| /* |
| * |
| * Copyright (c) 2020-2023 Project CHIP Authors |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /** |
| * @file |
| * mbedTLS based implementation of CHIP crypto primitives |
| */ |
| |
| #include <crypto/CHIPCryptoPAL.h> |
| |
| #include <type_traits> |
| |
| #include <mbedtls/bignum.h> |
| #include <mbedtls/ccm.h> |
| #include <mbedtls/ctr_drbg.h> |
| #include <mbedtls/ecdh.h> |
| #include <mbedtls/ecdsa.h> |
| #include <mbedtls/ecp.h> |
| #include <mbedtls/entropy.h> |
| #include <mbedtls/error.h> |
| #include <mbedtls/hkdf.h> |
| #include <mbedtls/md.h> |
| #include <mbedtls/pkcs5.h> |
| #include <mbedtls/sha1.h> |
| #include <mbedtls/sha256.h> |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| #include <mbedtls/x509_crt.h> |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| #include <mbedtls/oid.h> |
| #include <mbedtls/x509.h> |
| #include <mbedtls/x509_csr.h> |
| |
| #include <mbedtls/pk.h> |
| #include <tinycrypt/ecc.h> |
| #include <tinycrypt/ecc_dh.h> |
| #include <tinycrypt/ecc_dsa.h> |
| |
| #include <lib/core/CHIPSafeCasts.h> |
| #include <lib/support/BufferWriter.h> |
| #include <lib/support/BytesToHex.h> |
| #include <lib/support/CHIPArgParser.hpp> |
| #include <lib/support/CodeUtils.h> |
| #include <lib/support/SafeInt.h> |
| #include <lib/support/SafePointerCast.h> |
| #include <lib/support/logging/CHIPLogging.h> |
| |
| #include <string.h> |
| |
| namespace chip { |
| namespace Crypto { |
| |
| #define MAX_ERROR_STR_LEN 128 |
| #define NUM_BYTES_IN_SHA256_HASH 32 |
| |
| // In mbedTLS 3.0.0 direct access to structure fields was replaced with using MBEDTLS_PRIVATE macro. |
| #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) |
| #define CHIP_CRYPTO_PAL_PRIVATE(x) MBEDTLS_PRIVATE(x) |
| #else |
| #define CHIP_CRYPTO_PAL_PRIVATE(x) x |
| #endif |
| |
| #if (MBEDTLS_VERSION_NUMBER >= 0x03000000 && MBEDTLS_VERSION_NUMBER < 0x03010000) |
| #define CHIP_CRYPTO_PAL_PRIVATE_X509(x) MBEDTLS_PRIVATE(x) |
| #else |
| #define CHIP_CRYPTO_PAL_PRIVATE_X509(x) x |
| #endif |
| |
| typedef struct |
| { |
| bool mInitialized; |
| bool mDRBGSeeded; |
| mbedtls_ctr_drbg_context mDRBGCtxt; |
| mbedtls_entropy_context mEntropy; |
| } EntropyContext; |
| |
| static EntropyContext gsEntropyContext; |
| |
| static void _log_mbedTLS_error(int error_code) |
| { |
| if (error_code != 0 && error_code != UECC_SUCCESS) |
| { |
| #if defined(MBEDTLS_ERROR_C) |
| char error_str[MAX_ERROR_STR_LEN]; |
| mbedtls_strerror(error_code, error_str, sizeof(error_str)); |
| ChipLogError(Crypto, "mbedTLS error: %s", error_str); |
| #else |
| // Error codes defined in 16-bit negative hex numbers. Ease lookup by printing likewise |
| ChipLogError(Crypto, "mbedTLS error: -0x%04X", -static_cast<uint16_t>(error_code)); |
| #endif |
| } |
| } |
| |
| static bool _isValidTagLength(size_t tag_length) |
| { |
| if (tag_length == 8 || tag_length == 12 || tag_length == 16) |
| { |
| return true; |
| } |
| return false; |
| } |
| |
| CHIP_ERROR AES_CCM_encrypt(const uint8_t * plaintext, size_t plaintext_length, const uint8_t * aad, size_t aad_length, |
| const Aes128KeyHandle & key, const uint8_t * nonce, size_t nonce_length, uint8_t * ciphertext, |
| uint8_t * tag, size_t tag_length) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 1; |
| |
| mbedtls_ccm_context context; |
| mbedtls_ccm_init(&context); |
| |
| VerifyOrExit(plaintext != nullptr || plaintext_length == 0, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(ciphertext != nullptr || plaintext_length == 0, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(nonce != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(nonce_length > 0, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(tag != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(_isValidTagLength(tag_length), error = CHIP_ERROR_INVALID_ARGUMENT); |
| if (aad_length > 0) |
| { |
| VerifyOrExit(aad != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); |
| } |
| |
| // multiplying by 8 to convert key from bits to byte |
| result = mbedtls_ccm_setkey(&context, MBEDTLS_CIPHER_ID_AES, key.As<Aes128KeyByteArray>(), sizeof(Aes128KeyByteArray) * 8); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| // Encrypt |
| result = mbedtls_ccm_encrypt_and_tag(&context, plaintext_length, Uint8::to_const_uchar(nonce), nonce_length, |
| Uint8::to_const_uchar(aad), aad_length, Uint8::to_const_uchar(plaintext), |
| Uint8::to_uchar(ciphertext), Uint8::to_uchar(tag), tag_length); |
| _log_mbedTLS_error(result); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| mbedtls_ccm_free(&context); |
| return error; |
| } |
| |
| CHIP_ERROR AES_CCM_decrypt(const uint8_t * ciphertext, size_t ciphertext_len, const uint8_t * aad, size_t aad_len, |
| const uint8_t * tag, size_t tag_length, const Aes128KeyHandle & key, const uint8_t * nonce, |
| size_t nonce_length, uint8_t * plaintext) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 1; |
| |
| mbedtls_ccm_context context; |
| mbedtls_ccm_init(&context); |
| |
| VerifyOrExit(plaintext != nullptr || ciphertext_len == 0, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(ciphertext != nullptr || ciphertext_len == 0, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(tag != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(_isValidTagLength(tag_length), error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(nonce != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(nonce_length > 0, error = CHIP_ERROR_INVALID_ARGUMENT); |
| if (aad_len > 0) |
| { |
| VerifyOrExit(aad != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); |
| } |
| |
| // multiplying by 8 to convert key from bits to byte |
| result = mbedtls_ccm_setkey(&context, MBEDTLS_CIPHER_ID_AES, key.As<Aes128KeyByteArray>(), sizeof(Aes128KeyByteArray) * 8); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| // Decrypt |
| result = mbedtls_ccm_auth_decrypt(&context, ciphertext_len, Uint8::to_const_uchar(nonce), nonce_length, |
| Uint8::to_const_uchar(aad), aad_len, Uint8::to_const_uchar(ciphertext), |
| Uint8::to_uchar(plaintext), Uint8::to_const_uchar(tag), tag_length); |
| _log_mbedTLS_error(result); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| mbedtls_ccm_free(&context); |
| return error; |
| } |
| |
| CHIP_ERROR Hash_SHA256(const uint8_t * data, const size_t data_length, uint8_t * out_buffer) |
| { |
| // zero data length hash is supported. |
| VerifyOrReturnError(data != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) |
| const int result = mbedtls_sha256(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer), 0); |
| #else |
| const int result = mbedtls_sha256_ret(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer), 0); |
| #endif |
| |
| VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Hash_SHA1(const uint8_t * data, const size_t data_length, uint8_t * out_buffer) |
| { |
| // zero data length hash is supported. |
| VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) |
| const int result = mbedtls_sha1(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer)); |
| #else |
| const int result = mbedtls_sha1_ret(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer)); |
| #endif |
| |
| VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| static_assert(kMAX_Hash_SHA256_Context_Size >= sizeof(mbedtls_sha256_context), |
| "kMAX_Hash_SHA256_Context_Size is too small for the size of underlying mbedtls_sha256_context"); |
| |
| static inline mbedtls_sha256_context * to_inner_hash_sha256_context(HashSHA256OpaqueContext * context) |
| { |
| return SafePointerCast<mbedtls_sha256_context *>(context); |
| } |
| |
| Hash_SHA256_stream::Hash_SHA256_stream(void) |
| { |
| mbedtls_sha256_context * context = to_inner_hash_sha256_context(&mContext); |
| mbedtls_sha256_init(context); |
| } |
| |
| Hash_SHA256_stream::~Hash_SHA256_stream(void) |
| { |
| mbedtls_sha256_context * context = to_inner_hash_sha256_context(&mContext); |
| mbedtls_sha256_free(context); |
| Clear(); |
| } |
| |
| CHIP_ERROR Hash_SHA256_stream::Begin(void) |
| { |
| mbedtls_sha256_context * const context = to_inner_hash_sha256_context(&mContext); |
| |
| #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) |
| const int result = mbedtls_sha256_starts(context, 0); |
| #else |
| const int result = mbedtls_sha256_starts_ret(context, 0); |
| #endif |
| |
| VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Hash_SHA256_stream::AddData(const ByteSpan data) |
| { |
| mbedtls_sha256_context * const context = to_inner_hash_sha256_context(&mContext); |
| |
| #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) |
| const int result = mbedtls_sha256_update(context, Uint8::to_const_uchar(data.data()), data.size()); |
| #else |
| const int result = mbedtls_sha256_update_ret(context, Uint8::to_const_uchar(data.data()), data.size()); |
| #endif |
| |
| VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Hash_SHA256_stream::GetDigest(MutableByteSpan & out_buffer) |
| { |
| mbedtls_sha256_context * context = to_inner_hash_sha256_context(&mContext); |
| |
| // Back-up context as we are about to finalize the hash to extract digest. |
| mbedtls_sha256_context previous_ctx; |
| mbedtls_sha256_init(&previous_ctx); |
| mbedtls_sha256_clone(&previous_ctx, context); |
| |
| // Pad + compute digest, then finalize context. It is restored next line to continue. |
| CHIP_ERROR result = Finish(out_buffer); |
| |
| // Restore context prior to finalization. |
| mbedtls_sha256_clone(context, &previous_ctx); |
| mbedtls_sha256_free(&previous_ctx); |
| |
| return result; |
| } |
| |
| CHIP_ERROR Hash_SHA256_stream::Finish(MutableByteSpan & out_buffer) |
| { |
| VerifyOrReturnError(out_buffer.size() >= kSHA256_Hash_Length, CHIP_ERROR_BUFFER_TOO_SMALL); |
| mbedtls_sha256_context * const context = to_inner_hash_sha256_context(&mContext); |
| |
| #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) |
| const int result = mbedtls_sha256_finish(context, Uint8::to_uchar(out_buffer.data())); |
| #else |
| const int result = mbedtls_sha256_finish_ret(context, Uint8::to_uchar(out_buffer.data())); |
| #endif |
| |
| VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); |
| out_buffer = out_buffer.SubSpan(0, kSHA256_Hash_Length); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| void Hash_SHA256_stream::Clear(void) |
| { |
| mbedtls_platform_zeroize(this, sizeof(*this)); |
| } |
| |
| CHIP_ERROR HKDF_sha::HKDF_SHA256(const uint8_t * secret, const size_t secret_length, const uint8_t * salt, const size_t salt_length, |
| const uint8_t * info, const size_t info_length, uint8_t * out_buffer, size_t out_length) |
| { |
| VerifyOrReturnError(secret != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(secret_length > 0, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| // Salt is optional |
| if (salt_length > 0) |
| { |
| VerifyOrReturnError(salt != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| } |
| |
| VerifyOrReturnError(info_length > 0, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(info != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(out_length > 0, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| const mbedtls_md_info_t * const md = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256); |
| VerifyOrReturnError(md != nullptr, CHIP_ERROR_INTERNAL); |
| |
| const int result = mbedtls_hkdf(md, Uint8::to_const_uchar(salt), salt_length, Uint8::to_const_uchar(secret), secret_length, |
| Uint8::to_const_uchar(info), info_length, Uint8::to_uchar(out_buffer), out_length); |
| _log_mbedTLS_error(result); |
| VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR HMAC_sha::HMAC_SHA256(const uint8_t * key, size_t key_length, const uint8_t * message, size_t message_length, |
| uint8_t * out_buffer, size_t out_length) |
| { |
| VerifyOrReturnError(key != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(key_length > 0, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(message != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(message_length > 0, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(out_length >= kSHA256_Hash_Length, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| const mbedtls_md_info_t * const md = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256); |
| VerifyOrReturnError(md != nullptr, CHIP_ERROR_INTERNAL); |
| |
| const int result = |
| mbedtls_md_hmac(md, Uint8::to_const_uchar(key), key_length, Uint8::to_const_uchar(message), message_length, out_buffer); |
| |
| _log_mbedTLS_error(result); |
| VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR PBKDF2_sha256::pbkdf2_sha256(const uint8_t * password, size_t plen, const uint8_t * salt, size_t slen, |
| unsigned int iteration_count, uint32_t key_length, uint8_t * output) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| const mbedtls_md_info_t * md_info; |
| mbedtls_md_context_t md_ctxt; |
| constexpr int use_hmac = 1; |
| |
| bool free_md_ctxt = false; |
| |
| VerifyOrExit(password != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(plen > 0, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(salt != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(slen >= kSpake2p_Min_PBKDF_Salt_Length, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(slen <= kSpake2p_Max_PBKDF_Salt_Length, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(key_length > 0, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(output != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); |
| |
| md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256); |
| VerifyOrExit(md_info != nullptr, error = CHIP_ERROR_INTERNAL); |
| |
| mbedtls_md_init(&md_ctxt); |
| free_md_ctxt = true; |
| |
| result = mbedtls_md_setup(&md_ctxt, md_info, use_hmac); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| result = mbedtls_pkcs5_pbkdf2_hmac(&md_ctxt, Uint8::to_const_uchar(password), plen, Uint8::to_const_uchar(salt), slen, |
| iteration_count, key_length, Uint8::to_uchar(output)); |
| |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| |
| if (free_md_ctxt) |
| { |
| mbedtls_md_free(&md_ctxt); |
| } |
| |
| return error; |
| } |
| |
| static EntropyContext * get_entropy_context() |
| { |
| if (!gsEntropyContext.mInitialized) |
| { |
| mbedtls_entropy_init(&gsEntropyContext.mEntropy); |
| mbedtls_ctr_drbg_init(&gsEntropyContext.mDRBGCtxt); |
| |
| gsEntropyContext.mInitialized = true; |
| } |
| |
| return &gsEntropyContext; |
| } |
| |
| static mbedtls_ctr_drbg_context * get_drbg_context() |
| { |
| EntropyContext * const context = get_entropy_context(); |
| |
| mbedtls_ctr_drbg_context * const drbgCtxt = &context->mDRBGCtxt; |
| |
| if (!context->mDRBGSeeded) |
| { |
| const int status = mbedtls_ctr_drbg_seed(drbgCtxt, mbedtls_entropy_func, &context->mEntropy, nullptr, 0); |
| if (status != 0) |
| { |
| _log_mbedTLS_error(status); |
| return nullptr; |
| } |
| |
| context->mDRBGSeeded = true; |
| } |
| |
| return drbgCtxt; |
| } |
| |
| CHIP_ERROR add_entropy_source(entropy_source fn_source, void * p_source, size_t threshold) |
| { |
| VerifyOrReturnError(fn_source != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| EntropyContext * const entropy_ctxt = get_entropy_context(); |
| VerifyOrReturnError(entropy_ctxt != nullptr, CHIP_ERROR_INTERNAL); |
| |
| const int result = |
| mbedtls_entropy_add_source(&entropy_ctxt->mEntropy, fn_source, p_source, threshold, MBEDTLS_ENTROPY_SOURCE_STRONG); |
| VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DRBG_get_bytes(uint8_t * out_buffer, const size_t out_length) |
| { |
| VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(out_length > 0, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| mbedtls_ctr_drbg_context * const drbg_ctxt = get_drbg_context(); |
| VerifyOrReturnError(drbg_ctxt != nullptr, CHIP_ERROR_INTERNAL); |
| |
| const int result = mbedtls_ctr_drbg_random(drbg_ctxt, Uint8::to_uchar(out_buffer), out_length); |
| VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| static int CryptoRNG(void * ctxt, uint8_t * out_buffer, size_t out_length) |
| { |
| return (chip::Crypto::DRBG_get_bytes(out_buffer, out_length) == CHIP_NO_ERROR) ? 0 : 1; |
| } |
| |
| mbedtls_ecp_group_id MapECPGroupId(SupportedECPKeyTypes keyType) |
| { |
| switch (keyType) |
| { |
| case SupportedECPKeyTypes::ECP256R1: |
| return MBEDTLS_ECP_DP_SECP256R1; |
| default: |
| return MBEDTLS_ECP_DP_NONE; |
| } |
| } |
| |
| static inline mbedtls_uecc_keypair * to_keypair(P256KeypairContext * context) |
| { |
| return SafePointerCast<mbedtls_uecc_keypair *>(context); |
| } |
| |
| static inline const mbedtls_uecc_keypair * to_const_keypair(const P256KeypairContext * context) |
| { |
| return SafePointerCast<const mbedtls_uecc_keypair *>(context); |
| } |
| |
| CHIP_ERROR P256Keypair::ECDSA_sign_msg(const uint8_t * msg, const size_t msg_length, P256ECDSASignature & out_signature) const |
| { |
| VerifyOrReturnError(mInitialized, CHIP_ERROR_UNINITIALIZED); |
| VerifyOrReturnError((msg != nullptr) && (msg_length > 0), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| uint8_t digest[kSHA256_Hash_Length]; |
| memset(&digest[0], 0, sizeof(digest)); |
| ReturnErrorOnFailure(Hash_SHA256(msg, msg_length, &digest[0])); |
| |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = UECC_FAILURE; |
| |
| const mbedtls_uecc_keypair * keypair = to_const_keypair(&mKeypair); |
| |
| result = uECC_sign(keypair->private_key, digest, sizeof(digest), out_signature.Bytes()); |
| |
| VerifyOrExit(result == UECC_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| VerifyOrExit(out_signature.SetLength(kP256_ECDSA_Signature_Length_Raw) == CHIP_NO_ERROR, error = CHIP_ERROR_INTERNAL); |
| |
| keypair = nullptr; |
| |
| exit: |
| return error; |
| } |
| |
| CHIP_ERROR P256PublicKey::ECDSA_validate_msg_signature(const uint8_t * msg, const size_t msg_length, |
| const P256ECDSASignature & signature) const |
| { |
| #if defined(MBEDTLS_ECDSA_C) |
| VerifyOrReturnError((msg != nullptr) && (msg_length > 0), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| uint8_t digest[kSHA256_Hash_Length]; |
| memset(&digest[0], 0, sizeof(digest)); |
| ReturnErrorOnFailure(Hash_SHA256(msg, msg_length, &digest[0])); |
| |
| return ECDSA_validate_hash_signature(&digest[0], sizeof(digest), signature); |
| #else |
| return CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif |
| } |
| |
| CHIP_ERROR P256PublicKey::ECDSA_validate_hash_signature(const uint8_t * hash, const size_t hash_length, |
| const P256ECDSASignature & signature) const |
| { |
| VerifyOrReturnError(hash != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(hash_length == kSHA256_Hash_Length, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(signature.Length() == kP256_ECDSA_Signature_Length_Raw, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = UECC_FAILURE; |
| |
| const uint8_t * public_key = *this; |
| |
| // Fully padded raw uncompressed points expected, first byte is always 0x04 i.e uncompressed |
| result = uECC_verify(public_key + 1, hash, hash_length, Uint8::to_const_uchar(signature.ConstBytes())); |
| VerifyOrExit(result == UECC_SUCCESS, error = CHIP_ERROR_INVALID_SIGNATURE); |
| |
| exit: |
| return error; |
| } |
| |
| CHIP_ERROR P256Keypair::ECDH_derive_secret(const P256PublicKey & remote_public_key, P256ECDHDerivedSecret & out_secret) const |
| { |
| #if defined(MBEDTLS_ECDH_C) |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| size_t secret_length = (out_secret.Length() == 0) ? out_secret.Capacity() : out_secret.Length(); |
| |
| const mbedtls_uecc_keypair * keypair = to_const_keypair(&mKeypair); |
| |
| VerifyOrExit(mInitialized, error = CHIP_ERROR_UNINITIALIZED); |
| |
| // Fully padded raw uncompressed points expected, first byte is always 0x04 i.e uncompressed |
| result = uECC_shared_secret(remote_public_key.ConstBytes() + 1, keypair->private_key, out_secret.Bytes()); |
| VerifyOrExit(result == UECC_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| SuccessOrExit(error = out_secret.SetLength(secret_length)); |
| |
| exit: |
| keypair = nullptr; |
| _log_mbedTLS_error(result); |
| return error; |
| #else |
| return CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif |
| } |
| |
| void ClearSecretData(uint8_t * buf, size_t len) |
| { |
| mbedtls_platform_zeroize(buf, len); |
| } |
| |
| // THE BELOW IS FROM `third_party/openthread/repo/third_party/mbedtls/repo/library/constant_time.c` since |
| // mbedtls_ct_memcmp is not available on Linux somehow :( |
| int mbedtls_ct_memcmp_copy(const void * a, const void * b, size_t n) |
| { |
| size_t i; |
| volatile const unsigned char * A = (volatile const unsigned char *) a; |
| volatile const unsigned char * B = (volatile const unsigned char *) b; |
| volatile unsigned char diff = 0; |
| |
| for (i = 0; i < n; i++) |
| { |
| /* Read volatile data in order before computing diff. |
| * This avoids IAR compiler warning: |
| * 'the order of volatile accesses is undefined ..' */ |
| unsigned char x = A[i], y = B[i]; |
| diff |= x ^ y; |
| } |
| |
| return ((int) diff); |
| } |
| |
| bool IsBufferContentEqualConstantTime(const void * a, const void * b, size_t n) |
| { |
| return mbedtls_ct_memcmp_copy(a, b, n) == 0; |
| } |
| |
| CHIP_ERROR P256Keypair::Initialize(ECPKeyTarget key_target) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = UECC_FAILURE; |
| |
| Clear(); |
| |
| mbedtls_uecc_keypair * keypair = to_keypair(&mKeypair); |
| |
| result = uECC_make_key(keypair->public_key, keypair->private_key); |
| VerifyOrExit(result == UECC_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| // Fully padded raw uncompressed points expected, first byte is always 0x04 i.e uncompressed |
| Uint8::to_uchar(mPublicKey)[0] = 0x04; |
| memcpy(Uint8::to_uchar(mPublicKey) + 1, keypair->public_key, 2 * NUM_ECC_BYTES); |
| |
| keypair = nullptr; |
| mInitialized = true; |
| |
| exit: |
| _log_mbedTLS_error(result); |
| return error; |
| } |
| |
| CHIP_ERROR P256Keypair::Serialize(P256SerializedKeypair & output) const |
| { |
| const mbedtls_uecc_keypair * keypair = to_const_keypair(&mKeypair); |
| size_t len = output.Length() == 0 ? output.Capacity() : output.Length(); |
| Encoding::BufferWriter bbuf(output.Bytes(), len); |
| uint8_t privkey[kP256_PrivateKey_Length]; |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| |
| bbuf.Put(mPublicKey, mPublicKey.Length()); |
| |
| VerifyOrExit(bbuf.Available() == sizeof(privkey), error = CHIP_ERROR_INTERNAL); |
| VerifyOrExit(sizeof(keypair->private_key) <= bbuf.Available(), error = CHIP_ERROR_INTERNAL); |
| |
| memcpy(privkey, keypair->private_key, sizeof(privkey)); |
| |
| bbuf.Put(privkey, sizeof(privkey)); |
| VerifyOrExit(bbuf.Fit(), error = CHIP_ERROR_BUFFER_TOO_SMALL); |
| |
| output.SetLength(bbuf.Needed()); |
| |
| exit: |
| memset(privkey, 0, sizeof(privkey)); |
| _log_mbedTLS_error(result); |
| return error; |
| } |
| |
| CHIP_ERROR P256Keypair::Deserialize(P256SerializedKeypair & input) |
| { |
| int result = 0; |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| Encoding::BufferWriter bbuf(mPublicKey, mPublicKey.Length()); |
| |
| Clear(); |
| |
| mbedtls_uecc_keypair * keypair = to_keypair(&mKeypair); |
| |
| // Fully padded raw uncompressed points expected, first byte is always 0x04 i.e uncompressed |
| memcpy(keypair->public_key, input.ConstBytes() + 1, 2 * NUM_ECC_BYTES); |
| memcpy(keypair->private_key, input.ConstBytes() + mPublicKey.Length(), NUM_ECC_BYTES); |
| |
| keypair = nullptr; |
| |
| VerifyOrExit(input.Length() == mPublicKey.Length() + kP256_PrivateKey_Length, error = CHIP_ERROR_INVALID_ARGUMENT); |
| bbuf.Put(input.ConstBytes(), mPublicKey.Length()); |
| VerifyOrExit(bbuf.Fit(), error = CHIP_ERROR_NO_MEMORY); |
| |
| mInitialized = true; |
| |
| _log_mbedTLS_error(result); |
| |
| exit: |
| return error; |
| } |
| |
| void P256Keypair::Clear() |
| { |
| if (mInitialized) |
| { |
| mbedtls_uecc_keypair * keypair = to_keypair(&mKeypair); |
| memset(keypair, 0, sizeof(mbedtls_uecc_keypair)); |
| mInitialized = false; |
| } |
| } |
| |
| P256Keypair::~P256Keypair() |
| { |
| Clear(); |
| } |
| |
| CHIP_ERROR P256Keypair::NewCertificateSigningRequest(uint8_t * out_csr, size_t & csr_length) const |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| size_t out_length; |
| |
| mbedtls_x509write_csr csr; |
| mbedtls_x509write_csr_init(&csr); |
| |
| mbedtls_pk_context pk; |
| pk.CHIP_CRYPTO_PAL_PRIVATE(pk_info) = mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY); |
| pk.CHIP_CRYPTO_PAL_PRIVATE(pk_ctx) = to_keypair(&mKeypair); |
| VerifyOrExit(pk.CHIP_CRYPTO_PAL_PRIVATE(pk_info) != nullptr, error = CHIP_ERROR_INTERNAL); |
| |
| VerifyOrExit(mInitialized, error = CHIP_ERROR_UNINITIALIZED); |
| |
| mbedtls_x509write_csr_set_key(&csr, &pk); |
| |
| mbedtls_x509write_csr_set_md_alg(&csr, MBEDTLS_MD_SHA256); |
| |
| // TODO: mbedTLS CSR parser fails if the subject name is not set (or if empty). |
| // CHIP Spec doesn't specify the subject name that can be used. |
| // Figure out the correct value and update this code. |
| result = mbedtls_x509write_csr_set_subject_name(&csr, "O=CSR"); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| result = mbedtls_x509write_csr_der(&csr, out_csr, csr_length, CryptoRNG, nullptr); |
| VerifyOrExit(result > 0, error = CHIP_ERROR_INTERNAL); |
| VerifyOrExit(CanCastTo<size_t>(result), error = CHIP_ERROR_INTERNAL); |
| |
| out_length = static_cast<size_t>(result); |
| result = 0; |
| VerifyOrExit(out_length <= csr_length, error = CHIP_ERROR_INTERNAL); |
| |
| if (csr_length != out_length) |
| { |
| // mbedTLS API writes the CSR at the end of the provided buffer. |
| // Let's move it to the start of the buffer. |
| size_t offset = csr_length - out_length; |
| memmove(out_csr, &out_csr[offset], out_length); |
| } |
| |
| csr_length = out_length; |
| |
| exit: |
| mbedtls_x509write_csr_free(&csr); |
| |
| _log_mbedTLS_error(result); |
| return error; |
| } |
| |
| CHIP_ERROR VerifyCertificateSigningRequest(const uint8_t * csr_buf, size_t csr_length, P256PublicKey & pubkey) |
| { |
| #if defined(MBEDTLS_X509_CSR_PARSE_C) |
| ReturnErrorOnFailure(VerifyCertificateSigningRequestFormat(csr_buf, csr_length)); |
| |
| // TODO: For some embedded targets, mbedTLS library doesn't have mbedtls_x509_csr_parse_der, and mbedtls_x509_csr_parse_free. |
| // Taking a step back, embedded targets likely will not process CSR requests. Adding this action item to reevaluate |
| // this if there's a need for this processing for embedded targets. |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| size_t pubkey_size = 0; |
| |
| mbedtls_ecp_keypair * keypair = nullptr; |
| |
| P256ECDSASignature signature; |
| MutableByteSpan out_raw_sig_span(signature.Bytes(), signature.Capacity()); |
| |
| mbedtls_x509_csr csr; |
| mbedtls_x509_csr_init(&csr); |
| |
| int result = mbedtls_x509_csr_parse_der(&csr, csr_buf, csr_length); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| // Verify the signature algorithm and public key type |
| VerifyOrExit(csr.CHIP_CRYPTO_PAL_PRIVATE(sig_md) == MBEDTLS_MD_SHA256, error = CHIP_ERROR_UNSUPPORTED_SIGNATURE_TYPE); |
| VerifyOrExit(csr.CHIP_CRYPTO_PAL_PRIVATE(sig_pk) == MBEDTLS_PK_ECDSA, error = CHIP_ERROR_WRONG_KEY_TYPE); |
| |
| keypair = mbedtls_pk_ec(csr.CHIP_CRYPTO_PAL_PRIVATE_X509(pk)); |
| |
| // Copy the public key from the CSR |
| result = mbedtls_ecp_point_write_binary(&keypair->CHIP_CRYPTO_PAL_PRIVATE(grp), &keypair->CHIP_CRYPTO_PAL_PRIVATE(Q), |
| MBEDTLS_ECP_PF_UNCOMPRESSED, &pubkey_size, Uint8::to_uchar(pubkey), pubkey.Length()); |
| |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| VerifyOrExit(pubkey_size == pubkey.Length(), error = CHIP_ERROR_INTERNAL); |
| |
| // Convert DER signature to raw signature |
| error = EcdsaAsn1SignatureToRaw(kP256_FE_Length, |
| ByteSpan{ csr.CHIP_CRYPTO_PAL_PRIVATE(sig).CHIP_CRYPTO_PAL_PRIVATE_X509(p), |
| csr.CHIP_CRYPTO_PAL_PRIVATE(sig).CHIP_CRYPTO_PAL_PRIVATE_X509(len) }, |
| out_raw_sig_span); |
| |
| VerifyOrExit(error == CHIP_NO_ERROR, error = CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrExit(out_raw_sig_span.size() == (kP256_FE_Length * 2), error = CHIP_ERROR_INTERNAL); |
| signature.SetLength(out_raw_sig_span.size()); |
| |
| // Verify the signature using the public key |
| error = pubkey.ECDSA_validate_msg_signature(csr.CHIP_CRYPTO_PAL_PRIVATE_X509(cri).CHIP_CRYPTO_PAL_PRIVATE_X509(p), |
| csr.CHIP_CRYPTO_PAL_PRIVATE_X509(cri).CHIP_CRYPTO_PAL_PRIVATE_X509(len), signature); |
| |
| SuccessOrExit(error); |
| |
| exit: |
| mbedtls_x509_csr_free(&csr); |
| _log_mbedTLS_error(result); |
| return error; |
| #else |
| ChipLogError(Crypto, "MBEDTLS_X509_CSR_PARSE_C is not enabled. CSR cannot be parsed"); |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| #endif |
| } |
| |
| typedef struct Spake2p_Context |
| { |
| const mbedtls_md_info_t * md_info; |
| uECC_word_t M[2 * NUM_ECC_WORDS]; |
| uECC_word_t N[2 * NUM_ECC_WORDS]; |
| uECC_word_t X[2 * NUM_ECC_WORDS]; |
| uECC_word_t Y[2 * NUM_ECC_WORDS]; |
| uECC_word_t L[2 * NUM_ECC_WORDS]; |
| uECC_word_t Z[2 * NUM_ECC_WORDS]; |
| uECC_word_t V[2 * NUM_ECC_WORDS]; |
| |
| uECC_word_t w0[NUM_ECC_WORDS]; |
| uECC_word_t w1[NUM_ECC_WORDS]; |
| uECC_word_t xy[NUM_ECC_WORDS]; |
| uECC_word_t tempbn[NUM_ECC_WORDS]; |
| } Spake2p_Context; |
| |
| static inline Spake2p_Context * to_inner_spake2p_context(Spake2pOpaqueContext * context) |
| { |
| return SafePointerCast<Spake2p_Context *>(context); |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::InitInternal(void) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| |
| memset(context, 0, sizeof(Spake2p_Context)); |
| |
| M = context->M; |
| N = context->N; |
| X = context->X; |
| Y = context->Y; |
| L = context->L; |
| V = context->V; |
| Z = context->Z; |
| |
| w0 = context->w0; |
| w1 = context->w1; |
| xy = context->xy; |
| tempbn = context->tempbn; |
| |
| G = curve_G; |
| |
| return error; |
| } |
| |
| void Spake2p_P256_SHA256_HKDF_HMAC::Clear() |
| { |
| VerifyOrReturn(state != CHIP_SPAKE2P_STATE::PREINIT); |
| |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| memset(&context->M, 0, 2 * NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| memset(&context->N, 0, 2 * NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| memset(&context->X, 0, 2 * NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| memset(&context->Y, 0, 2 * NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| memset(&context->L, 0, 2 * NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| memset(&context->Z, 0, 2 * NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| memset(&context->V, 0, 2 * NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| |
| memset(&context->w0, 0, NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| memset(&context->w1, 0, NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| memset(&context->xy, 0, NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| memset(&context->tempbn, 0, NUM_ECC_WORDS * sizeof(uECC_word_t)); |
| |
| G = NULL; |
| state = CHIP_SPAKE2P_STATE::PREINIT; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::Mac(const uint8_t * key, size_t key_len, const uint8_t * in, size_t in_len, |
| MutableByteSpan & out_span) |
| { |
| HMAC_sha hmac; |
| VerifyOrReturnError(out_span.size() >= kSHA256_Hash_Length, CHIP_ERROR_BUFFER_TOO_SMALL); |
| ReturnErrorOnFailure(hmac.HMAC_SHA256(key, key_len, in, in_len, out_span.data(), kSHA256_Hash_Length)); |
| out_span = out_span.SubSpan(0, kSHA256_Hash_Length); |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::MacVerify(const uint8_t * key, size_t key_len, const uint8_t * mac, size_t mac_len, |
| const uint8_t * in, size_t in_len) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| |
| uint8_t computed_mac[kSHA256_Hash_Length]; |
| MutableByteSpan computed_mac_span{ computed_mac }; |
| VerifyOrExit(mac_len == kSHA256_Hash_Length, error = CHIP_ERROR_INVALID_ARGUMENT); |
| |
| SuccessOrExit(error = Mac(key, key_len, in, in_len, computed_mac_span)); |
| VerifyOrExit(computed_mac_span.size() == mac_len, error = CHIP_ERROR_INTERNAL); |
| |
| VerifyOrExit(IsBufferContentEqualConstantTime(mac, computed_mac, kSHA256_Hash_Length), error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| return error; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FELoad(const uint8_t * in, size_t in_len, void * fe) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| |
| uECC_word_t tmp[2 * NUM_ECC_WORDS] = { 0 }; |
| uECC_vli_bytesToNative(tmp, in, NUM_ECC_BYTES); |
| |
| uECC_vli_mmod((uECC_word_t *) fe, tmp, curve_n); |
| |
| return error; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEWrite(const void * fe, uint8_t * out, size_t out_len) |
| { |
| (void) out_len; |
| uECC_vli_nativeToBytes(out, NUM_ECC_BYTES, (const unsigned int *) fe); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEGenerate(void * fe) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| |
| mbedtls_uecc_keypair keypair; |
| |
| result = UECC_FAILURE; |
| |
| result = uECC_make_key(keypair.public_key, keypair.private_key); |
| VerifyOrExit(result == UECC_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| uECC_vli_bytesToNative((uECC_word_t *) fe, keypair.private_key, NUM_ECC_BYTES); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| return error; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEMul(void * fer, const void * fe1, const void * fe2) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| |
| uECC_vli_modMult((uECC_word_t *) fer, (const uECC_word_t *) fe1, (const uECC_word_t *) fe2, (const uECC_word_t *) curve_n); |
| |
| return error; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointLoad(const uint8_t * in, size_t in_len, void * R) |
| { |
| uint8_t tmp[2 * NUM_ECC_BYTES]; |
| |
| // Fully padded raw uncompressed points expected, first byte is always 0x04 i.e uncompressed |
| memcpy(tmp, in + 1, 2 * NUM_ECC_BYTES); |
| |
| uECC_vli_bytesToNative((uECC_word_t *) R, tmp, NUM_ECC_BYTES); |
| uECC_vli_bytesToNative((uECC_word_t *) R + NUM_ECC_WORDS, tmp + NUM_ECC_BYTES, NUM_ECC_BYTES); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointWrite(const void * R, uint8_t * out, size_t out_len) |
| { |
| memset(out, 0, out_len); |
| |
| // Fully padded raw uncompressed points expected, first byte is always 0x04 i.e uncompressed |
| out[0] = 0x04; |
| uECC_vli_nativeToBytes(out + 1, NUM_ECC_BYTES, (uECC_word_t *) R); |
| uECC_vli_nativeToBytes(out + NUM_ECC_BYTES + 1, NUM_ECC_BYTES, (uECC_word_t *) R + NUM_ECC_WORDS); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointMul(void * R, const void * P1, const void * fe1) |
| { |
| |
| if (EccPoint_mult_safer((uECC_word_t *) R, (const uECC_word_t *) P1, (const uECC_word_t *) fe1) != UECC_SUCCESS) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointAddMul(void * R, const void * P1, const void * fe1, const void * P2, |
| const void * fe2) |
| { |
| uECC_word_t R1[2 * NUM_ECC_WORDS]; |
| uECC_word_t R2[2 * NUM_ECC_WORDS]; |
| uECC_word_t z[NUM_ECC_WORDS]; |
| |
| if (EccPoint_mult_safer(R1, (const uECC_word_t *) P1, (const uECC_word_t *) fe1) != UECC_SUCCESS) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| if (EccPoint_mult_safer(R2, (const uECC_word_t *) P2, (const uECC_word_t *) fe2) != UECC_SUCCESS) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| uECC_vli_modSub(z, R2, R1, curve_p); |
| XYcZ_add(R1, R1 + NUM_ECC_WORDS, R2, R2 + NUM_ECC_WORDS); |
| uECC_vli_modInv(z, z, curve_p); |
| apply_z(R2, R2 + NUM_ECC_WORDS, z); |
| |
| memcpy((uECC_word_t *) R, R2, 2 * NUM_ECC_BYTES); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointInvert(void * R) |
| { |
| uECC_word_t tmp[NUM_ECC_WORDS] = { 0 }; |
| |
| uECC_vli_sub(tmp, curve_p, (uECC_word_t *) R + NUM_ECC_WORDS); |
| memcpy((uECC_word_t *) R + NUM_ECC_WORDS, tmp, NUM_ECC_BYTES); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointCofactorMul(void * R) |
| { |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::ComputeL(uint8_t * Lout, size_t * L_len, const uint8_t * w1in, size_t w1in_len) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| |
| result = UECC_SUCCESS; |
| uECC_word_t tmp[2 * NUM_ECC_WORDS]; |
| uECC_word_t w1_bn[NUM_ECC_WORDS]; |
| uECC_word_t L_tmp[2 * NUM_ECC_WORDS]; |
| |
| uECC_vli_bytesToNative(tmp, w1in, NUM_ECC_BYTES); |
| |
| uECC_vli_mmod(w1_bn, tmp, curve_n); |
| |
| result = EccPoint_mult_safer(L_tmp, curve_G, w1_bn); |
| VerifyOrExit(result == UECC_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| // Fully padded raw uncompressed points expected, first byte is always 0x04 i.e uncompressed |
| Lout[0] = 0x04; |
| uECC_vli_nativeToBytes(Lout + 1, NUM_ECC_BYTES, L_tmp); |
| uECC_vli_nativeToBytes(Lout + NUM_ECC_BYTES + 1, NUM_ECC_BYTES, L_tmp + NUM_ECC_WORDS); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| |
| return error; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointIsValid(void * R) |
| { |
| if (uECC_valid_point((const uECC_word_t *) R) != 0) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| namespace { |
| |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| bool IsTimeGreaterThanEqual(const mbedtls_x509_time * const timeA, const mbedtls_x509_time * const timeB) |
| { |
| |
| // checks if two values are different and if yes, then returns first > second. |
| #define RETURN_STRICTLY_GREATER_IF_DIFFERENT(component) \ |
| { \ |
| auto valueA = timeA->CHIP_CRYPTO_PAL_PRIVATE_X509(component); \ |
| auto valueB = timeB->CHIP_CRYPTO_PAL_PRIVATE_X509(component); \ |
| \ |
| if (valueA != valueB) \ |
| { \ |
| return valueA > valueB; \ |
| } \ |
| } |
| |
| RETURN_STRICTLY_GREATER_IF_DIFFERENT(year); |
| RETURN_STRICTLY_GREATER_IF_DIFFERENT(mon); |
| RETURN_STRICTLY_GREATER_IF_DIFFERENT(day); |
| RETURN_STRICTLY_GREATER_IF_DIFFERENT(hour); |
| RETURN_STRICTLY_GREATER_IF_DIFFERENT(min); |
| RETURN_STRICTLY_GREATER_IF_DIFFERENT(sec); |
| |
| // all above are equal |
| return true; |
| } |
| |
| CHIP_ERROR IsCertificateValidAtIssuance(const mbedtls_x509_crt * candidateCertificate, const mbedtls_x509_crt * issuerCertificate) |
| { |
| mbedtls_x509_time candidateNotBeforeTime = candidateCertificate->CHIP_CRYPTO_PAL_PRIVATE_X509(valid_from); |
| mbedtls_x509_time issuerNotBeforeTime = issuerCertificate->CHIP_CRYPTO_PAL_PRIVATE_X509(valid_from); |
| mbedtls_x509_time issuerNotAfterTime = issuerCertificate->CHIP_CRYPTO_PAL_PRIVATE_X509(valid_to); |
| |
| // check if candidateCertificate is issued at or after issuerCertificate's notBefore timestamp |
| VerifyOrReturnError(IsTimeGreaterThanEqual(&candidateNotBeforeTime, &issuerNotBeforeTime), CHIP_ERROR_CERT_EXPIRED); |
| |
| // check if candidateCertificate is issued at or before issuerCertificate's notAfter timestamp |
| VerifyOrReturnError(IsTimeGreaterThanEqual(&issuerNotAfterTime, &candidateNotBeforeTime), CHIP_ERROR_CERT_EXPIRED); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| int CallbackForCustomValidityCheck(void * data, mbedtls_x509_crt * crt, int depth, uint32_t * flags) |
| { |
| mbedtls_x509_crt * leafCert = reinterpret_cast<mbedtls_x509_crt *>(data); |
| mbedtls_x509_crt * issuerCert = crt; |
| |
| // Ignore any time validy error performed by the standard mbedTLS code. |
| *flags &= ~(static_cast<uint32_t>(MBEDTLS_X509_BADCERT_EXPIRED | MBEDTLS_X509_BADCERT_FUTURE)); |
| |
| // Verify that the leaf certificate has a notBefore time valid within the validity period of the issuerCertificate. |
| // Note that this callback is invoked for each certificate in the chain. |
| if (IsCertificateValidAtIssuance(leafCert, issuerCert) != CHIP_NO_ERROR) |
| { |
| return MBEDTLS_ERR_X509_INVALID_DATE; |
| } |
| |
| return 0; |
| } |
| |
| constexpr uint8_t sOID_AttributeType_CommonName[] = { 0x55, 0x04, 0x03 }; |
| constexpr uint8_t sOID_AttributeType_MatterVendorId[] = { 0x2B, 0x06, 0x01, 0x04, 0x01, 0x82, 0xA2, 0x7C, 0x02, 0x01 }; |
| constexpr uint8_t sOID_AttributeType_MatterProductId[] = { 0x2B, 0x06, 0x01, 0x04, 0x01, 0x82, 0xA2, 0x7C, 0x02, 0x02 }; |
| constexpr uint8_t sOID_SigAlgo_ECDSAWithSHA256[] = { 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x03, 0x02 }; |
| constexpr uint8_t sOID_Extension_BasicConstraints[] = { 0x55, 0x1D, 0x13 }; |
| constexpr uint8_t sOID_Extension_KeyUsage[] = { 0x55, 0x1D, 0x0F }; |
| constexpr uint8_t sOID_Extension_SubjectKeyIdentifier[] = { 0x55, 0x1D, 0x0E }; |
| constexpr uint8_t sOID_Extension_AuthorityKeyIdentifier[] = { 0x55, 0x1D, 0x23 }; |
| constexpr uint8_t sOID_Extension_CRLDistributionPoint[] = { 0x55, 0x1D, 0x1F }; |
| |
| /** |
| * Compares an mbedtls_asn1_buf structure (oidBuf) to a reference OID represented as uint8_t array (oid). |
| */ |
| #define OID_CMP(oid, oidBuf) \ |
| ((MBEDTLS_ASN1_OID == (oidBuf).CHIP_CRYPTO_PAL_PRIVATE_X509(tag)) && \ |
| (sizeof(oid) == (oidBuf).CHIP_CRYPTO_PAL_PRIVATE_X509(len)) && \ |
| (memcmp((oid), (oidBuf).CHIP_CRYPTO_PAL_PRIVATE_X509(p), (oidBuf).CHIP_CRYPTO_PAL_PRIVATE_X509(len)) == 0)) |
| |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| } // anonymous namespace |
| |
| CHIP_ERROR VerifyAttestationCertificateFormat(const ByteSpan & cert, AttestationCertType certType) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| mbedtls_x509_crt mbed_cert; |
| unsigned char * p = nullptr; |
| const unsigned char * end = nullptr; |
| size_t len = 0; |
| bool extBasicPresent = false; |
| bool extKeyUsagePresent = false; |
| |
| VerifyOrReturnError(!cert.empty(), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| mbedtls_x509_crt_init(&mbed_cert); |
| |
| result = mbedtls_x509_crt_parse(&mbed_cert, Uint8::to_const_uchar(cert.data()), cert.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| // "version" value is 1 higher than the actual encoded value. |
| VerifyOrExit(mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(version) - 1 == 2, error = CHIP_ERROR_INTERNAL); |
| |
| // Verify signature algorithms is ECDSA with SHA256. |
| VerifyOrExit(OID_CMP(sOID_SigAlgo_ECDSAWithSHA256, mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(sig_oid)), |
| error = CHIP_ERROR_INTERNAL); |
| |
| // Verify public key presence and format. |
| { |
| Crypto::P256PublicKey pubkey; |
| SuccessOrExit(error = ExtractPubkeyFromX509Cert(cert, pubkey)); |
| } |
| |
| p = mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(p); |
| end = p + mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(len); |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| while (p < end) |
| { |
| mbedtls_x509_buf extOID = { 0, 0, nullptr }; |
| int extCritical = 0; |
| |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| /* Get extension ID */ |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OID); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| extOID.CHIP_CRYPTO_PAL_PRIVATE_X509(tag) = MBEDTLS_ASN1_OID; |
| extOID.CHIP_CRYPTO_PAL_PRIVATE_X509(len) = len; |
| extOID.CHIP_CRYPTO_PAL_PRIVATE_X509(p) = p; |
| p += len; |
| |
| /* Get optional critical */ |
| result = mbedtls_asn1_get_bool(&p, end, &extCritical); |
| VerifyOrExit(result == 0 || result == MBEDTLS_ERR_ASN1_UNEXPECTED_TAG, error = CHIP_ERROR_INTERNAL); |
| |
| /* Data should be octet string type */ |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| if (OID_CMP(sOID_Extension_BasicConstraints, extOID)) |
| { |
| int isCA = 0; |
| int pathLen = -1; |
| |
| VerifyOrExit(extCritical, error = CHIP_ERROR_INTERNAL); |
| extBasicPresent = true; |
| |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| if (len > 0) |
| { |
| unsigned char * seqStart = p; |
| result = mbedtls_asn1_get_bool(&p, end, &isCA); |
| VerifyOrExit(result == 0 || result == MBEDTLS_ERR_ASN1_UNEXPECTED_TAG, error = CHIP_ERROR_INTERNAL); |
| |
| // Check if pathLen is there by validating if the cursor didn't get to the end of |
| // of the internal SEQUENCE for the basic constraints encapsulation. |
| // Missing pathLen optional tag will leave pathLen == -1 for following checks. |
| bool hasPathLen = (p != (seqStart + len)); |
| if (hasPathLen) |
| { |
| // Extract pathLen value, making sure it's a valid format. |
| result = mbedtls_asn1_get_int(&p, end, &pathLen); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| } |
| } |
| |
| if (certType == AttestationCertType::kDAC) |
| { |
| VerifyOrExit(!isCA && pathLen == -1, error = CHIP_ERROR_INTERNAL); |
| } |
| else if (certType == AttestationCertType::kPAI) |
| { |
| VerifyOrExit(isCA && pathLen == 0, error = CHIP_ERROR_INTERNAL); |
| } |
| else |
| { |
| // For PAA, pathlen must be absent or equal to 1 (see Matter 1.1 spec 6.2.2.5) |
| VerifyOrExit(isCA && (pathLen == -1 || pathLen == 1), error = CHIP_ERROR_INTERNAL); |
| } |
| } |
| else if (OID_CMP(sOID_Extension_KeyUsage, extOID)) |
| { |
| mbedtls_x509_bitstring bs = { 0, 0, nullptr }; |
| unsigned int keyUsage = 0; |
| |
| VerifyOrExit(extCritical, error = CHIP_ERROR_INTERNAL); |
| extKeyUsagePresent = true; |
| |
| result = mbedtls_asn1_get_bitstring(&p, p + len, &bs); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| for (size_t i = 0; i < bs.CHIP_CRYPTO_PAL_PRIVATE_X509(len) && i < sizeof(unsigned int); i++) |
| { |
| keyUsage |= static_cast<unsigned int>(bs.CHIP_CRYPTO_PAL_PRIVATE_X509(p)[i]) << (8 * i); |
| } |
| |
| if (certType == AttestationCertType::kDAC) |
| { |
| // SHALL only have the digitalSignature bit set. |
| VerifyOrExit(keyUsage == MBEDTLS_X509_KU_DIGITAL_SIGNATURE, error = CHIP_ERROR_INTERNAL); |
| } |
| else |
| { |
| bool keyCertSignFlag = keyUsage & MBEDTLS_X509_KU_KEY_CERT_SIGN; |
| bool crlSignFlag = keyUsage & MBEDTLS_X509_KU_CRL_SIGN; |
| bool otherFlags = |
| keyUsage & ~(MBEDTLS_X509_KU_CRL_SIGN | MBEDTLS_X509_KU_KEY_CERT_SIGN | MBEDTLS_X509_KU_DIGITAL_SIGNATURE); |
| VerifyOrExit(keyCertSignFlag && crlSignFlag && !otherFlags, error = CHIP_ERROR_INTERNAL); |
| } |
| } |
| else |
| { |
| p += len; |
| } |
| } |
| |
| // Verify basic and key usage extensions are present. |
| VerifyOrExit(extBasicPresent && extKeyUsagePresent, error = CHIP_ERROR_INTERNAL); |
| |
| // Verify that SKID and AKID extensions are present. |
| { |
| uint8_t kidBuf[kSubjectKeyIdentifierLength]; |
| MutableByteSpan kid(kidBuf); |
| SuccessOrExit(error = ExtractSKIDFromX509Cert(cert, kid)); |
| if (certType == AttestationCertType::kDAC || certType == AttestationCertType::kPAI) |
| { |
| // Mandatory extension for DAC and PAI certs. |
| SuccessOrExit(error = ExtractAKIDFromX509Cert(cert, kid)); |
| } |
| } |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_x509_crt_free(&mbed_cert); |
| |
| #else |
| (void) cert; |
| (void) certType; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| |
| CHIP_ERROR ValidateCertificateChain(const uint8_t * rootCertificate, size_t rootCertificateLen, const uint8_t * caCertificate, |
| size_t caCertificateLen, const uint8_t * leafCertificate, size_t leafCertificateLen, |
| CertificateChainValidationResult & result) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| mbedtls_x509_crt certChain; |
| mbedtls_x509_crt rootCert; |
| int mbedResult; |
| uint32_t flags = 0; |
| |
| result = CertificateChainValidationResult::kInternalFrameworkError; |
| |
| VerifyOrReturnError(rootCertificate != nullptr && rootCertificateLen != 0, |
| (result = CertificateChainValidationResult::kRootArgumentInvalid, CHIP_ERROR_INVALID_ARGUMENT)); |
| VerifyOrReturnError(leafCertificate != nullptr && leafCertificateLen != 0, |
| (result = CertificateChainValidationResult::kLeafArgumentInvalid, CHIP_ERROR_INVALID_ARGUMENT)); |
| |
| mbedtls_x509_crt_init(&certChain); |
| mbedtls_x509_crt_init(&rootCert); |
| |
| /* Start of chain */ |
| mbedResult = mbedtls_x509_crt_parse(&certChain, Uint8::to_const_uchar(leafCertificate), leafCertificateLen); |
| VerifyOrExit(mbedResult == 0, (result = CertificateChainValidationResult::kLeafFormatInvalid, error = CHIP_ERROR_INTERNAL)); |
| |
| /* Add the intermediate to the chain, if present */ |
| if (caCertificate != nullptr && caCertificateLen > 0) |
| { |
| mbedResult = mbedtls_x509_crt_parse(&certChain, Uint8::to_const_uchar(caCertificate), caCertificateLen); |
| VerifyOrExit(mbedResult == 0, (result = CertificateChainValidationResult::kICAFormatInvalid, error = CHIP_ERROR_INTERNAL)); |
| } |
| |
| /* Parse the root cert */ |
| mbedResult = mbedtls_x509_crt_parse(&rootCert, Uint8::to_const_uchar(rootCertificate), rootCertificateLen); |
| VerifyOrExit(mbedResult == 0, (result = CertificateChainValidationResult::kRootFormatInvalid, error = CHIP_ERROR_INTERNAL)); |
| |
| /* Verify the chain against the root */ |
| mbedResult = |
| mbedtls_x509_crt_verify(&certChain, &rootCert, nullptr, nullptr, &flags, CallbackForCustomValidityCheck, &certChain); |
| |
| switch (mbedResult) |
| { |
| case 0: |
| VerifyOrExit(flags == 0, (result = CertificateChainValidationResult::kInternalFrameworkError, error = CHIP_ERROR_INTERNAL)); |
| result = CertificateChainValidationResult::kSuccess; |
| break; |
| case MBEDTLS_ERR_X509_INVALID_DATE: |
| case MBEDTLS_ERR_X509_CERT_VERIFY_FAILED: |
| result = CertificateChainValidationResult::kChainInvalid; |
| error = CHIP_ERROR_CERT_NOT_TRUSTED; |
| break; |
| default: |
| result = CertificateChainValidationResult::kInternalFrameworkError; |
| error = CHIP_ERROR_INTERNAL; |
| break; |
| } |
| |
| exit: |
| _log_mbedTLS_error(mbedResult); |
| mbedtls_x509_crt_free(&certChain); |
| mbedtls_x509_crt_free(&rootCert); |
| |
| #else |
| (void) rootCertificate; |
| (void) rootCertificateLen; |
| (void) caCertificate; |
| (void) caCertificateLen; |
| (void) leafCertificate; |
| (void) leafCertificateLen; |
| (void) result; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| |
| CHIP_ERROR IsCertificateValidAtIssuance(const ByteSpan & candidateCertificate, const ByteSpan & issuerCertificate) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| mbedtls_x509_crt mbedCandidateCertificate; |
| mbedtls_x509_crt mbedIssuerCertificate; |
| int result; |
| |
| VerifyOrReturnError(!candidateCertificate.empty() && !issuerCertificate.empty(), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| mbedtls_x509_crt_init(&mbedCandidateCertificate); |
| mbedtls_x509_crt_init(&mbedIssuerCertificate); |
| |
| result = mbedtls_x509_crt_parse(&mbedCandidateCertificate, Uint8::to_const_uchar(candidateCertificate.data()), |
| candidateCertificate.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| result = |
| mbedtls_x509_crt_parse(&mbedIssuerCertificate, Uint8::to_const_uchar(issuerCertificate.data()), issuerCertificate.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| // Verify that the candidateCertificate has a notBefore time valid within the validity period of the issuerCertificate. |
| SuccessOrExit(error = IsCertificateValidAtIssuance(&mbedCandidateCertificate, &mbedIssuerCertificate)); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_x509_crt_free(&mbedCandidateCertificate); |
| mbedtls_x509_crt_free(&mbedIssuerCertificate); |
| |
| #else |
| (void) candidateCertificate; |
| (void) issuerCertificate; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| |
| CHIP_ERROR IsCertificateValidAtCurrentTime(const ByteSpan & certificate) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| mbedtls_x509_crt mbedCertificate; |
| int result; |
| |
| VerifyOrReturnError(!certificate.empty(), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| mbedtls_x509_crt_init(&mbedCertificate); |
| |
| result = mbedtls_x509_crt_parse(&mbedCertificate, Uint8::to_const_uchar(certificate.data()), certificate.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| // check if certificate's notBefore timestamp is earlier than or equal to current time. |
| result = mbedtls_x509_time_is_past(&mbedCertificate.CHIP_CRYPTO_PAL_PRIVATE_X509(valid_from)); |
| VerifyOrExit(result == 1, error = CHIP_ERROR_CERT_EXPIRED); |
| |
| // check if certificate's notAfter timestamp is later than current time. |
| result = mbedtls_x509_time_is_future(&mbedCertificate.CHIP_CRYPTO_PAL_PRIVATE_X509(valid_to)); |
| VerifyOrExit(result == 1, error = CHIP_ERROR_CERT_EXPIRED); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_x509_crt_free(&mbedCertificate); |
| |
| #else |
| (void) certificate; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| |
| CHIP_ERROR ExtractPubkeyFromX509Cert(const ByteSpan & certificate, Crypto::P256PublicKey & pubkey) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| mbedtls_x509_crt mbed_cert; |
| mbedtls_uecc_keypair * keypair = nullptr; |
| |
| mbedtls_x509_crt_init(&mbed_cert); |
| |
| int result = mbedtls_x509_crt_parse(&mbed_cert, Uint8::to_const_uchar(certificate.data()), certificate.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| VerifyOrExit(mbedtls_pk_get_type(&(mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(pk))) == MBEDTLS_PK_ECKEY, |
| error = CHIP_ERROR_INVALID_ARGUMENT); |
| |
| keypair = mbedtls_pk_uecc(mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(pk)); |
| Uint8::to_uchar(pubkey)[0] = 0x04; // uncompressed type |
| memcpy(Uint8::to_uchar(pubkey) + 1, keypair->public_key, 2 * NUM_ECC_BYTES); |
| |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_x509_crt_free(&mbed_cert); |
| |
| #else |
| (void) certificate; |
| (void) pubkey; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| |
| namespace { |
| |
| CHIP_ERROR ExtractKIDFromX509Cert(bool extractSKID, const ByteSpan & certificate, MutableByteSpan & kid) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_ERROR_NOT_FOUND; |
| mbedtls_x509_crt mbed_cert; |
| unsigned char * p = nullptr; |
| const unsigned char * end = nullptr; |
| size_t len = 0; |
| |
| mbedtls_x509_crt_init(&mbed_cert); |
| |
| int result = mbedtls_x509_crt_parse(&mbed_cert, Uint8::to_const_uchar(certificate.data()), certificate.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| // TODO: The mbedTLS team is working on supporting SKID and AKID extensions processing. |
| // Once it is supported, this code should be updated. |
| |
| p = mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(p); |
| end = mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(p) + |
| mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(len); |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| while (p < end) |
| { |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OID); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| mbedtls_x509_buf extOID = { MBEDTLS_ASN1_OID, len, p }; |
| bool extractCurrentExtSKID = extractSKID && OID_CMP(sOID_Extension_SubjectKeyIdentifier, extOID); |
| bool extractCurrentExtAKID = !extractSKID && OID_CMP(sOID_Extension_AuthorityKeyIdentifier, extOID); |
| p += len; |
| |
| int is_critical = 0; |
| result = mbedtls_asn1_get_bool(&p, end, &is_critical); |
| VerifyOrExit(result == 0 || result == MBEDTLS_ERR_ASN1_UNEXPECTED_TAG, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| if (extractCurrentExtSKID || extractCurrentExtAKID) |
| { |
| if (extractCurrentExtSKID) |
| { |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| } |
| else |
| { |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONTEXT_SPECIFIC); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| // Other optional fields, authorityCertIssuer and authorityCertSerialNumber, |
| // will be skipped if present. |
| } |
| VerifyOrExit(len == kSubjectKeyIdentifierLength, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| VerifyOrExit(len <= kid.size(), error = CHIP_ERROR_BUFFER_TOO_SMALL); |
| memcpy(kid.data(), p, len); |
| if (kid.size() > len) |
| { |
| kid.reduce_size(len); |
| } |
| ExitNow(error = CHIP_NO_ERROR); |
| break; |
| } |
| p += len; |
| } |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_x509_crt_free(&mbed_cert); |
| |
| #else |
| (void) certificate; |
| (void) kid; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| |
| } // namespace |
| |
| CHIP_ERROR ExtractSKIDFromX509Cert(const ByteSpan & certificate, MutableByteSpan & skid) |
| { |
| return ExtractKIDFromX509Cert(true, certificate, skid); |
| } |
| |
| CHIP_ERROR ExtractAKIDFromX509Cert(const ByteSpan & certificate, MutableByteSpan & akid) |
| { |
| return ExtractKIDFromX509Cert(false, certificate, akid); |
| } |
| |
| CHIP_ERROR ExtractCRLDistributionPointURIFromX509Cert(const ByteSpan & certificate, MutableCharSpan & cdpurl) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_ERROR_NOT_FOUND; |
| mbedtls_x509_crt mbed_cert; |
| unsigned char * p = nullptr; |
| const unsigned char * end = nullptr; |
| size_t len = 0; |
| size_t cdpExtCount = 0; |
| |
| VerifyOrReturnError(!certificate.empty() && CanCastTo<long>(certificate.size()), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| mbedtls_x509_crt_init(&mbed_cert); |
| |
| int result = mbedtls_x509_crt_parse(&mbed_cert, Uint8::to_const_uchar(certificate.data()), certificate.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| p = mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(p); |
| end = mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(p) + |
| mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(len); |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| while (p < end) |
| { |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OID); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| mbedtls_x509_buf extOID = { MBEDTLS_ASN1_OID, len, p }; |
| bool isCurrentExtCDP = OID_CMP(sOID_Extension_CRLDistributionPoint, extOID); |
| p += len; |
| |
| int is_critical = 0; |
| result = mbedtls_asn1_get_bool(&p, end, &is_critical); |
| VerifyOrExit(result == 0 || result == MBEDTLS_ERR_ASN1_UNEXPECTED_TAG, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| unsigned char * end_of_ext = p + len; |
| |
| if (isCurrentExtCDP) |
| { |
| // Only one CRL Distribution Point Extension is allowed. |
| cdpExtCount++; |
| VerifyOrExit(cdpExtCount <= 1, error = CHIP_ERROR_NOT_FOUND); |
| |
| // CRL Distribution Point Extension is encoded as a sequence of DistributionPoint: |
| // CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint |
| // |
| // This implementation only supports a single DistributionPoint (sequence of size 1), |
| // which is verified by comparing (p + len == end_of_ext) |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_NOT_FOUND); |
| VerifyOrExit(p + len == end_of_ext, error = CHIP_ERROR_NOT_FOUND); |
| |
| // The DistributionPoint is a sequence of three optional elements: |
| // DistributionPoint ::= SEQUENCE { |
| // distributionPoint [0] DistributionPointName OPTIONAL, |
| // reasons [1] ReasonFlags OPTIONAL, |
| // cRLIssuer [2] GeneralNames OPTIONAL } |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_NOT_FOUND); |
| VerifyOrExit(p + len == end_of_ext, error = CHIP_ERROR_NOT_FOUND); |
| |
| // The DistributionPointName is: |
| // DistributionPointName ::= CHOICE { |
| // fullName [0] GeneralNames, |
| // nameRelativeToCRLIssuer [1] RelativeDistinguishedName } |
| // |
| // The URI should be encoded in the fullName element. |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONTEXT_SPECIFIC | MBEDTLS_ASN1_CONSTRUCTED | 0); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_NOT_FOUND); |
| |
| // GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONTEXT_SPECIFIC | MBEDTLS_ASN1_CONSTRUCTED); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_NOT_FOUND); |
| |
| unsigned char * end_of_general_names = p + len; |
| |
| // The CDP URI is encoded as a uniformResourceIdentifier field of the GeneralName: |
| // GeneralName ::= CHOICE { |
| // otherName [0] OtherName, |
| // rfc822Name [1] IA5String, |
| // dNSName [2] IA5String, |
| // x400Address [3] ORAddress, |
| // directoryName [4] Name, |
| // ediPartyName [5] EDIPartyName, |
| // uniformResourceIdentifier [6] IA5String, |
| // iPAddress [7] OCTET STRING, |
| // registeredID [8] OBJECT IDENTIFIER } |
| result = |
| mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONTEXT_SPECIFIC | MBEDTLS_X509_SAN_UNIFORM_RESOURCE_IDENTIFIER); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_NOT_FOUND); |
| |
| // Only single URI instance in the GeneralNames is supported |
| VerifyOrExit(p + len == end_of_general_names, error = CHIP_ERROR_NOT_FOUND); |
| |
| const char * urlptr = reinterpret_cast<const char *>(p); |
| VerifyOrExit((len > strlen(kValidCDPURIHttpPrefix) && |
| strncmp(urlptr, kValidCDPURIHttpPrefix, strlen(kValidCDPURIHttpPrefix)) == 0) || |
| (len > strlen(kValidCDPURIHttpsPrefix) && |
| strncmp(urlptr, kValidCDPURIHttpsPrefix, strlen(kValidCDPURIHttpsPrefix)) == 0), |
| error = CHIP_ERROR_NOT_FOUND); |
| error = CopyCharSpanToMutableCharSpan(CharSpan(urlptr, len), cdpurl); |
| SuccessOrExit(error); |
| } |
| p = end_of_ext; |
| } |
| |
| VerifyOrExit(cdpExtCount == 1, error = CHIP_ERROR_NOT_FOUND); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_x509_crt_free(&mbed_cert); |
| |
| #else |
| (void) certificate; |
| (void) cdpurl; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| |
| CHIP_ERROR ExtractCDPExtensionCRLIssuerFromX509Cert(const ByteSpan & certificate, MutableByteSpan & crlIssuer) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_ERROR_NOT_FOUND; |
| mbedtls_x509_crt mbed_cert; |
| unsigned char * p = nullptr; |
| const unsigned char * end = nullptr; |
| size_t len = 0; |
| size_t cdpExtCount = 0; |
| |
| VerifyOrReturnError(!certificate.empty() && CanCastTo<long>(certificate.size()), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| mbedtls_x509_crt_init(&mbed_cert); |
| |
| int result = mbedtls_x509_crt_parse(&mbed_cert, Uint8::to_const_uchar(certificate.data()), certificate.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| p = mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(p); |
| end = mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(p) + |
| mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(v3_ext).CHIP_CRYPTO_PAL_PRIVATE_X509(len); |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| while (p < end) |
| { |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OID); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| mbedtls_x509_buf extOID = { MBEDTLS_ASN1_OID, len, p }; |
| bool isCurrentExtCDP = OID_CMP(sOID_Extension_CRLDistributionPoint, extOID); |
| p += len; |
| |
| int is_critical = 0; |
| result = mbedtls_asn1_get_bool(&p, end, &is_critical); |
| VerifyOrExit(result == 0 || result == MBEDTLS_ERR_ASN1_UNEXPECTED_TAG, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_WRONG_CERT_TYPE); |
| |
| unsigned char * end_of_ext = p + len; |
| |
| if (isCurrentExtCDP) |
| { |
| // Only one CRL Distribution Point Extension is allowed. |
| cdpExtCount++; |
| VerifyOrExit(cdpExtCount <= 1, error = CHIP_ERROR_NOT_FOUND); |
| |
| // CRL Distribution Point Extension is encoded as a sequence of DistributionPoint: |
| // CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint |
| // |
| // This implementation only supports a single DistributionPoint (sequence of size 1), |
| // which is verified by comparing (p + len == end_of_ext) |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_NOT_FOUND); |
| VerifyOrExit(p + len == end_of_ext, error = CHIP_ERROR_NOT_FOUND); |
| |
| // The DistributionPoint is a sequence of three optional elements: |
| // DistributionPoint ::= SEQUENCE { |
| // distributionPoint [0] DistributionPointName OPTIONAL, |
| // reasons [1] ReasonFlags OPTIONAL, |
| // cRLIssuer [2] GeneralNames OPTIONAL } |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_NOT_FOUND); |
| VerifyOrExit(p + len == end_of_ext, error = CHIP_ERROR_NOT_FOUND); |
| |
| // If distributionPoint element presents, ignore it |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONTEXT_SPECIFIC | MBEDTLS_ASN1_CONSTRUCTED | 0); |
| if (result == 0) |
| { |
| p += len; |
| VerifyOrExit(p < end_of_ext, error = CHIP_ERROR_NOT_FOUND); |
| } |
| |
| // Check if cRLIssuer element present |
| result = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONTEXT_SPECIFIC | MBEDTLS_ASN1_CONSTRUCTED | 2); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_NOT_FOUND); |
| |
| // The CRL Issuer is encoded as a directoryName field of the GeneralName: |
| // GeneralName ::= CHOICE { |
| // otherName [0] OtherName, |
| // rfc822Name [1] IA5String, |
| // dNSName [2] IA5String, |
| // x400Address [3] ORAddress, |
| // directoryName [4] Name, |
| // ediPartyName [5] EDIPartyName, |
| // uniformResourceIdentifier [6] IA5String, |
| // iPAddress [7] OCTET STRING, |
| // registeredID [8] OBJECT IDENTIFIER } |
| result = mbedtls_asn1_get_tag( |
| &p, end, &len, MBEDTLS_ASN1_CONTEXT_SPECIFIC | MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_X509_SAN_DIRECTORY_NAME); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_NOT_FOUND); |
| VerifyOrExit(p + len == end_of_ext, error = CHIP_ERROR_NOT_FOUND); |
| |
| error = CopySpanToMutableSpan(ByteSpan(p, len), crlIssuer); |
| SuccessOrExit(error); |
| } |
| p = end_of_ext; |
| } |
| |
| VerifyOrExit(cdpExtCount == 1, error = CHIP_ERROR_NOT_FOUND); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_x509_crt_free(&mbed_cert); |
| |
| #else |
| (void) certificate; |
| (void) crlIssuer; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| |
| CHIP_ERROR ExtractSerialNumberFromX509Cert(const ByteSpan & certificate, MutableByteSpan & serialNumber) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| uint8_t * p = nullptr; |
| size_t len = 0; |
| mbedtls_x509_crt mbed_cert; |
| |
| mbedtls_x509_crt_init(&mbed_cert); |
| |
| result = mbedtls_x509_crt_parse(&mbed_cert, Uint8::to_const_uchar(certificate.data()), certificate.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| p = mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(serial).CHIP_CRYPTO_PAL_PRIVATE_X509(p); |
| len = mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(serial).CHIP_CRYPTO_PAL_PRIVATE_X509(len); |
| VerifyOrExit(len <= serialNumber.size(), error = CHIP_ERROR_BUFFER_TOO_SMALL); |
| |
| memcpy(serialNumber.data(), p, len); |
| serialNumber.reduce_size(len); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_x509_crt_free(&mbed_cert); |
| |
| #else |
| (void) certificate; |
| (void) serialNumber; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| |
| CHIP_ERROR ExtractVIDPIDFromX509Cert(const ByteSpan & certificate, AttestationCertVidPid & vidpid) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| mbedtls_x509_crt mbed_cert; |
| mbedtls_asn1_named_data * dnIterator = nullptr; |
| AttestationCertVidPid vidpidFromCN; |
| |
| mbedtls_x509_crt_init(&mbed_cert); |
| |
| int result = mbedtls_x509_crt_parse(&mbed_cert, Uint8::to_const_uchar(certificate.data()), certificate.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| for (dnIterator = &mbed_cert.CHIP_CRYPTO_PAL_PRIVATE_X509(subject); dnIterator != nullptr; |
| dnIterator = dnIterator->CHIP_CRYPTO_PAL_PRIVATE_X509(next)) |
| { |
| DNAttrType attrType = DNAttrType::kUnspecified; |
| if (OID_CMP(sOID_AttributeType_CommonName, dnIterator->CHIP_CRYPTO_PAL_PRIVATE_X509(oid))) |
| { |
| attrType = DNAttrType::kCommonName; |
| } |
| else if (OID_CMP(sOID_AttributeType_MatterVendorId, dnIterator->CHIP_CRYPTO_PAL_PRIVATE_X509(oid))) |
| { |
| attrType = DNAttrType::kMatterVID; |
| } |
| else if (OID_CMP(sOID_AttributeType_MatterProductId, dnIterator->CHIP_CRYPTO_PAL_PRIVATE_X509(oid))) |
| { |
| attrType = DNAttrType::kMatterPID; |
| } |
| |
| size_t val_len = dnIterator->CHIP_CRYPTO_PAL_PRIVATE_X509(val).CHIP_CRYPTO_PAL_PRIVATE_X509(len); |
| uint8_t * val_p = dnIterator->CHIP_CRYPTO_PAL_PRIVATE_X509(val).CHIP_CRYPTO_PAL_PRIVATE_X509(p); |
| error = ExtractVIDPIDFromAttributeString(attrType, ByteSpan(val_p, val_len), vidpid, vidpidFromCN); |
| SuccessOrExit(error); |
| } |
| |
| // If Matter Attributes were not found use values extracted from the CN Attribute, |
| // which might be uninitialized as well. |
| if (!vidpid.Initialized()) |
| { |
| vidpid = vidpidFromCN; |
| } |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_x509_crt_free(&mbed_cert); |
| |
| #else |
| (void) certificate; |
| (void) vidpid; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| |
| namespace { |
| CHIP_ERROR ExtractRawDNFromX509Cert(bool extractSubject, const ByteSpan & certificate, MutableByteSpan & dn) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| uint8_t * p = nullptr; |
| size_t len = 0; |
| mbedtls_x509_crt mbedCertificate; |
| |
| ReturnErrorCodeIf(certificate.empty(), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| mbedtls_x509_crt_init(&mbedCertificate); |
| result = mbedtls_x509_crt_parse(&mbedCertificate, Uint8::to_const_uchar(certificate.data()), certificate.size()); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| if (extractSubject) |
| { |
| len = mbedCertificate.CHIP_CRYPTO_PAL_PRIVATE_X509(subject_raw).CHIP_CRYPTO_PAL_PRIVATE_X509(len); |
| p = mbedCertificate.CHIP_CRYPTO_PAL_PRIVATE_X509(subject_raw).CHIP_CRYPTO_PAL_PRIVATE_X509(p); |
| } |
| else |
| { |
| len = mbedCertificate.CHIP_CRYPTO_PAL_PRIVATE_X509(issuer_raw).CHIP_CRYPTO_PAL_PRIVATE_X509(len); |
| p = mbedCertificate.CHIP_CRYPTO_PAL_PRIVATE_X509(issuer_raw).CHIP_CRYPTO_PAL_PRIVATE_X509(p); |
| } |
| |
| VerifyOrExit(len <= dn.size(), error = CHIP_ERROR_BUFFER_TOO_SMALL); |
| memcpy(dn.data(), p, len); |
| dn.reduce_size(len); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_x509_crt_free(&mbedCertificate); |
| |
| #else |
| (void) certificate; |
| (void) dn; |
| CHIP_ERROR error = CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| |
| return error; |
| } |
| } // namespace |
| |
| CHIP_ERROR ExtractSubjectFromX509Cert(const ByteSpan & certificate, MutableByteSpan & subject) |
| { |
| return ExtractRawDNFromX509Cert(true, certificate, subject); |
| } |
| |
| CHIP_ERROR ExtractIssuerFromX509Cert(const ByteSpan & certificate, MutableByteSpan & issuer) |
| { |
| return ExtractRawDNFromX509Cert(false, certificate, issuer); |
| } |
| |
| CHIP_ERROR ReplaceCertIfResignedCertFound(const ByteSpan & referenceCertificate, const ByteSpan * candidateCertificates, |
| size_t candidateCertificatesCount, ByteSpan & outCertificate) |
| { |
| #if defined(MBEDTLS_X509_CRT_PARSE_C) |
| uint8_t referenceSubjectBuf[kMaxCertificateDistinguishedNameLength]; |
| uint8_t referenceSKIDBuf[kSubjectKeyIdentifierLength]; |
| MutableByteSpan referenceSubject(referenceSubjectBuf); |
| MutableByteSpan referenceSKID(referenceSKIDBuf); |
| |
| outCertificate = referenceCertificate; |
| |
| ReturnErrorCodeIf(candidateCertificates == nullptr || candidateCertificatesCount == 0, CHIP_NO_ERROR); |
| |
| ReturnErrorOnFailure(ExtractSubjectFromX509Cert(referenceCertificate, referenceSubject)); |
| ReturnErrorOnFailure(ExtractSKIDFromX509Cert(referenceCertificate, referenceSKID)); |
| |
| for (size_t i = 0; i < candidateCertificatesCount; i++) |
| { |
| const ByteSpan candidateCertificate = candidateCertificates[i]; |
| uint8_t candidateSubjectBuf[kMaxCertificateDistinguishedNameLength]; |
| uint8_t candidateSKIDBuf[kSubjectKeyIdentifierLength]; |
| MutableByteSpan candidateSubject(candidateSubjectBuf); |
| MutableByteSpan candidateSKID(candidateSKIDBuf); |
| |
| ReturnErrorOnFailure(ExtractSubjectFromX509Cert(candidateCertificate, candidateSubject)); |
| ReturnErrorOnFailure(ExtractSKIDFromX509Cert(candidateCertificate, candidateSKID)); |
| |
| if (referenceSKID.data_equal(candidateSKID) && referenceSubject.data_equal(candidateSubject)) |
| { |
| outCertificate = candidateCertificate; |
| return CHIP_NO_ERROR; |
| } |
| } |
| |
| return CHIP_NO_ERROR; |
| #else |
| (void) referenceCertificate; |
| (void) candidateCertificates; |
| (void) candidateCertificatesCount; |
| (void) outCertificate; |
| return CHIP_ERROR_NOT_IMPLEMENTED; |
| #endif // defined(MBEDTLS_X509_CRT_PARSE_C) |
| } |
| |
| } // namespace Crypto |
| } // namespace chip |