blob: 03dddf4322519dc19e9ec0cb49cd6de76e127e06 [file] [log] [blame]
/*
* Copyright (c) 2021 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* FreeRTOS Kernel V10.4.3
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/*
* A sample implementation of pvPortMalloc() and vPortFree() that combines
* (coalescences) adjacent memory blocks as they are freed, and in so doing
* limits memory fragmentation.
*
* See heap_1.c, heap_2.c and heap_3.c for alternative implementations, and the
* memory management pages of https://www.FreeRTOS.org for more information.
*/
#include <stdlib.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#include "heap_4_silabs.h"
#include "task.h"
#include <AppConfig.h>
#include <stdio.h>
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#if (configSUPPORT_DYNAMIC_ALLOCATION == 0)
#error This file must not be used if configSUPPORT_DYNAMIC_ALLOCATION is 0
#endif
/* Block sizes must not get too small. */
#define heapMINIMUM_BLOCK_SIZE ((size_t)(xHeapStructSize << 1))
/* Assumes 8bit bytes! */
#define heapBITS_PER_BYTE ((size_t) 8)
/* Allocate the memory for the heap. */
#if (configAPPLICATION_ALLOCATED_HEAP == 1)
/* The application writer has already defined the array used for the RTOS
heap - probably so it can be placed in a special segment or address. */
extern uint8_t ucHeap[configTOTAL_HEAP_SIZE];
#else
static uint8_t ucHeap[configTOTAL_HEAP_SIZE];
#endif /* configAPPLICATION_ALLOCATED_HEAP */
/* Define the linked list structure. This is used to link free blocks in order
of their memory address. */
typedef struct A_BLOCK_LINK
{
struct A_BLOCK_LINK * pxNextFreeBlock; /*<< The next free block in the list. */
size_t xBlockSize; /*<< The size of the free block. */
} BlockLink_t;
/*-----------------------------------------------------------*/
/*
* Inserts a block of memory that is being freed into the correct position in
* the list of free memory blocks. The block being freed will be merged with
* the block in front it and/or the block behind it if the memory blocks are
* adjacent to each other.
*/
static void prvInsertBlockIntoFreeList(BlockLink_t * pxBlockToInsert);
/*
* Called automatically to setup the required heap structures the first time
* pvPortMalloc() is called.
*/
static void prvHeapInit(void);
/*-----------------------------------------------------------*/
/* The size of the structure placed at the beginning of each allocated memory
* block must by correctly byte aligned. */
static const size_t xHeapStructSize =
(sizeof(BlockLink_t) + ((size_t)(portBYTE_ALIGNMENT - 1))) & ~((size_t) portBYTE_ALIGNMENT_MASK);
/* Create a couple of list links to mark the start and end of the list. */
static BlockLink_t xStart, *pxEnd = NULL;
/* Keeps track of the number of calls to allocate and free memory as well as the
* number of free bytes remaining, but says nothing about fragmentation. */
static size_t xFreeBytesRemaining = 0U;
static size_t xMinimumEverFreeBytesRemaining = 0U;
static size_t xNumberOfSuccessfulAllocations = 0;
static size_t xNumberOfSuccessfulFrees = 0;
/* Gets set to the top bit of an size_t type. When this bit in the xBlockSize
* member of an BlockLink_t structure is set then the block belongs to the
* application. When the bit is free the block is still part of the free heap
* space. */
static size_t xBlockAllocatedBit = 0;
/**
* @brief xPortPointerSize is based on the malloc implementation of heap_4
* Returns the size of allocated block associated to the pointer
*
* @param pv pointer
* @return size_t block size
*/
size_t xPortPointerSize(void * pv)
{
uint8_t * puc = (uint8_t *) pv;
BlockLink_t * pxLink;
void * voidp;
size_t sz = 0;
if (pv != NULL)
{
vTaskSuspendAll();
{
/* The memory being checked will have an BlockLink_t structure immediately
before it. */
puc -= xHeapStructSize;
/* This casting is to keep the compiler from issuing warnings. */
voidp = (void *) puc;
pxLink = (BlockLink_t *) voidp;
/* Check if the block is actually allocated. */
configASSERT((pxLink->xBlockSize & xBlockAllocatedBit) != 0);
configASSERT(pxLink->pxNextFreeBlock == NULL);
sz = (pxLink->xBlockSize & ~xBlockAllocatedBit) - xHeapStructSize;
}
(void) xTaskResumeAll();
}
return sz;
}
/*-----------------------------------------------------------*/
void * pvPortMalloc(size_t xWantedSize)
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
void * pvReturn = NULL;
vTaskSuspendAll();
{
/* If this is the first call to malloc then the heap will require
* initialisation to setup the list of free blocks. */
if (pxEnd == NULL)
{
prvHeapInit();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Check the requested block size is not so large that the top bit is
* set. The top bit of the block size member of the BlockLink_t structure
* is used to determine who owns the block - the application or the
* kernel, so it must be free. */
if ((xWantedSize & xBlockAllocatedBit) == 0)
{
/* The wanted size must be increased so it can contain a BlockLink_t
* structure in addition to the requested amount of bytes. */
if ((xWantedSize > 0) && ((xWantedSize + xHeapStructSize) > xWantedSize)) /* Overflow check */
{
xWantedSize += xHeapStructSize;
/* Ensure that blocks are always aligned. */
if ((xWantedSize & portBYTE_ALIGNMENT_MASK) != 0x00)
{
/* Byte alignment required. Check for overflow. */
if ((xWantedSize + (portBYTE_ALIGNMENT - (xWantedSize & portBYTE_ALIGNMENT_MASK))) > xWantedSize)
{
xWantedSize += (portBYTE_ALIGNMENT - (xWantedSize & portBYTE_ALIGNMENT_MASK));
configASSERT((xWantedSize & portBYTE_ALIGNMENT_MASK) == 0);
}
else
{
xWantedSize = 0;
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
xWantedSize = 0;
}
if ((xWantedSize > 0) && (xWantedSize <= xFreeBytesRemaining))
{
/* Traverse the list from the start (lowest address) block until
* one of adequate size is found. */
pxPreviousBlock = &xStart;
pxBlock = xStart.pxNextFreeBlock;
while ((pxBlock->xBlockSize < xWantedSize) && (pxBlock->pxNextFreeBlock != NULL))
{
pxPreviousBlock = pxBlock;
pxBlock = pxBlock->pxNextFreeBlock;
}
/* If the end marker was reached then a block of adequate size
* was not found. */
if (pxBlock != pxEnd)
{
/* Return the memory space pointed to - jumping over the
* BlockLink_t structure at its start. */
pvReturn = (void *) (((uint8_t *) pxPreviousBlock->pxNextFreeBlock) + xHeapStructSize);
/* This block is being returned for use so must be taken out
* of the list of free blocks. */
pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
/* If the block is larger than required it can be split into
* two. */
if ((pxBlock->xBlockSize - xWantedSize) > heapMINIMUM_BLOCK_SIZE)
{
/* This block is to be split into two. Create a new
* block following the number of bytes requested. The void
* cast is used to prevent byte alignment warnings from the
* compiler. */
pxNewBlockLink = (void *) (((uint8_t *) pxBlock) + xWantedSize);
configASSERT((((size_t) pxNewBlockLink) & portBYTE_ALIGNMENT_MASK) == 0);
/* Calculate the sizes of two blocks split from the
* single block. */
pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
pxBlock->xBlockSize = xWantedSize;
/* Insert the new block into the list of free blocks. */
prvInsertBlockIntoFreeList(pxNewBlockLink);
}
else
{
mtCOVERAGE_TEST_MARKER();
}
xFreeBytesRemaining -= pxBlock->xBlockSize;
if (xFreeBytesRemaining < xMinimumEverFreeBytesRemaining)
{
xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* The block is being returned - it is allocated and owned
* by the application and has no "next" block. */
pxBlock->xBlockSize |= xBlockAllocatedBit;
pxBlock->pxNextFreeBlock = NULL;
xNumberOfSuccessfulAllocations++;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceMALLOC(pvReturn, xWantedSize);
}
(void) xTaskResumeAll();
#if (configUSE_MALLOC_FAILED_HOOK == 1)
{
if (pvReturn == NULL)
{
extern void vApplicationMallocFailedHook(void);
vApplicationMallocFailedHook();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* if ( configUSE_MALLOC_FAILED_HOOK == 1 ) */
configASSERT((((size_t) pvReturn) & (size_t) portBYTE_ALIGNMENT_MASK) == 0);
return pvReturn;
}
/*-----------------------------------------------------------*/
void * pvPortCalloc(size_t num, size_t size)
{
size_t total = num * size;
// check for multiplication overflow
if ((size != 0) && ((total / size) != num))
{
return NULL;
}
void * ptr = pvPortMalloc(total);
if (ptr != NULL)
{
memset(ptr, 0, total);
}
return ptr;
}
void * pvPortRealloc(void * pv, size_t size)
{
void * resized_ptr = NULL;
size_t current_size = xPortPointerSize(pv);
if (current_size > 0) // pv is allocated
{
if (size) // New size is not 0
{
if (size == current_size) // if existing pointer is the same size
{
resized_ptr = pv;
}
else // New size is a different from current size
{
resized_ptr = pvPortCalloc(1, size);
if (resized_ptr != NULL)
{
size_t smallest_size = size < current_size ? size : current_size;
memcpy(resized_ptr, pv, smallest_size);
vPortFree(pv);
}
}
}
else // If size if 0, free pointer
{
vPortFree(pv);
}
}
else // pv is not allocated, allocate a new pointer
{
resized_ptr = pvPortCalloc(1, size);
}
return resized_ptr;
}
/*-----------------------------------------------------------*/
void vPortFree(void * pv)
{
uint8_t * puc = (uint8_t *) pv;
BlockLink_t * pxLink;
if (pv != NULL)
{
/* The memory being freed will have an BlockLink_t structure immediately
* before it. */
puc -= xHeapStructSize;
/* This casting is to keep the compiler from issuing warnings. */
pxLink = (void *) puc;
/* Check the block is actually allocated. */
configASSERT((pxLink->xBlockSize & xBlockAllocatedBit) != 0);
configASSERT(pxLink->pxNextFreeBlock == NULL);
if ((pxLink->xBlockSize & xBlockAllocatedBit) != 0)
{
if (pxLink->pxNextFreeBlock == NULL)
{
/* The block is being returned to the heap - it is no longer
* allocated. */
pxLink->xBlockSize &= ~xBlockAllocatedBit;
vTaskSuspendAll();
{
/* Add this block to the list of free blocks. */
xFreeBytesRemaining += pxLink->xBlockSize;
traceFREE(pv, pxLink->xBlockSize);
prvInsertBlockIntoFreeList(((BlockLink_t *) pxLink));
xNumberOfSuccessfulFrees++;
}
(void) xTaskResumeAll();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
/*-----------------------------------------------------------*/
size_t xPortGetFreeHeapSize(void)
{
return xFreeBytesRemaining;
}
/*-----------------------------------------------------------*/
size_t xPortGetMinimumEverFreeHeapSize(void)
{
return xMinimumEverFreeBytesRemaining;
}
void xPortResetHeapMinimumEverFreeHeapSize(void)
{
taskENTER_CRITICAL();
{
xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
}
taskEXIT_CRITICAL();
}
/*-----------------------------------------------------------*/
void vPortInitialiseBlocks(void)
{
/* This just exists to keep the linker quiet. */
}
/*-----------------------------------------------------------*/
static void prvHeapInit(void)
{
BlockLink_t * pxFirstFreeBlock;
uint8_t * pucAlignedHeap;
size_t uxAddress;
size_t xTotalHeapSize = configTOTAL_HEAP_SIZE;
/* Ensure the heap starts on a correctly aligned boundary. */
uxAddress = (size_t) ucHeap;
if ((uxAddress & portBYTE_ALIGNMENT_MASK) != 0)
{
uxAddress += (portBYTE_ALIGNMENT - 1);
uxAddress &= ~((size_t) portBYTE_ALIGNMENT_MASK);
xTotalHeapSize -= uxAddress - (size_t) ucHeap;
}
pucAlignedHeap = (uint8_t *) uxAddress;
/* xStart is used to hold a pointer to the first item in the list of free
* blocks. The void cast is used to prevent compiler warnings. */
xStart.pxNextFreeBlock = (void *) pucAlignedHeap;
xStart.xBlockSize = (size_t) 0;
/* pxEnd is used to mark the end of the list of free blocks and is inserted
* at the end of the heap space. */
uxAddress = ((size_t) pucAlignedHeap) + xTotalHeapSize;
uxAddress -= xHeapStructSize;
uxAddress &= ~((size_t) portBYTE_ALIGNMENT_MASK);
pxEnd = (void *) uxAddress;
pxEnd->xBlockSize = 0;
pxEnd->pxNextFreeBlock = NULL;
/* To start with there is a single free block that is sized to take up the
* entire heap space, minus the space taken by pxEnd. */
pxFirstFreeBlock = (void *) pucAlignedHeap;
pxFirstFreeBlock->xBlockSize = uxAddress - (size_t) pxFirstFreeBlock;
pxFirstFreeBlock->pxNextFreeBlock = pxEnd;
/* Only one block exists - and it covers the entire usable heap space. */
xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
/* Work out the position of the top bit in a size_t variable. */
xBlockAllocatedBit = ((size_t) 1) << ((sizeof(size_t) * heapBITS_PER_BYTE) - 1);
}
/*-----------------------------------------------------------*/
static void prvInsertBlockIntoFreeList(BlockLink_t * pxBlockToInsert)
{
BlockLink_t * pxIterator;
uint8_t * puc;
if (xStart.pxNextFreeBlock == 0)
{
// configASSERT( xStart.pxNextFreeBlock!=0);
HeapStats_t Stats;
vPortGetHeapStats(&Stats);
}
/* Iterate through the list until a block is found that has a higher address
* than the block being inserted. */
for (pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock)
{
/* Nothing to do here, just iterate to the right position. */
}
/* Do the block being inserted, and the block it is being inserted after
* make a contiguous block of memory? */
puc = (uint8_t *) pxIterator;
if ((puc + pxIterator->xBlockSize) == (uint8_t *) pxBlockToInsert)
{
pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
pxBlockToInsert = pxIterator;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Do the block being inserted, and the block it is being inserted before
* make a contiguous block of memory? */
puc = (uint8_t *) pxBlockToInsert;
if ((puc + pxBlockToInsert->xBlockSize) == (uint8_t *) pxIterator->pxNextFreeBlock)
{
if (pxIterator->pxNextFreeBlock != pxEnd)
{
/* Form one big block from the two blocks. */
pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
}
else
{
pxBlockToInsert->pxNextFreeBlock = pxEnd;
}
}
else
{
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
}
/* If the block being inserted plugged a gab, so was merged with the block
* before and the block after, then it's pxNextFreeBlock pointer will have
* already been set, and should not be set here as that would make it point
* to itself. */
if (pxIterator != pxBlockToInsert)
{
pxIterator->pxNextFreeBlock = pxBlockToInsert;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/*-----------------------------------------------------------*/
void vPortGetHeapStats(HeapStats_t * pxHeapStats)
{
BlockLink_t * pxBlock;
size_t xBlocks = 0, xMaxSize = 0,
xMinSize = portMAX_DELAY; /* portMAX_DELAY used as a portable way of getting the maximum value. */
vTaskSuspendAll();
{
pxBlock = xStart.pxNextFreeBlock;
/* pxBlock will be NULL if the heap has not been initialised. The heap
* is initialised automatically when the first allocation is made. */
if (pxBlock != NULL)
{
do
{
/* Increment the number of blocks and record the largest block seen
* so far. */
xBlocks++;
if (pxBlock->xBlockSize > xMaxSize)
{
xMaxSize = pxBlock->xBlockSize;
}
if (pxBlock->xBlockSize < xMinSize)
{
xMinSize = pxBlock->xBlockSize;
}
/* Move to the next block in the chain until the last block is
* reached. */
pxBlock = pxBlock->pxNextFreeBlock;
} while (pxBlock != pxEnd);
}
}
(void) xTaskResumeAll();
pxHeapStats->xSizeOfLargestFreeBlockInBytes = xMaxSize;
pxHeapStats->xSizeOfSmallestFreeBlockInBytes = xMinSize;
pxHeapStats->xNumberOfFreeBlocks = xBlocks;
taskENTER_CRITICAL();
{
pxHeapStats->xAvailableHeapSpaceInBytes = xFreeBytesRemaining;
pxHeapStats->xNumberOfSuccessfulAllocations = xNumberOfSuccessfulAllocations;
pxHeapStats->xNumberOfSuccessfulFrees = xNumberOfSuccessfulFrees;
pxHeapStats->xMinimumEverFreeBytesRemaining = xMinimumEverFreeBytesRemaining;
}
taskEXIT_CRITICAL();
}
/*
* Wrapper functions to override default memory allocation functions
*/
void * __wrap_malloc(size_t size)
{
return pvPortMalloc(size);
}
void __wrap_free(void * ptr)
{
vPortFree(ptr);
}
void * __wrap_realloc(void * ptr, size_t new_size)
{
return pvPortRealloc(ptr, new_size);
}
void * __wrap_calloc(size_t num, size_t size)
{
return pvPortCalloc(num, size);
}
void * __wrap__calloc_r(void * REENT, size_t num, size_t size)
{
return __wrap_calloc(num, size);
}
void * __wrap__malloc_r(void * REENT, size_t size)
{
return __wrap_malloc(size);
}
void __wrap__free_r(void * REENT, void * ptr)
{
__wrap_free(ptr);
}
void * __wrap__realloc_r(void * REENT, void * ptr, size_t new_size)
{
return __wrap_realloc(ptr, new_size);
}