blob: 545588e57446b30ecea937c309ccf7be991624a4 [file] [log] [blame]
/*
* cifra - embedded cryptography library
* Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com>
*
* To the extent possible under law, the author(s) have dedicated all
* copyright and related and neighboring rights to this software to the
* public domain worldwide. This software is distributed without any
* warranty.
*
* You should have received a copy of the CC0 Public Domain Dedication
* along with this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include <string.h>
#include <stdlib.h>
#include "cf_config.h"
#include "aes.h"
#include "handy.h"
#include "bitops.h"
#include "tassert.h"
static const uint8_t S[256] =
{
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe,
0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4,
0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7,
0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3,
0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09,
0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3,
0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe,
0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92,
0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c,
0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2,
0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5,
0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25,
0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86,
0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e,
0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42,
0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static const uint8_t Rcon[11] =
{
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
};
#ifdef INLINE_FUNCS
static inline uint32_t word4(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3)
{
return b0 << 24 | b1 << 16 | b2 << 8 | b3;
}
static inline uint8_t byte(uint32_t w, unsigned x)
{
/* nb. bytes are numbered 0 (leftmost, top)
* to 3 (rightmost). */
x = 3 - x;
return (w >> (x * 8)) & 0xff;
}
static uint32_t round_constant(uint32_t i)
{
return Rcon[i] << 24;
}
static uint32_t rot_word(uint32_t w)
{
/* Takes
* word [a0,a1,a2,a3]
* returns
* word [a1,a2,a3,a0]
*
*/
return rotl32(w, 8);
}
#endif
#define word4(a, b, c, d) (((uint32_t)(a) << 24) | ((uint32_t)(b) << 16) | ((uint32_t)(c) << 8) | (d))
#define byte(w, x) ((w >> ((3 - (x)) << 3)) & 0xff)
#define round_constant(i) ((uint32_t)(Rcon[i]) << 24)
#define rot_word(w) rotl32((w), 8)
static uint32_t sub_word(uint32_t w, const uint8_t *sbox)
{
uint8_t a = byte(w, 0),
b = byte(w, 1),
c = byte(w, 2),
d = byte(w, 3);
#if CF_CACHE_SIDE_CHANNEL_PROTECTION
select_u8x4(&a, &b, &c, &d, sbox, 256);
#else
a = sbox[a];
b = sbox[b];
c = sbox[c];
d = sbox[d];
#endif
return word4(a, b, c, d);
}
static void aes_schedule(cf_aes_context *ctx, const uint8_t *key, size_t nkey)
{
size_t i,
nb = AES_BLOCKSZ / 4,
nk = nkey / 4,
n = nb * (ctx->rounds + 1);
uint32_t *w = ctx->ks;
/* First words are just the key. */
for (i = 0; i < nk; i++)
{
w[i] = read32_be(key + i * 4);
}
uint32_t i_div_nk = 1;
uint32_t i_mod_nk = 0;
for (; i < n; i++, i_mod_nk++)
{
uint32_t temp = w[i - 1];
if (i_mod_nk == nk)
{
i_div_nk++;
i_mod_nk = 0;
}
if (i_mod_nk == 0)
temp = sub_word(rot_word(temp), S) ^ round_constant(i_div_nk);
else if (nk > 6 && i_mod_nk == 4)
temp = sub_word(temp, S);
w[i] = w[i - nk] ^ temp;
}
}
void cf_aes_init(cf_aes_context *ctx, const uint8_t *key, size_t nkey)
{
memset(ctx, 0, sizeof *ctx);
switch (nkey)
{
#if CF_AES_MAXROUNDS >= AES128_ROUNDS
case 16:
ctx->rounds = AES128_ROUNDS;
aes_schedule(ctx, key, nkey);
break;
#endif
#if CF_AES_MAXROUNDS >= AES192_ROUNDS
case 24:
ctx->rounds = AES192_ROUNDS;
aes_schedule(ctx, key, nkey);
break;
#endif
#if CF_AES_MAXROUNDS >= AES256_ROUNDS
case 32:
ctx->rounds = AES256_ROUNDS;
aes_schedule(ctx, key, nkey);
break;
#endif
default:
abort();
}
}
static void add_round_key(uint32_t state[4], const uint32_t rk[4])
{
state[0] ^= rk[0];
state[1] ^= rk[1];
state[2] ^= rk[2];
state[3] ^= rk[3];
}
static void sub_block(uint32_t state[4])
{
state[0] = sub_word(state[0], S);
state[1] = sub_word(state[1], S);
state[2] = sub_word(state[2], S);
state[3] = sub_word(state[3], S);
}
static void shift_rows(uint32_t state[4])
{
uint32_t u, v, x, y;
u = word4(byte(state[0], 0),
byte(state[1], 1),
byte(state[2], 2),
byte(state[3], 3));
v = word4(byte(state[1], 0),
byte(state[2], 1),
byte(state[3], 2),
byte(state[0], 3));
x = word4(byte(state[2], 0),
byte(state[3], 1),
byte(state[0], 2),
byte(state[1], 3));
y = word4(byte(state[3], 0),
byte(state[0], 1),
byte(state[1], 2),
byte(state[2], 3));
state[0] = u;
state[1] = v;
state[2] = x;
state[3] = y;
}
static uint32_t gf_poly_mul2(uint32_t x)
{
return
((x & 0x7f7f7f7f) << 1) ^
(((x & 0x80808080) >> 7) * 0x1b);
}
static uint32_t mix_column(uint32_t x)
{
uint32_t x2 = gf_poly_mul2(x);
return x2 ^ rotr32(x ^ x2, 24) ^ rotr32(x, 16) ^ rotr32(x, 8);
}
static void mix_columns(uint32_t state[4])
{
state[0] = mix_column(state[0]);
state[1] = mix_column(state[1]);
state[2] = mix_column(state[2]);
state[3] = mix_column(state[3]);
}
void cf_aes_encrypt(const cf_aes_context *ctx,
const uint8_t in[AES_BLOCKSZ],
uint8_t out[AES_BLOCKSZ])
{
assert(ctx->rounds == AES128_ROUNDS ||
ctx->rounds == AES192_ROUNDS ||
ctx->rounds == AES256_ROUNDS);
uint32_t state[4] = {
read32_be(in + 0),
read32_be(in + 4),
read32_be(in + 8),
read32_be(in + 12)
};
const uint32_t *round_keys = ctx->ks;
add_round_key(state, round_keys);
round_keys += 4;
uint32_t round;
for (round = 1; round < ctx->rounds; round++)
{
sub_block(state);
shift_rows(state);
mix_columns(state);
add_round_key(state, round_keys);
round_keys += 4;
}
sub_block(state);
shift_rows(state);
add_round_key(state, round_keys);
write32_be(state[0], out + 0);
write32_be(state[1], out + 4);
write32_be(state[2], out + 8);
write32_be(state[3], out + 12);
}
#if CF_AES_ENCRYPT_ONLY == 0
static const uint8_t S_inv[256] =
{
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81,
0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e,
0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23,
0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66,
0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72,
0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65,
0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46,
0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca,
0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91,
0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8,
0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f,
0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2,
0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8,
0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93,
0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb,
0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6,
0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
static void inv_sub_block(uint32_t state[4])
{
state[0] = sub_word(state[0], S_inv);
state[1] = sub_word(state[1], S_inv);
state[2] = sub_word(state[2], S_inv);
state[3] = sub_word(state[3], S_inv);
}
static void inv_shift_rows(uint32_t state[4])
{
uint32_t u, v, x, y;
u = word4(byte(state[0], 0),
byte(state[3], 1),
byte(state[2], 2),
byte(state[1], 3));
v = word4(byte(state[1], 0),
byte(state[0], 1),
byte(state[3], 2),
byte(state[2], 3));
x = word4(byte(state[2], 0),
byte(state[1], 1),
byte(state[0], 2),
byte(state[3], 3));
y = word4(byte(state[3], 0),
byte(state[2], 1),
byte(state[1], 2),
byte(state[0], 3));
state[0] = u;
state[1] = v;
state[2] = x;
state[3] = y;
}
static uint32_t inv_mix_column(uint32_t x)
{
uint32_t x2 = gf_poly_mul2(x),
x4 = gf_poly_mul2(x2),
x9 = x ^ gf_poly_mul2(x4),
x11 = x2 ^ x9,
x13 = x4 ^ x9;
return x ^ x2 ^ x13 ^ rotr32(x11, 24) ^ rotr32(x13, 16) ^ rotr32(x9, 8);
}
static void inv_mix_columns(uint32_t state[4])
{
state[0] = inv_mix_column(state[0]);
state[1] = inv_mix_column(state[1]);
state[2] = inv_mix_column(state[2]);
state[3] = inv_mix_column(state[3]);
}
void cf_aes_decrypt(const cf_aes_context *ctx,
const uint8_t in[AES_BLOCKSZ],
uint8_t out[AES_BLOCKSZ])
{
assert(ctx->rounds == AES128_ROUNDS ||
ctx->rounds == AES192_ROUNDS ||
ctx->rounds == AES256_ROUNDS);
uint32_t state[4] = {
read32_be(in + 0),
read32_be(in + 4),
read32_be(in + 8),
read32_be(in + 12)
};
const uint32_t *round_keys = &ctx->ks[ctx->rounds << 2];
add_round_key(state, round_keys);
round_keys -= 4;
uint32_t round;
for (round = ctx->rounds - 1; round != 0; round--)
{
inv_shift_rows(state);
inv_sub_block(state);
add_round_key(state, round_keys);
inv_mix_columns(state);
round_keys -= 4;
}
inv_shift_rows(state);
inv_sub_block(state);
add_round_key(state, round_keys);
write32_be(state[0], out + 0);
write32_be(state[1], out + 4);
write32_be(state[2], out + 8);
write32_be(state[3], out + 12);
}
#else
void cf_aes_decrypt(const cf_aes_context *ctx,
const uint8_t in[AES_BLOCKSZ],
uint8_t out[AES_BLOCKSZ])
{
abort();
}
#endif
void cf_aes_finish(cf_aes_context *ctx)
{
mem_clean(ctx, sizeof *ctx);
}
const cf_prp cf_aes = {
.blocksz = AES_BLOCKSZ,
.encrypt = (cf_prp_block) cf_aes_encrypt,
.decrypt = (cf_prp_block) cf_aes_decrypt
};