blob: 621db3a19a21f74576673f93428c0fc8c3d719b1 [file] [log] [blame]
/*
*
* Copyright (c) 2021 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <lib/support/CHIPMemString.h>
#include <lib/support/logging/CHIPLogging.h>
#include <platform/ASR/DiagnosticDataProviderImpl.h>
#include <platform/DiagnosticDataProvider.h>
#include <platform/internal/CHIPDeviceLayerInternal.h>
#ifdef CFG_PLF_RV32
#include "asr_alto_boot.h"
#define duet_get_boot_type asr_get_boot_type
#elif defined CFG_PLF_DUET
#include "duet_boot.h"
#else
#include "lega_boot.h"
#define duet_get_boot_type lega_get_boot_type
#endif
#ifdef __cplusplus
extern "C" {
#endif
extern struct netif * lwip_get_netif(void);
#ifdef __cplusplus
}
#endif
namespace chip {
namespace DeviceLayer {
DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance()
{
static DiagnosticDataProviderImpl sInstance;
return sInstance;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree)
{
currentHeapFree = static_cast<uint64_t>(lega_rtos_get_free_heap_size());
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed)
{
currentHeapUsed = static_cast<uint64_t>(lega_rtos_get_total_size() - lega_rtos_get_free_heap_size());
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark)
{
currentHeapHighWatermark = static_cast<uint64_t>(lega_rtos_get_total_size() - lega_rtos_get_minimum_free_heap_size());
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount)
{
uint32_t count = 0;
CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
rebootCount = static_cast<uint16_t>(count);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime)
{
System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp();
System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime();
if (currentTime >= startTime)
{
upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count();
return CHIP_NO_ERROR;
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
uint64_t upTime = 0;
if (GetUpTime(upTime) == CHIP_NO_ERROR)
{
uint32_t totalHours = 0;
if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR)
{
/* uptime is terms of seconds and dividing it by 3600 to calculate
* totalOperationalHours in hours.
*/
VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600);
return CHIP_NO_ERROR;
}
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason)
{
uint32_t reason = duet_get_boot_type();
bootReason = BootReasonType::kUnspecified;
if (reason == UNKNOWN_RST)
{
bootReason = BootReasonType::kUnspecified;
}
else if (reason == PWR_ON_RST)
{
bootReason = BootReasonType::kPowerOnReboot;
}
else if (reason == HARDWARE_PIN_RST)
{
bootReason = BootReasonType::kBrownOutReset;
}
else if (reason == SOFTWARE_RST)
{
bootReason = BootReasonType::kSoftwareReset;
}
/*
else if (reason == WDG_RST)
{
bootReason = BootReasonType::kSoftwareWatchdogReset;
}
*/
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp)
{
NetworkInterface * ifp = new NetworkInterface();
struct netif * ifa;
ifa = lwip_get_netif();
if (ifa == NULL)
{
ChipLogError(DeviceLayer, "Failed to get network interfaces");
}
else
{
Platform::CopyString(ifp->Name, ifa->name);
ifp->name = CharSpan::fromCharString(ifp->Name);
ifp->isOperational = true;
if ((ifa->flags) & NETIF_FLAG_ETHERNET)
ifp->type = app::Clusters::GeneralDiagnostics::InterfaceTypeEnum::kEthernet;
else
ifp->type = app::Clusters::GeneralDiagnostics::InterfaceTypeEnum::kWiFi;
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
memcpy(ifp->MacAddress, ifa->hwaddr, sizeof(ifa->hwaddr));
if (0)
{
ChipLogError(DeviceLayer, "Failed to get network hardware address");
}
else
{
// Set 48-bit IEEE MAC Address
ifp->hardwareAddress = ByteSpan(ifp->MacAddress, 6);
}
if (ifa->ip_addr.u_addr.ip4.addr != 0)
{
memcpy(ifp->Ipv4AddressesBuffer[0], &(ifa->ip_addr.u_addr.ip4.addr), kMaxIPv4AddrSize);
ifp->Ipv4AddressSpans[0] = ByteSpan(ifp->Ipv4AddressesBuffer[0], kMaxIPv4AddrSize);
ifp->IPv4Addresses = chip::app::DataModel::List<chip::ByteSpan>(ifp->Ipv4AddressSpans, 1);
}
if (ifa->ip6_addr->u_addr.ip6.addr != 0)
{
memcpy(ifp->Ipv6AddressesBuffer[0], &(ifa->ip6_addr->u_addr.ip6.addr), kMaxIPv6AddrSize);
ifp->Ipv6AddressSpans[0] = ByteSpan(ifp->Ipv6AddressesBuffer[0], kMaxIPv6AddrSize);
ifp->IPv6Addresses = chip::app::DataModel::List<chip::ByteSpan>(ifp->Ipv6AddressSpans, 1);
}
}
*netifpp = ifp;
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp)
{
while (netifp)
{
NetworkInterface * del = netifp;
netifp = netifp->Next;
delete del;
}
}
/* Wi-Fi Diagnostics Cluster Support */
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(MutableByteSpan & BssId)
{
constexpr size_t bssIdSize = 6;
VerifyOrReturnError(BssId.size() >= bssIdSize, CHIP_ERROR_BUFFER_TOO_SMALL);
lega_wlan_link_stat_t link_stat;
if (lega_wlan_get_link_status(&link_stat) == 0)
{
memcpy(BssId.data(), link_stat.bssid, bssIdSize);
BssId.reduce_size(bssIdSize);
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum & securityType)
{
using app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum;
lega_wlan_ap_info_adv_t * apinfo = lega_wlan_get_associated_apinfo();
switch (apinfo->security)
{
case WLAN_SECURITY_OPEN:
securityType = SecurityTypeEnum::kNone;
break;
case WLAN_SECURITY_WEP:
securityType = SecurityTypeEnum::kWep;
break;
case WLAN_SECURITY_WPA:
securityType = SecurityTypeEnum::kWpa;
break;
case WLAN_SECURITY_WPA2:
case WLAN_SECURITY_AUTO:
securityType = SecurityTypeEnum::kWpa2;
break;
default:
securityType = SecurityTypeEnum::kUnspecified;
break;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum & wifiVersion)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber)
{
lega_wlan_link_stat_t link_stat;
channelNumber = 0;
if (lega_wlan_get_link_status(&link_stat) == 0)
{
channelNumber = link_stat.channel;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi)
{
lega_wlan_link_stat_t link_stat;
rssi = 0;
if (lega_wlan_get_link_status(&link_stat) == 0)
{
rssi = link_stat.wifi_strength;
}
return CHIP_NO_ERROR;
}
DiagnosticDataProvider & GetDiagnosticDataProviderImpl()
{
return DiagnosticDataProviderImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip