tree: bb7d6c87422e4625b755dd91e8c4cc7143941725 [path history] [tgz]
  1. include/
  2. src/
  3. third_party/
  4. .gitignore
  5. CMakeLists.txt
  6. Kconfig
  7. prj.conf
  8. README.md
examples/bridge-app/telink/README.md

Matter Telink Bridge Example Application

The Telink Bridge Example demonstrates a simple lighting bridge and the use of dynamic endpoints. It uses buttons to test changing the lighting and device states and LEDs to show the state of these changes. You can use this example as a reference for creating your own application.

Bridge together with its Bridged Devices is exposed as a single Node with a list of endpoints. Consequently, a single Node ID and a single Operational Certificate is assigned during Commissioning and a single pass through the commissioning flow is required to bring the Bridge (along with its Bridged Devices) onto a Fabric. This provides for a simple user experience, since the user only needs to go through the commissioning flow for the Bridge, and not separately for each of the Bridged Devices.

Telink B91 EVK

Introduction

A prototype application that demonstrates dynamic endpoint with device commissioning and cluster control. It adds the non-chip device as endpoints on a bridge(Matter device). In this example four light devices supporting on-off cluster and temperature sensor have been added as endpoints

  1. Light1 at endpoint 3
  2. Light2 at endpoint 7
  3. Light3 at endpoint 5
  4. Light4 at endpoint 6
  5. Temperature Sensor at endpoint 8

Dynamic Endpoints

The Bridge Example makes use of Dynamic Endpoints. Current SDK support is limited for dynamic endpoints, since endpoints are typically defined (along with the clusters and attributes they contain) in a .zap file which then generates code and static structures to define the endpoints.

To support endpoints that are not statically defined, the ZCL attribute storage mechanisms will hold additional endpoint information for NUM_DYNAMIC_ENDPOINTS additional endpoints. These additional endpoint structures must be defined by the application and can change at runtime.

To facilitate the creation of these endpoint structures, several macros are defined:

DECLARE_DYNAMIC_ATTRIBUTE_LIST_BEGIN(attrListName) DECLARE_DYNAMIC_ATTRIBUTE(attId, attType, attSizeBytes, attrMask) DECLARE_DYNAMIC_ATTRIBUTE_LIST_END(clusterRevision)

  • These three macros are used to declare a list of attributes for use within a cluster. The declaration must begin with the DECLARE_DYNAMIC_ATTRIBUTE_LIST_BEGIN macro which will define the name of the allocated attribute structure. Each attribute is then added by the DECLARE_DYNAMIC_ATTRIBUTE macro. Finally, DECLARE_DYNAMIC_ATTRIBUTE_LIST_END macro should be used to close the definition.

  • All attributes defined with these macros will be configured as ATTRIBUTE_MASK_EXTERNAL_STORAGE in the ZCL database and therefore will rely on the application to maintain storage for the attribute. Consequently, reads or writes to these attributes must be handled within the application by the emberAfExternalAttributeWriteCallback and emberAfExternalAttributeReadCallback functions. See the bridge application's main.cpp for an example of this implementation.

DECLARE_DYNAMIC_CLUSTER_LIST_BEGIN(clusterListName) DECLARE_DYNAMIC_CLUSTER(clusterId, clusterAttrs, incomingCommands, outgoingCommands) DECLARE_DYNAMIC_CLUSTER_LIST_END

  • These three macros are used to declare a list of clusters for use within a endpoint. The declaration must begin with the DECLARE_DYNAMIC_CLUSTER_LIST_BEGIN macro which will define the name of the allocated cluster structure. Each cluster is then added by the DECLARE_DYNAMIC_CLUSTER macro referencing attribute list previously defined by the DECLARE_DYNAMIC_ATTRIBUTE... macros and the lists of incoming/outgoing commands terminated by kInvalidCommandId (or nullptr if there aren't any commands in the list). Finally, DECLARE_DYNAMIC_CLUSTER_LIST_END macro should be used to close the definition.

DECLARE_DYNAMIC_ENDPOINT(endpointName, clusterList)

  • This macro is used to declare an endpoint and its associated cluster list, which must be previously defined by the DECLARE_DYNAMIC_CLUSTER... macros.

Build and flash

  1. Run the Docker container:

    $ docker run -it --rm -v $PWD:/host -w /host ghcr.io/project-chip/chip-build-telink:$(wget -q -O - https://raw.githubusercontent.com/project-chip/connectedhomeip/master/.github/workflows/examples-telink.yaml 2> /dev/null | grep chip-build-telink | awk -F: '{print $NF}')
    

    Compatible docker image version can be found in next file:

    $ .github/workflows/examples-telink.yaml
    
  2. Activate the build environment:

    $ source ./scripts/activate.sh
    
  3. In the example dir run (replace <build_target> with your board name, for example, tlsr9518adk80d or tlsr9528a):

    $ west build -b <build_target>
    
  4. Flash binary:

    $ west flash --erase
    

Usage

UART

To get output from device, connect UART to following pins:

NamePin
RXPB3 (pin 17 of J34 connector)
TXPB2 (pin 16 of J34 connector)
GNDGND

Buttons

The following buttons are available on tlsr9518adk80d board:

NameFunctionDescription
Button 1Factory resetPerform factory reset to forget currently commissioned Thread network and back to uncommissioned state
Button 2Lighting controlManually triggers the lighting state
Button 3Thread startCommission thread with static credentials and enables the Thread on device
Button 4Open commission windowThe button is opening commissioning window to perform commissioning over BLE

LEDs

Indicate current state of Thread network

Red LED indicates current state of Thread network. It is able to be in following states:

StateDescription
Blinks with short pulsesDevice is not commissioned to Thread, Thread is disabled
Blinks with frequent pulsesDevice is commissioned, Thread enabled. Device trying to JOIN thread network
Blinks with wide pulsesDevice commissioned and joined to thread network as CHILD

Indicate identify of device

Green LED used to identify the device. The LED starts blinking when the Identify command of the Identify cluster is received. The command's argument can be used to specify the the effect. It is able to be in following effects:

EffectDescription
Blinks (200 ms on/200 ms off)Blink (Clusters::Identify::EffectIdentifierEnum::kBlink)
Breathe (during 1000 ms)Breathe (Clusters::Identify::EffectIdentifierEnum::kBreathe)
Blinks (50 ms on/950 ms off)Okay (Clusters::Identify::EffectIdentifierEnum::kOkay)
Blinks (1000 ms on/1000 ms off)Channel Change ( Clusters::Identify::EffectIdentifierEnum::kChannelChange)
Blinks (950 ms on/50 ms off)Finish ( Clusters::Identify::EffectIdentifierEnum::kFinishEffect)
LED offStop (Clusters::Identify::EffectIdentifierEnum::kStopEffect)

CHIP tool commands

  1. Build chip-tool cli

  2. Pair with device

    ${CHIP_TOOL_DIR}/chip-tool pairing ble-thread ${NODE_ID} hex:${DATASET} ${PIN_CODE} ${DISCRIMINATOR}
    

    Example:

    ./chip-tool pairing ble-thread 1234 hex:0e080000000000010000000300000f35060004001fffe0020811111111222222220708fd61f77bd3df233e051000112233445566778899aabbccddeeff030e4f70656e54687265616444656d6f010212340410445f2b5ca6f2a93a55ce570a70efeecb0c0402a0fff8 20202021 3840
    
  3. Switch on the light:

    ${CHIP_TOOL_DIR}/chip-tool onoff on 1 2
    

    here:

    • onoff is name of cluster
    • on command to the cluster
    • 1 ID of Node
    • 2 ID of endpoint
  4. Switch off the light:

    ${CHIP_TOOL_DIR}/chip-tool onoff off 1 2
    

    here:

    • onoff is name of cluster
    • off command to the cluster
    • 1 ID of Node
    • 2 ID of endpoint
  5. Read the light state:

    ${CHIP_TOOL_DIR}/chip-tool onoff read on-off 1 2
    

    here:

    • onoff is name of cluster
    • read command to the cluster
    • on-off attribute to read
    • 1 ID of Node
    • 2 ID of endpoint
  6. Change brightness of light:

    ${CHIP_TOOL_DIR}/chip-tool levelcontrol move-to-level 32 0 0 0 1 2
    

    here:

    • levelcontrol is name of cluster
    • move-to-level command to the cluster
    • 32 brightness value
    • 0 transition time
    • 0 option mask
    • 0 option override
    • 1 ID of Node
    • 2 ID of endpoint
  7. Read brightness level:

    ./chip-tool levelcontrol read current-level 1 2
    

    here:

    • levelcontrol is name of cluster
    • read command to the cluster
    • current-level attribute to read
    • 1 ID of Node
    • 2 ID of endpoint

OTA with Linux OTA Provider

OTA feature enabled by default only for ota-requestor-app example. To enable OTA feature for another Telink example:

  • set CONFIG_CHIP_OTA_REQUESTOR=y in corresponding “prj.conf” configuration file.

After build application with enabled OTA feature, use next binary files:

  • zephyr.bin - main binary to flash PCB (Use 2MB PCB).
  • zephyr-ota.bin - binary for OTA Provider

All binaries has the same SW version. To test OTA “zephyr-ota.bin” should have higher SW version than base SW. Set CONFIG_CHIP_DEVICE_SOFTWARE_VERSION=2 in corresponding “prj.conf” configuration file.

Usage of OTA:

  • Build the Linux OTA Provider

    ./scripts/examples/gn_build_example.sh examples/ota-provider-app/linux out/ota-provider-app chip_config_network_layer_ble=false
    
  • Run the Linux OTA Provider with OTA image.

    ./chip-ota-provider-app -f zephyr-ota.bin
    
  • Provision the Linux OTA Provider using chip-tool

    ./chip-tool pairing onnetwork ${OTA_PROVIDER_NODE_ID} 20202021
    

    here:

    • ${OTA_PROVIDER_NODE_ID} is the node id of Linux OTA Provider
  • Configure the ACL of the ota-provider-app to allow access

    ./chip-tool accesscontrol write acl '[{"fabricIndex": 1, "privilege": 5, "authMode": 2, "subjects": [112233], "targets": null}, {"fabricIndex": 1, "privilege": 3, "authMode": 2, "subjects": null, "targets": null}]' ${OTA_PROVIDER_NODE_ID} 0
    

    here:

    • ${OTA_PROVIDER_NODE_ID} is the node id of Linux OTA Provider
  • Use the chip-tool to announce the ota-provider-app to start the OTA process

    ./chip-tool otasoftwareupdaterequestor announce-otaprovider ${OTA_PROVIDER_NODE_ID} 0 0 0 ${DEVICE_NODE_ID} 0
    

    here:

    • ${OTA_PROVIDER_NODE_ID} is the node id of Linux OTA Provider
    • ${DEVICE_NODE_ID} is the node id of paired device

Once the transfer is complete, OTA requestor sends ApplyUpdateRequest command to OTA provider for applying the image. Device will restart on successful application of OTA image.