An example testing and demonstrating the key value storage API.
This example serves to both test the key value storage implementation and API as it is brought-up on different platforms, as well as provide an example for how to use the API.
In the future this example can be moved into a unit test when available on all platforms.
The ESP32 platform KVS is not yet fully implemented. In particular offset and partial reads are not yet supported.
Building the example application requires the use of the Espressif ESP32 IoT Development Framework and the xtensa-esp32-elf toolchain.
The VSCode devcontainer has these components pre-installed, so you can skip this step. To install these components manually, follow these steps:
Clone the Espressif ESP-IDF and checkout v4.3 tag
$ mkdir ${HOME}/tools $ cd ${HOME}/tools $ git clone https://github.com/espressif/esp-idf.git $ cd esp-idf $ git checkout v4.3 $ git submodule update --init $ ./install.sh
Install ninja-build
$ sudo apt-get install ninja-build
Currently building in VSCode and deploying from native is not supported, so make sure the IDF_PATH has been exported(See the manual setup steps above).
Setting up the environment
$ cd ${HOME}/tools/esp-idf $ ./install.sh $ . ./export.sh $ cd {path-to-connectedhomeip}
To download and install packages.
$ source ./scripts/bootstrap.sh $ source ./scripts/activate.sh
If packages are already installed then simply activate them.
$ source ./scripts/activate.sh
Configuration Options
To choose from the different configuration options, run menuconfig. $ idf.py menuconfig
To build the demo application.
$ idf.py build
After building the application, to flash it outside of VSCode, connect your device via USB. Then run the following command to flash the demo application onto the device and then monitor its output. If necessary, replace /dev/tty.SLAB_USBtoUART
(MacOS) with the correct USB device name for your system(like /dev/ttyUSB0
on Linux). Note that sometimes you might have to press and hold the boot
button on the device while it's trying to connect before flashing. For ESP32-DevKitC devices this is labeled in the functional description diagram.
$ idf.py -p /dev/tty.SLAB_USBtoUART flash monitor
Note: Some users might have to install the VCP driver before the device shows up on /dev/tty
.
Follow these steps to use ${app_name}.flash.py
.
First set IDF target, run set-target with one of the commands.
$ idf.py set-target esp32 $ idf.py set-target esp32c3
Execute below sequence of commands
$ export ESPPORT=/dev/tty.SLAB_USBtoUART $ export ESPBAUD=${baud_value} $ idf.py build $ idf.py flashing_script $ python ${app_name}.flash.py
The output of the test will be streamed out of the UART and can be observed with whichever tool is typically used for monitoring this (eg, minicom on linux).