| /* |
| * |
| * Copyright (c) 2021-2023 Project CHIP Authors |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include <app/util/ember-compatibility-functions.h> |
| |
| #include <access/AccessControl.h> |
| #include <app/AttributeAccessInterfaceRegistry.h> |
| #include <app/CommandHandlerInterface.h> |
| #include <app/CommandHandlerInterfaceRegistry.h> |
| #include <app/ConcreteAttributePath.h> |
| #include <app/ConcreteEventPath.h> |
| #include <app/GlobalAttributes.h> |
| #include <app/InteractionModelEngine.h> |
| #include <app/RequiredPrivilege.h> |
| #include <app/reporting/Engine.h> |
| #include <app/reporting/reporting.h> |
| #include <app/util/att-storage.h> |
| #include <app/util/attribute-storage-detail.h> |
| #include <app/util/attribute-storage-null-handling.h> |
| #include <app/util/attribute-storage.h> |
| #include <app/util/attribute-table-detail.h> |
| #include <app/util/attribute-table.h> |
| #include <app/util/config.h> |
| #include <app/util/ember-global-attribute-access-interface.h> |
| #include <app/util/ember-io-storage.h> |
| #include <app/util/odd-sized-integers.h> |
| #include <app/util/util.h> |
| #include <lib/core/CHIPCore.h> |
| #include <lib/core/TLV.h> |
| #include <lib/support/CodeUtils.h> |
| #include <lib/support/SafeInt.h> |
| #include <lib/support/TypeTraits.h> |
| #include <platform/LockTracker.h> |
| #include <protocols/interaction_model/Constants.h> |
| |
| #include <app-common/zap-generated/attribute-type.h> |
| |
| #include <zap-generated/endpoint_config.h> |
| |
| #include <limits> |
| |
| using chip::Protocols::InteractionModel::Status; |
| |
| using namespace chip; |
| using namespace chip::app; |
| using namespace chip::Access; |
| using namespace chip::app::Compatibility; |
| using namespace chip::app::Compatibility::Internal; |
| |
| namespace chip { |
| namespace app { |
| namespace { |
| |
| template <typename T> |
| CHIP_ERROR attributeBufferToNumericTlvData(TLV::TLVWriter & writer, bool isNullable) |
| { |
| typename NumericAttributeTraits<T>::StorageType value; |
| memcpy(&value, gEmberAttributeIOBufferSpan.data(), sizeof(value)); |
| TLV::Tag tag = TLV::ContextTag(AttributeDataIB::Tag::kData); |
| if (isNullable && NumericAttributeTraits<T>::IsNullValue(value)) |
| { |
| return writer.PutNull(tag); |
| } |
| |
| if (!NumericAttributeTraits<T>::CanRepresentValue(isNullable, value)) |
| { |
| return CHIP_ERROR_INCORRECT_STATE; |
| } |
| |
| return NumericAttributeTraits<T>::Encode(writer, tag, value); |
| } |
| |
| } // anonymous namespace |
| |
| Protocols::InteractionModel::Status ServerClusterCommandExists(const ConcreteCommandPath & aCommandPath) |
| { |
| using Protocols::InteractionModel::Status; |
| |
| const EmberAfEndpointType * type = emberAfFindEndpointType(aCommandPath.mEndpointId); |
| if (type == nullptr) |
| { |
| return Status::UnsupportedEndpoint; |
| } |
| |
| const EmberAfCluster * cluster = emberAfFindClusterInType(type, aCommandPath.mClusterId, CLUSTER_MASK_SERVER); |
| if (cluster == nullptr) |
| { |
| return Status::UnsupportedCluster; |
| } |
| |
| auto * commandHandler = |
| CommandHandlerInterfaceRegistry::Instance().GetCommandHandler(aCommandPath.mEndpointId, aCommandPath.mClusterId); |
| if (commandHandler) |
| { |
| struct Context |
| { |
| bool commandExists; |
| CommandId targetCommand; |
| } context{ false, aCommandPath.mCommandId }; |
| |
| CHIP_ERROR err = commandHandler->EnumerateAcceptedCommands( |
| aCommandPath, |
| [](CommandId command, void * closure) -> Loop { |
| auto * ctx = static_cast<Context *>(closure); |
| if (ctx->targetCommand == command) |
| { |
| ctx->commandExists = true; |
| return Loop::Break; |
| } |
| return Loop::Continue; |
| }, |
| &context); |
| |
| // We now have three cases: |
| // 1) handler returned CHIP_ERROR_NOT_IMPLEMENTED. In that case we |
| // should fall back to looking at cluster->acceptedCommandList |
| // 2) handler returned success. In that case, the handler is the source |
| // of truth about the set of accepted commands, and |
| // context.commandExists indicates whether a aCommandPath.mCommandId |
| // was in the set, and we should return either Success or |
| // UnsupportedCommand accordingly. |
| // 3) Some other status was returned. In this case we should probably |
| // err on the side of not allowing the command, since we have no idea |
| // whether to allow it or not. |
| if (err != CHIP_ERROR_NOT_IMPLEMENTED) |
| { |
| if (err == CHIP_NO_ERROR) |
| { |
| return context.commandExists ? Status::Success : Status::UnsupportedCommand; |
| } |
| |
| return Status::Failure; |
| } |
| } |
| |
| for (const CommandId * cmd = cluster->acceptedCommandList; cmd != nullptr && *cmd != kInvalidCommandId; cmd++) |
| { |
| if (*cmd == aCommandPath.mCommandId) |
| { |
| return Status::Success; |
| } |
| } |
| |
| return Status::UnsupportedCommand; |
| } |
| |
| namespace { |
| |
| CHIP_ERROR ReadClusterDataVersion(const ConcreteClusterPath & aConcreteClusterPath, DataVersion & aDataVersion) |
| { |
| DataVersion * version = emberAfDataVersionStorage(aConcreteClusterPath); |
| if (version == nullptr) |
| { |
| ChipLogError(DataManagement, "Endpoint %x, Cluster " ChipLogFormatMEI " not found in ReadClusterDataVersion!", |
| aConcreteClusterPath.mEndpointId, ChipLogValueMEI(aConcreteClusterPath.mClusterId)); |
| return CHIP_ERROR_NOT_FOUND; |
| } |
| aDataVersion = *version; |
| return CHIP_NO_ERROR; |
| } |
| |
| // Helper function for trying to read an attribute value via an |
| // AttributeAccessInterface. On failure, the read has failed. On success, the |
| // aTriedEncode outparam is set to whether the AttributeAccessInterface tried to encode a value. |
| CHIP_ERROR ReadViaAccessInterface(const SubjectDescriptor & subjectDescriptor, bool aIsFabricFiltered, |
| const ConcreteReadAttributePath & aPath, AttributeReportIBs::Builder & aAttributeReports, |
| AttributeEncodeState * aEncoderState, AttributeAccessInterface * aAccessInterface, |
| bool * aTriedEncode) |
| { |
| AttributeEncodeState state(aEncoderState); |
| DataVersion version = 0; |
| ReturnErrorOnFailure(ReadClusterDataVersion(aPath, version)); |
| AttributeValueEncoder valueEncoder(aAttributeReports, subjectDescriptor, aPath, version, aIsFabricFiltered, state); |
| CHIP_ERROR err = aAccessInterface->Read(aPath, valueEncoder); |
| |
| if (err == CHIP_IM_GLOBAL_STATUS(UnsupportedRead) && aPath.mExpanded) |
| { |
| // |
| // Set this to true to ensure our caller will return immediately without proceeding further. |
| // |
| *aTriedEncode = true; |
| return CHIP_NO_ERROR; |
| } |
| |
| if (err != CHIP_NO_ERROR) |
| { |
| // If the err is not CHIP_NO_ERROR, means the encoding was aborted, then the valueEncoder may save its state. |
| // The state is used by list chunking feature for now. |
| if (aEncoderState != nullptr) |
| { |
| *aEncoderState = valueEncoder.GetState(); |
| } |
| return err; |
| } |
| |
| *aTriedEncode = valueEncoder.TriedEncode(); |
| return CHIP_NO_ERROR; |
| } |
| |
| // Determine the appropriate status response for an unsupported attribute for |
| // the given path. Must be called when the attribute is known to be unsupported |
| // (i.e. we found no attribute metadata for it). |
| Protocols::InteractionModel::Status UnsupportedAttributeStatus(const ConcreteAttributePath & aPath) |
| { |
| using Protocols::InteractionModel::Status; |
| |
| const EmberAfEndpointType * type = emberAfFindEndpointType(aPath.mEndpointId); |
| if (type == nullptr) |
| { |
| return Status::UnsupportedEndpoint; |
| } |
| |
| const EmberAfCluster * cluster = emberAfFindClusterInType(type, aPath.mClusterId, CLUSTER_MASK_SERVER); |
| if (cluster == nullptr) |
| { |
| return Status::UnsupportedCluster; |
| } |
| |
| // Since we know the attribute is unsupported and the endpoint/cluster are |
| // OK, this is the only option left. |
| return Status::UnsupportedAttribute; |
| } |
| |
| // Will set at most one of the out-params (aAttributeCluster or |
| // aAttributeMetadata) to non-null. Both null means attribute not supported, |
| // aAttributeCluster non-null means this is a supported global attribute that |
| // does not have metadata. |
| void FindAttributeMetadata(const ConcreteAttributePath & aPath, const EmberAfCluster ** aAttributeCluster, |
| const EmberAfAttributeMetadata ** aAttributeMetadata) |
| { |
| *aAttributeCluster = nullptr; |
| *aAttributeMetadata = nullptr; |
| |
| for (auto & attr : GlobalAttributesNotInMetadata) |
| { |
| if (attr == aPath.mAttributeId) |
| { |
| *aAttributeCluster = emberAfFindServerCluster(aPath.mEndpointId, aPath.mClusterId); |
| return; |
| } |
| } |
| |
| *aAttributeMetadata = emberAfLocateAttributeMetadata(aPath.mEndpointId, aPath.mClusterId, aPath.mAttributeId); |
| } |
| |
| } // anonymous namespace |
| |
| bool ConcreteAttributePathExists(const ConcreteAttributePath & aPath) |
| { |
| for (auto & attr : GlobalAttributesNotInMetadata) |
| { |
| if (attr == aPath.mAttributeId) |
| { |
| return (emberAfFindServerCluster(aPath.mEndpointId, aPath.mClusterId) != nullptr); |
| } |
| } |
| return (emberAfLocateAttributeMetadata(aPath.mEndpointId, aPath.mClusterId, aPath.mAttributeId) != nullptr); |
| } |
| |
| CHIP_ERROR ReadSingleClusterData(const SubjectDescriptor & aSubjectDescriptor, bool aIsFabricFiltered, |
| const ConcreteReadAttributePath & aPath, AttributeReportIBs::Builder & aAttributeReports, |
| AttributeEncodeState * apEncoderState) |
| { |
| ChipLogDetail(DataManagement, |
| "Reading attribute: Cluster=" ChipLogFormatMEI " Endpoint=%x AttributeId=" ChipLogFormatMEI " (expanded=%d)", |
| ChipLogValueMEI(aPath.mClusterId), aPath.mEndpointId, ChipLogValueMEI(aPath.mAttributeId), aPath.mExpanded); |
| |
| // Check attribute existence. This includes attributes with registered metadata, but also specially handled |
| // mandatory global attributes (which just check for cluster on endpoint). |
| |
| const EmberAfCluster * attributeCluster = nullptr; |
| const EmberAfAttributeMetadata * attributeMetadata = nullptr; |
| FindAttributeMetadata(aPath, &attributeCluster, &attributeMetadata); |
| |
| if (attributeCluster == nullptr && attributeMetadata == nullptr) |
| { |
| return CHIP_ERROR_IM_GLOBAL_STATUS_VALUE(UnsupportedAttributeStatus(aPath)); |
| } |
| |
| // Check access control. A failed check will disallow the operation, and may or may not generate an attribute report |
| // depending on whether the path was expanded. |
| |
| { |
| Access::RequestPath requestPath{ .cluster = aPath.mClusterId, |
| .endpoint = aPath.mEndpointId, |
| .requestType = Access::RequestType::kAttributeReadRequest, |
| .entityId = aPath.mAttributeId }; |
| Access::Privilege requestPrivilege = RequiredPrivilege::ForReadAttribute(aPath); |
| CHIP_ERROR err = Access::GetAccessControl().Check(aSubjectDescriptor, requestPath, requestPrivilege); |
| if (err != CHIP_NO_ERROR) |
| { |
| ReturnErrorCodeIf(err != CHIP_ERROR_ACCESS_DENIED, err); |
| if (aPath.mExpanded) |
| { |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_IM_GLOBAL_STATUS(UnsupportedAccess); |
| } |
| } |
| |
| { |
| // Special handling for mandatory global attributes: these are always for attribute list, using a special |
| // reader (which can be lightweight constructed even from nullptr). |
| GlobalAttributeReader reader(attributeCluster); |
| AttributeAccessInterface * attributeOverride = (attributeCluster != nullptr) |
| ? &reader |
| : AttributeAccessInterfaceRegistry::Instance().Get(aPath.mEndpointId, aPath.mClusterId); |
| if (attributeOverride) |
| { |
| bool triedEncode = false; |
| ReturnErrorOnFailure(ReadViaAccessInterface(aSubjectDescriptor, aIsFabricFiltered, aPath, aAttributeReports, |
| apEncoderState, attributeOverride, &triedEncode)); |
| ReturnErrorCodeIf(triedEncode, CHIP_NO_ERROR); |
| } |
| } |
| |
| // Read attribute using Ember, if it doesn't have an override. |
| AttributeReportIB::Builder & attributeReport = aAttributeReports.CreateAttributeReport(); |
| ReturnErrorOnFailure(aAttributeReports.GetError()); |
| |
| AttributeDataIB::Builder & attributeDataIBBuilder = attributeReport.CreateAttributeData(); |
| ReturnErrorOnFailure(attributeDataIBBuilder.GetError()); |
| |
| DataVersion version = 0; |
| ReturnErrorOnFailure(ReadClusterDataVersion(aPath, version)); |
| attributeDataIBBuilder.DataVersion(version); |
| ReturnErrorOnFailure(attributeDataIBBuilder.GetError()); |
| |
| AttributePathIB::Builder & attributePathIBBuilder = attributeDataIBBuilder.CreatePath(); |
| ReturnErrorOnFailure(attributeDataIBBuilder.GetError()); |
| |
| CHIP_ERROR err = attributePathIBBuilder.Endpoint(aPath.mEndpointId) |
| .Cluster(aPath.mClusterId) |
| .Attribute(aPath.mAttributeId) |
| .EndOfAttributePathIB(); |
| ReturnErrorOnFailure(err); |
| |
| EmberAfAttributeSearchRecord record; |
| record.endpoint = aPath.mEndpointId; |
| record.clusterId = aPath.mClusterId; |
| record.attributeId = aPath.mAttributeId; |
| Status status = emAfReadOrWriteAttribute(&record, &attributeMetadata, gEmberAttributeIOBufferSpan.data(), |
| static_cast<uint16_t>(gEmberAttributeIOBufferSpan.size()), |
| /* write = */ false); |
| |
| if (status != Status::Success) |
| { |
| return CHIP_ERROR_IM_GLOBAL_STATUS_VALUE(status); |
| } |
| |
| TLV::TLVWriter * writer = attributeDataIBBuilder.GetWriter(); |
| VerifyOrReturnError(writer != nullptr, CHIP_NO_ERROR); |
| |
| const EmberAfAttributeType attributeType = attributeMetadata->attributeType; |
| const bool isNullable = attributeMetadata->IsNullable(); |
| const TLV::Tag tag = TLV::ContextTag(AttributeDataIB::Tag::kData); |
| |
| switch (AttributeBaseType(attributeType)) |
| { |
| case ZCL_NO_DATA_ATTRIBUTE_TYPE: // No data |
| ReturnErrorOnFailure(writer->PutNull(tag)); |
| break; |
| case ZCL_BOOLEAN_ATTRIBUTE_TYPE: // Boolean |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<bool>(*writer, isNullable)); |
| break; |
| case ZCL_INT8U_ATTRIBUTE_TYPE: // Unsigned 8-bit integer |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<uint8_t>(*writer, isNullable)); |
| break; |
| case ZCL_INT16U_ATTRIBUTE_TYPE: // Unsigned 16-bit integer |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<uint16_t>(*writer, isNullable)); |
| break; |
| case ZCL_INT24U_ATTRIBUTE_TYPE: // Unsigned 24-bit integer |
| { |
| using IntType = OddSizedInteger<3, false>; |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable)); |
| break; |
| } |
| case ZCL_INT32U_ATTRIBUTE_TYPE: // Unsigned 32-bit integer |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<uint32_t>(*writer, isNullable)); |
| break; |
| case ZCL_INT40U_ATTRIBUTE_TYPE: // Unsigned 40-bit integer |
| { |
| using IntType = OddSizedInteger<5, false>; |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable)); |
| break; |
| } |
| case ZCL_INT48U_ATTRIBUTE_TYPE: // Unsigned 48-bit integer |
| { |
| using IntType = OddSizedInteger<6, false>; |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable)); |
| break; |
| } |
| case ZCL_INT56U_ATTRIBUTE_TYPE: // Unsigned 56-bit integer |
| { |
| using IntType = OddSizedInteger<7, false>; |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable)); |
| break; |
| } |
| case ZCL_INT64U_ATTRIBUTE_TYPE: // Unsigned 64-bit integer |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<uint64_t>(*writer, isNullable)); |
| break; |
| case ZCL_INT8S_ATTRIBUTE_TYPE: // Signed 8-bit integer |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<int8_t>(*writer, isNullable)); |
| break; |
| case ZCL_INT16S_ATTRIBUTE_TYPE: // Signed 16-bit integer |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<int16_t>(*writer, isNullable)); |
| break; |
| case ZCL_INT24S_ATTRIBUTE_TYPE: // Signed 24-bit integer |
| { |
| using IntType = OddSizedInteger<3, true>; |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable)); |
| break; |
| } |
| case ZCL_INT32S_ATTRIBUTE_TYPE: // Signed 32-bit integer |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<int32_t>(*writer, isNullable)); |
| break; |
| case ZCL_INT40S_ATTRIBUTE_TYPE: // Signed 40-bit integer |
| { |
| using IntType = OddSizedInteger<5, true>; |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable)); |
| break; |
| } |
| case ZCL_INT48S_ATTRIBUTE_TYPE: // Signed 48-bit integer |
| { |
| using IntType = OddSizedInteger<6, true>; |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable)); |
| break; |
| } |
| case ZCL_INT56S_ATTRIBUTE_TYPE: // Signed 56-bit integer |
| { |
| using IntType = OddSizedInteger<7, true>; |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable)); |
| break; |
| } |
| case ZCL_INT64S_ATTRIBUTE_TYPE: // Signed 64-bit integer |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<int64_t>(*writer, isNullable)); |
| break; |
| case ZCL_SINGLE_ATTRIBUTE_TYPE: // 32-bit float |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<float>(*writer, isNullable)); |
| break; |
| case ZCL_DOUBLE_ATTRIBUTE_TYPE: // 64-bit float |
| ReturnErrorOnFailure(attributeBufferToNumericTlvData<double>(*writer, isNullable)); |
| break; |
| case ZCL_CHAR_STRING_ATTRIBUTE_TYPE: // Char string |
| { |
| char * actualData = reinterpret_cast<char *>(gEmberAttributeIOBufferSpan.data() + 1); |
| uint8_t dataLength = gEmberAttributeIOBufferSpan[0]; |
| if (dataLength == 0xFF) |
| { |
| VerifyOrReturnError(isNullable, CHIP_ERROR_INCORRECT_STATE); |
| ReturnErrorOnFailure(writer->PutNull(tag)); |
| } |
| else |
| { |
| ReturnErrorOnFailure(writer->PutString(tag, actualData, dataLength)); |
| } |
| break; |
| } |
| case ZCL_LONG_CHAR_STRING_ATTRIBUTE_TYPE: { |
| char * actualData = |
| reinterpret_cast<char *>(gEmberAttributeIOBufferSpan.data() + 2); // The pascal string contains 2 bytes length |
| uint16_t dataLength; |
| memcpy(&dataLength, gEmberAttributeIOBufferSpan.data(), sizeof(dataLength)); |
| if (dataLength == 0xFFFF) |
| { |
| VerifyOrReturnError(isNullable, CHIP_ERROR_INCORRECT_STATE); |
| ReturnErrorOnFailure(writer->PutNull(tag)); |
| } |
| else |
| { |
| ReturnErrorOnFailure(writer->PutString(tag, actualData, dataLength)); |
| } |
| break; |
| } |
| case ZCL_OCTET_STRING_ATTRIBUTE_TYPE: // Octet string |
| { |
| uint8_t * actualData = gEmberAttributeIOBufferSpan.data() + 1; |
| uint8_t dataLength = gEmberAttributeIOBufferSpan[0]; |
| if (dataLength == 0xFF) |
| { |
| VerifyOrReturnError(isNullable, CHIP_ERROR_INCORRECT_STATE); |
| ReturnErrorOnFailure(writer->PutNull(tag)); |
| } |
| else |
| { |
| ReturnErrorOnFailure(writer->Put(tag, chip::ByteSpan(actualData, dataLength))); |
| } |
| break; |
| } |
| case ZCL_LONG_OCTET_STRING_ATTRIBUTE_TYPE: { |
| uint8_t * actualData = gEmberAttributeIOBufferSpan.data() + 2; // The pascal string contains 2 bytes length |
| uint16_t dataLength; |
| memcpy(&dataLength, gEmberAttributeIOBufferSpan.data(), sizeof(dataLength)); |
| if (dataLength == 0xFFFF) |
| { |
| VerifyOrReturnError(isNullable, CHIP_ERROR_INCORRECT_STATE); |
| ReturnErrorOnFailure(writer->PutNull(tag)); |
| } |
| else |
| { |
| ReturnErrorOnFailure(writer->Put(tag, chip::ByteSpan(actualData, dataLength))); |
| } |
| break; |
| } |
| default: |
| ChipLogError(DataManagement, "Attribute type 0x%x not handled", static_cast<int>(attributeType)); |
| return CHIP_IM_GLOBAL_STATUS(Failure); |
| } |
| |
| // If we got this far, placing the data to be read in the output TLVWriter succeeded. |
| // Try to terminate our attribute report to signal success. |
| ReturnErrorOnFailure(attributeDataIBBuilder.EndOfAttributeDataIB()); |
| return attributeReport.EndOfAttributeReportIB(); |
| } |
| |
| namespace { |
| |
| template <typename T> |
| CHIP_ERROR numericTlvDataToAttributeBuffer(TLV::TLVReader & aReader, bool isNullable, uint16_t & dataLen) |
| { |
| typename NumericAttributeTraits<T>::StorageType value; |
| VerifyOrDie(sizeof(value) <= gEmberAttributeIOBufferSpan.size()); |
| |
| if (isNullable && aReader.GetType() == TLV::kTLVType_Null) |
| { |
| NumericAttributeTraits<T>::SetNull(value); |
| } |
| else |
| { |
| typename NumericAttributeTraits<T>::WorkingType val; |
| ReturnErrorOnFailure(aReader.Get(val)); |
| VerifyOrReturnError(NumericAttributeTraits<T>::CanRepresentValue(isNullable, val), CHIP_ERROR_INVALID_ARGUMENT); |
| NumericAttributeTraits<T>::WorkingToStorage(val, value); |
| } |
| dataLen = sizeof(value); |
| memcpy(gEmberAttributeIOBufferSpan.data(), &value, sizeof(value)); |
| return CHIP_NO_ERROR; |
| } |
| |
| template <typename T> |
| CHIP_ERROR stringTlvDataToAttributeBuffer(TLV::TLVReader & aReader, bool isOctetString, bool isNullable, uint16_t & dataLen) |
| { |
| const uint8_t * data = nullptr; |
| T len; |
| if (isNullable && aReader.GetType() == TLV::kTLVType_Null) |
| { |
| // Null is represented by an 0xFF or 0xFFFF length, respectively. |
| len = std::numeric_limits<T>::max(); |
| memcpy(gEmberAttributeIOBufferSpan.data(), &len, sizeof(len)); |
| dataLen = sizeof(len); |
| } |
| else |
| { |
| VerifyOrReturnError((isOctetString && aReader.GetType() == TLV::TLVType::kTLVType_ByteString) || |
| (!isOctetString && aReader.GetType() == TLV::TLVType::kTLVType_UTF8String), |
| CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(CanCastTo<T>(aReader.GetLength()), CHIP_ERROR_MESSAGE_TOO_LONG); |
| ReturnErrorOnFailure(aReader.GetDataPtr(data)); |
| len = static_cast<T>(aReader.GetLength()); |
| VerifyOrReturnError(len != std::numeric_limits<T>::max(), CHIP_ERROR_MESSAGE_TOO_LONG); |
| VerifyOrReturnError(len + sizeof(len) /* length at the beginning of data */ <= gEmberAttributeIOBufferSpan.size(), |
| CHIP_ERROR_MESSAGE_TOO_LONG); |
| memcpy(gEmberAttributeIOBufferSpan.data(), &len, sizeof(len)); |
| memcpy(gEmberAttributeIOBufferSpan.data() + sizeof(len), data, len); |
| dataLen = static_cast<uint16_t>(len + sizeof(len)); |
| } |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR prepareWriteData(const EmberAfAttributeMetadata * attributeMetadata, TLV::TLVReader & aReader, uint16_t & dataLen) |
| { |
| EmberAfAttributeType expectedType = AttributeBaseType(attributeMetadata->attributeType); |
| bool isNullable = attributeMetadata->IsNullable(); |
| switch (expectedType) |
| { |
| case ZCL_BOOLEAN_ATTRIBUTE_TYPE: // Boolean |
| return numericTlvDataToAttributeBuffer<bool>(aReader, isNullable, dataLen); |
| case ZCL_INT8U_ATTRIBUTE_TYPE: // Unsigned 8-bit integer |
| return numericTlvDataToAttributeBuffer<uint8_t>(aReader, isNullable, dataLen); |
| case ZCL_INT16U_ATTRIBUTE_TYPE: // Unsigned 16-bit integer |
| return numericTlvDataToAttributeBuffer<uint16_t>(aReader, isNullable, dataLen); |
| case ZCL_INT24U_ATTRIBUTE_TYPE: // Unsigned 24-bit integer |
| { |
| using IntType = OddSizedInteger<3, false>; |
| return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen); |
| } |
| case ZCL_INT32U_ATTRIBUTE_TYPE: // Unsigned 32-bit integer |
| return numericTlvDataToAttributeBuffer<uint32_t>(aReader, isNullable, dataLen); |
| case ZCL_INT40U_ATTRIBUTE_TYPE: // Unsigned 40-bit integer |
| { |
| using IntType = OddSizedInteger<5, false>; |
| return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen); |
| } |
| case ZCL_INT48U_ATTRIBUTE_TYPE: // Unsigned 48-bit integer |
| { |
| using IntType = OddSizedInteger<6, false>; |
| return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen); |
| } |
| case ZCL_INT56U_ATTRIBUTE_TYPE: // Unsigned 56-bit integer |
| { |
| using IntType = OddSizedInteger<7, false>; |
| return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen); |
| } |
| case ZCL_INT64U_ATTRIBUTE_TYPE: // Unsigned 64-bit integer |
| return numericTlvDataToAttributeBuffer<uint64_t>(aReader, isNullable, dataLen); |
| case ZCL_INT8S_ATTRIBUTE_TYPE: // Signed 8-bit integer |
| return numericTlvDataToAttributeBuffer<int8_t>(aReader, isNullable, dataLen); |
| case ZCL_INT16S_ATTRIBUTE_TYPE: // Signed 16-bit integer |
| return numericTlvDataToAttributeBuffer<int16_t>(aReader, isNullable, dataLen); |
| case ZCL_INT24S_ATTRIBUTE_TYPE: // Signed 24-bit integer |
| { |
| using IntType = OddSizedInteger<3, true>; |
| return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen); |
| } |
| case ZCL_INT32S_ATTRIBUTE_TYPE: // Signed 32-bit integer |
| return numericTlvDataToAttributeBuffer<int32_t>(aReader, isNullable, dataLen); |
| case ZCL_INT40S_ATTRIBUTE_TYPE: // Signed 40-bit integer |
| { |
| using IntType = OddSizedInteger<5, true>; |
| return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen); |
| } |
| case ZCL_INT48S_ATTRIBUTE_TYPE: // Signed 48-bit integer |
| { |
| using IntType = OddSizedInteger<6, true>; |
| return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen); |
| } |
| case ZCL_INT56S_ATTRIBUTE_TYPE: // Signed 56-bit integer |
| { |
| using IntType = OddSizedInteger<7, true>; |
| return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen); |
| } |
| case ZCL_INT64S_ATTRIBUTE_TYPE: // Signed 64-bit integer |
| return numericTlvDataToAttributeBuffer<int64_t>(aReader, isNullable, dataLen); |
| case ZCL_SINGLE_ATTRIBUTE_TYPE: // 32-bit float |
| return numericTlvDataToAttributeBuffer<float>(aReader, isNullable, dataLen); |
| case ZCL_DOUBLE_ATTRIBUTE_TYPE: // 64-bit float |
| return numericTlvDataToAttributeBuffer<double>(aReader, isNullable, dataLen); |
| case ZCL_OCTET_STRING_ATTRIBUTE_TYPE: // Octet string |
| case ZCL_CHAR_STRING_ATTRIBUTE_TYPE: // Char string |
| return stringTlvDataToAttributeBuffer<uint8_t>(aReader, expectedType == ZCL_OCTET_STRING_ATTRIBUTE_TYPE, isNullable, |
| dataLen); |
| case ZCL_LONG_OCTET_STRING_ATTRIBUTE_TYPE: // Long octet string |
| case ZCL_LONG_CHAR_STRING_ATTRIBUTE_TYPE: // Long char string |
| return stringTlvDataToAttributeBuffer<uint16_t>(aReader, expectedType == ZCL_LONG_OCTET_STRING_ATTRIBUTE_TYPE, isNullable, |
| dataLen); |
| default: |
| ChipLogError(DataManagement, "Attribute type %x not handled", static_cast<int>(expectedType)); |
| return CHIP_ERROR_INVALID_DATA_LIST; |
| } |
| } |
| } // namespace |
| |
| const EmberAfAttributeMetadata * GetAttributeMetadata(const ConcreteAttributePath & aPath) |
| { |
| return emberAfLocateAttributeMetadata(aPath.mEndpointId, aPath.mClusterId, aPath.mAttributeId); |
| } |
| |
| CHIP_ERROR WriteSingleClusterData(const SubjectDescriptor & aSubjectDescriptor, const ConcreteDataAttributePath & aPath, |
| TLV::TLVReader & aReader, WriteHandler * apWriteHandler) |
| { |
| // Check attribute existence. This includes attributes with registered metadata, but also specially handled |
| // mandatory global attributes (which just check for cluster on endpoint). |
| const EmberAfCluster * attributeCluster = nullptr; |
| const EmberAfAttributeMetadata * attributeMetadata = nullptr; |
| FindAttributeMetadata(aPath, &attributeCluster, &attributeMetadata); |
| |
| if (attributeCluster == nullptr && attributeMetadata == nullptr) |
| { |
| return apWriteHandler->AddStatus(aPath, UnsupportedAttributeStatus(aPath)); |
| } |
| |
| // All the global attributes we don't have metadata for are readonly. |
| if (attributeMetadata == nullptr || attributeMetadata->IsReadOnly()) |
| { |
| return apWriteHandler->AddStatus(aPath, Protocols::InteractionModel::Status::UnsupportedWrite); |
| } |
| |
| { |
| Access::RequestPath requestPath{ .cluster = aPath.mClusterId, |
| .endpoint = aPath.mEndpointId, |
| .requestType = Access::RequestType::kAttributeWriteRequest, |
| .entityId = aPath.mAttributeId }; |
| Access::Privilege requestPrivilege = RequiredPrivilege::ForWriteAttribute(aPath); |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| if (!apWriteHandler->ACLCheckCacheHit({ aPath, requestPrivilege })) |
| { |
| err = Access::GetAccessControl().Check(aSubjectDescriptor, requestPath, requestPrivilege); |
| } |
| if (err != CHIP_NO_ERROR) |
| { |
| ReturnErrorCodeIf(err != CHIP_ERROR_ACCESS_DENIED, err); |
| // TODO: when wildcard/group writes are supported, handle them to discard rather than fail with status |
| return apWriteHandler->AddStatus(aPath, Protocols::InteractionModel::Status::UnsupportedAccess); |
| } |
| apWriteHandler->CacheACLCheckResult({ aPath, requestPrivilege }); |
| } |
| |
| if (attributeMetadata->MustUseTimedWrite() && !apWriteHandler->IsTimedWrite()) |
| { |
| return apWriteHandler->AddStatus(aPath, Protocols::InteractionModel::Status::NeedsTimedInteraction); |
| } |
| |
| if (aPath.mDataVersion.HasValue() && !IsClusterDataVersionEqual(aPath, aPath.mDataVersion.Value())) |
| { |
| ChipLogError(DataManagement, "Write Version mismatch for Endpoint %x, Cluster " ChipLogFormatMEI, aPath.mEndpointId, |
| ChipLogValueMEI(aPath.mClusterId)); |
| return apWriteHandler->AddStatus(aPath, Protocols::InteractionModel::Status::DataVersionMismatch); |
| } |
| |
| if (auto * attrOverride = AttributeAccessInterfaceRegistry::Instance().Get(aPath.mEndpointId, aPath.mClusterId)) |
| { |
| AttributeValueDecoder valueDecoder(aReader, aSubjectDescriptor); |
| ReturnErrorOnFailure(attrOverride->Write(aPath, valueDecoder)); |
| |
| if (valueDecoder.TriedDecode()) |
| { |
| MatterReportingAttributeChangeCallback(aPath); |
| return apWriteHandler->AddStatus(aPath, Protocols::InteractionModel::Status::Success); |
| } |
| } |
| |
| CHIP_ERROR preparationError = CHIP_NO_ERROR; |
| uint16_t dataLen = 0; |
| if ((preparationError = prepareWriteData(attributeMetadata, aReader, dataLen)) != CHIP_NO_ERROR) |
| { |
| ChipLogDetail(Zcl, "Failed to prepare data to write: %" CHIP_ERROR_FORMAT, preparationError.Format()); |
| return apWriteHandler->AddStatus(aPath, Protocols::InteractionModel::Status::InvalidValue); |
| } |
| |
| if (dataLen > attributeMetadata->size) |
| { |
| ChipLogDetail(Zcl, "Data to write exceedes the attribute size claimed."); |
| return apWriteHandler->AddStatus(aPath, Protocols::InteractionModel::Status::InvalidValue); |
| } |
| |
| auto status = emAfWriteAttributeExternal(aPath.mEndpointId, aPath.mClusterId, aPath.mAttributeId, |
| gEmberAttributeIOBufferSpan.data(), attributeMetadata->attributeType); |
| return apWriteHandler->AddStatus(aPath, status); |
| } |
| |
| bool IsClusterDataVersionEqual(const ConcreteClusterPath & aConcreteClusterPath, DataVersion aRequiredVersion) |
| { |
| DataVersion * version = emberAfDataVersionStorage(aConcreteClusterPath); |
| if (version == nullptr) |
| { |
| ChipLogError(DataManagement, "Endpoint %x, Cluster " ChipLogFormatMEI " not found in IsClusterDataVersionEqual!", |
| aConcreteClusterPath.mEndpointId, ChipLogValueMEI(aConcreteClusterPath.mClusterId)); |
| return false; |
| } |
| |
| return (*(version)) == aRequiredVersion; |
| } |
| |
| bool IsDeviceTypeOnEndpoint(DeviceTypeId deviceType, EndpointId endpoint) |
| { |
| CHIP_ERROR err; |
| auto deviceTypeList = emberAfDeviceTypeListFromEndpoint(endpoint, err); |
| if (err != CHIP_NO_ERROR) |
| { |
| return false; |
| } |
| |
| for (auto & device : deviceTypeList) |
| { |
| if (device.deviceId == deviceType) |
| { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| Protocols::InteractionModel::Status CheckEventSupportStatus(const ConcreteEventPath & aPath) |
| { |
| using Protocols::InteractionModel::Status; |
| |
| const EmberAfEndpointType * type = emberAfFindEndpointType(aPath.mEndpointId); |
| if (type == nullptr) |
| { |
| return Status::UnsupportedEndpoint; |
| } |
| |
| const EmberAfCluster * cluster = emberAfFindClusterInType(type, aPath.mClusterId, CLUSTER_MASK_SERVER); |
| if (cluster == nullptr) |
| { |
| return Status::UnsupportedCluster; |
| } |
| |
| #if CHIP_CONFIG_ENABLE_EVENTLIST_ATTRIBUTE |
| for (size_t i = 0; i < cluster->eventCount; ++i) |
| { |
| if (cluster->eventList[i] == aPath.mEventId) |
| { |
| return Status::Success; |
| } |
| } |
| |
| return Status::UnsupportedEvent; |
| #else |
| // No way to tell. Just claim supported. |
| return Status::Success; |
| #endif // CHIP_CONFIG_ENABLE_EVENTLIST_ATTRIBUTE |
| } |
| |
| } // namespace app |
| } // namespace chip |