| } |
| |
| void cf_aes_init(cf_aes_context *ctx, const uint8_t *key, size_t nkey) |
| { |
| memset(ctx, 0, sizeof *ctx); |
| |
| switch (nkey) |
| { |
| #if CF_AES_MAXROUNDS >= AES128_ROUNDS |
| case 16: |
| ctx->rounds = AES128_ROUNDS; |
| aes_schedule(ctx, key, nkey); |
| break; |
| #endif |
| |
| #if CF_AES_MAXROUNDS >= AES192_ROUNDS |
| case 24: |
| ctx->rounds = AES192_ROUNDS; |
| aes_schedule(ctx, key, nkey); |
| break; |
| #endif |
| |
| #if CF_AES_MAXROUNDS >= AES256_ROUNDS |
| case 32: |
| ctx->rounds = AES256_ROUNDS; |
| aes_schedule(ctx, key, nkey); |
| break; |
| #endif |
| |
| default: |
| abort(); |
| } |
| } |
| |
| static void add_round_key(uint32_t state[4], const uint32_t rk[4]) |
| { |
| state[0] ^= rk[0]; |
| state[1] ^= rk[1]; |
| state[2] ^= rk[2]; |
| state[3] ^= rk[3]; |
| } |
| |
| static void sub_block(uint32_t state[4]) |
| { |
| state[0] = sub_word(state[0], S); |
| state[1] = sub_word(state[1], S); |
| state[2] = sub_word(state[2], S); |
| state[3] = sub_word(state[3], S); |
| } |
| |
| static void shift_rows(uint32_t state[4]) |
| { |
| uint32_t u, v, x, y; |
| |
| u = word4(byte(state[0], 0), |
| byte(state[1], 1), |
| byte(state[2], 2), |
| byte(state[3], 3)); |
| |
| v = word4(byte(state[1], 0), |
| byte(state[2], 1), |
| byte(state[3], 2), |
| byte(state[0], 3)); |
| |
| x = word4(byte(state[2], 0), |
| byte(state[3], 1), |
| byte(state[0], 2), |
| byte(state[1], 3)); |
| |
| y = word4(byte(state[3], 0), |
| byte(state[0], 1), |
| byte(state[1], 2), |
| byte(state[2], 3)); |
| |
| state[0] = u; |
| state[1] = v; |
| state[2] = x; |
| state[3] = y; |
| } |
| |
| static uint32_t gf_poly_mul2(uint32_t x) |
| { |
| return |
| ((x & 0x7f7f7f7f) << 1) ^ |
| (((x & 0x80808080) >> 7) * 0x1b); |
| } |
| |
| static uint32_t mix_column(uint32_t x) |
| { |
| uint32_t x2 = gf_poly_mul2(x); |
| return x2 ^ rotr32(x ^ x2, 24) ^ rotr32(x, 16) ^ rotr32(x, 8); |
| } |
| |
| static void mix_columns(uint32_t state[4]) |
| { |
| state[0] = mix_column(state[0]); |
| state[1] = mix_column(state[1]); |
| state[2] = mix_column(state[2]); |
| state[3] = mix_column(state[3]); |
| } |
| |
| void cf_aes_encrypt(const cf_aes_context *ctx, |
| const uint8_t in[AES_BLOCKSZ], |
| uint8_t out[AES_BLOCKSZ]) |
| { |
| assert(ctx->rounds == AES128_ROUNDS || |
| ctx->rounds == AES192_ROUNDS || |
| ctx->rounds == AES256_ROUNDS); |
| |
| uint32_t state[4] = { |
| read32_be(in + 0), |
| read32_be(in + 4), |
| read32_be(in + 8), |
| read32_be(in + 12) |
| }; |
| |
| const uint32_t *round_keys = ctx->ks; |
| add_round_key(state, round_keys); |
| round_keys += 4; |
| |
| uint32_t round; |
| for (round = 1; round < ctx->rounds; round++) |
| { |
| sub_block(state); |
| shift_rows(state); |
| mix_columns(state); |
| add_round_key(state, round_keys); |
| round_keys += 4; |
| } |
| |
| sub_block(state); |
| shift_rows(state); |
| add_round_key(state, round_keys); |
| |
| write32_be(state[0], out + 0); |
| write32_be(state[1], out + 4); |
| write32_be(state[2], out + 8); |
| write32_be(state[3], out + 12); |
| } |
| |
| #if CF_AES_ENCRYPT_ONLY == 0 |
| static const uint8_t S_inv[256] = |
| { |
| 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, |
| 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, |
| 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, |
| 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, |
| 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, |
| 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, |
| 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, |
| 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, |
| 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, |
| 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, |
| 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, |
| 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, |
| 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, |
| 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, |
| 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, |
| 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, |
| 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, |
| 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, |
| 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, |
| 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d |
| }; |
| |
| static void inv_sub_block(uint32_t state[4]) |
| { |
| state[0] = sub_word(state[0], S_inv); |
| state[1] = sub_word(state[1], S_inv); |
| state[2] = sub_word(state[2], S_inv); |
| state[3] = sub_word(state[3], S_inv); |
| } |
| |
| static void inv_shift_rows(uint32_t state[4]) |
| { |
| uint32_t u, v, x, y; |
| |
| u = word4(byte(state[0], 0), |
| byte(state[3], 1), |
| byte(state[2], 2), |
| byte(state[1], 3)); |
| |
| v = word4(byte(state[1], 0), |
| byte(state[0], 1), |
| byte(state[3], 2), |
| byte(state[2], 3)); |
| |
| x = word4(byte(state[2], 0), |
| byte(state[1], 1), |
| byte(state[0], 2), |
| byte(state[3], 3)); |
| |
| y = word4(byte(state[3], 0), |
| byte(state[2], 1), |
| byte(state[1], 2), |
| byte(state[0], 3)); |
| |
| state[0] = u; |
| state[1] = v; |
| state[2] = x; |
| state[3] = y; |
| } |
| |
| static uint32_t inv_mix_column(uint32_t x) |
| { |
| uint32_t x2 = gf_poly_mul2(x), |
| x4 = gf_poly_mul2(x2), |
| x9 = x ^ gf_poly_mul2(x4), |
| x11 = x2 ^ x9, |
| x13 = x4 ^ x9; |
| |
| return x ^ x2 ^ x13 ^ rotr32(x11, 24) ^ rotr32(x13, 16) ^ rotr32(x9, 8); |
| } |
| |
| static void inv_mix_columns(uint32_t state[4]) |
| { |
| state[0] = inv_mix_column(state[0]); |
| state[1] = inv_mix_column(state[1]); |
| state[2] = inv_mix_column(state[2]); |
| state[3] = inv_mix_column(state[3]); |
| } |
| |
| void cf_aes_decrypt(const cf_aes_context *ctx, |
| const uint8_t in[AES_BLOCKSZ], |
| uint8_t out[AES_BLOCKSZ]) |
| { |
| assert(ctx->rounds == AES128_ROUNDS || |
| ctx->rounds == AES192_ROUNDS || |
| ctx->rounds == AES256_ROUNDS); |
| |
| uint32_t state[4] = { |
| read32_be(in + 0), |
| read32_be(in + 4), |
| read32_be(in + 8), |
| read32_be(in + 12) |
| }; |
| |
| const uint32_t *round_keys = &ctx->ks[ctx->rounds << 2]; |
| add_round_key(state, round_keys); |
| round_keys -= 4; |
| |
| uint32_t round; |
| for (round = ctx->rounds - 1; round != 0; round--) |
| { |
| inv_shift_rows(state); |
| inv_sub_block(state); |
| add_round_key(state, round_keys); |
| inv_mix_columns(state); |
| round_keys -= 4; |
| } |
| |
| inv_shift_rows(state); |
| inv_sub_block(state); |
| add_round_key(state, round_keys); |
| |
| write32_be(state[0], out + 0); |
| write32_be(state[1], out + 4); |
| write32_be(state[2], out + 8); |
| write32_be(state[3], out + 12); |
| } |
| #else |
| void cf_aes_decrypt(const cf_aes_context *ctx, |
| const uint8_t in[AES_BLOCKSZ], |
| uint8_t out[AES_BLOCKSZ]) |
| { |
| abort(); |
| } |
| #endif |
| |
| void cf_aes_finish(cf_aes_context *ctx) |
| { |
| mem_clean(ctx, sizeof *ctx); |
| } |
| |
| const cf_prp cf_aes = { |
| .blocksz = AES_BLOCKSZ, |
| .encrypt = (cf_prp_block) cf_aes_encrypt, |
| .decrypt = (cf_prp_block) cf_aes_decrypt |
| }; |
| |