blob: b1c548ba7eb3fb4202c02f842057cb73d32f8ca2 [file] [log] [blame]
/*
*
* Copyright (c) 2021 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides an implementation of the DiagnosticDataProvider object
* for EFR32 platform.
*/
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <platform/DiagnosticDataProvider.h>
#include <platform/silabs/DiagnosticDataProviderImpl.h>
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
#include <platform/OpenThread/GenericThreadStackManagerImpl_OpenThread.h>
#endif
#include "AppConfig.h"
#include "FreeRTOS.h"
#include "heap_4_silabs.h"
#include <lib/support/CHIPMemString.h>
using namespace ::chip::app::Clusters::GeneralDiagnostics;
namespace chip {
namespace DeviceLayer {
DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance()
{
static DiagnosticDataProviderImpl sInstance;
return sInstance;
}
// Software Diagnostics Getters
/*
* The following Heap stats are compiled values done by the FreeRTOS Heap4 implementation.
* See /examples/platform/efr32/heap_4_silabs.c
* It keeps track of the number of calls to allocate and free memory as well as the
* number of free bytes remaining, but says nothing about fragmentation.
*/
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree)
{
size_t freeHeapSize = xPortGetFreeHeapSize();
currentHeapFree = static_cast<uint64_t>(freeHeapSize);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed)
{
// Calculate the Heap used based on Total heap - Free heap
int64_t heapUsed = (configTOTAL_HEAP_SIZE - xPortGetFreeHeapSize());
// Something went wrong, this should not happen
VerifyOrReturnError(heapUsed >= 0, CHIP_ERROR_INVALID_INTEGER_VALUE);
currentHeapUsed = static_cast<uint64_t>(heapUsed);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark)
{
// FreeRTOS records the lowest amount of available heap during runtime
// currentHeapHighWatermark wants the highest heap usage point so we calculate it here
int64_t HighestHeapUsageRecorded = (configTOTAL_HEAP_SIZE - xPortGetMinimumEverFreeHeapSize());
// Something went wrong, this should not happen
VerifyOrReturnError(HighestHeapUsageRecorded >= 0, CHIP_ERROR_INVALID_INTEGER_VALUE);
currentHeapHighWatermark = static_cast<uint64_t>(HighestHeapUsageRecorded);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetWatermarks()
{
// If implemented, the server SHALL set the value of the CurrentHeapHighWatermark attribute to the
// value of the CurrentHeapUsed.
xPortResetHeapMinimumEverFreeHeapSize();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut)
{
/* Obtain all available task information */
TaskStatus_t * taskStatusArray;
ThreadMetrics * head = nullptr;
uint32_t arraySize, x, dummy;
arraySize = uxTaskGetNumberOfTasks();
taskStatusArray = static_cast<TaskStatus_t *>(chip::Platform::MemoryCalloc(arraySize, sizeof(TaskStatus_t)));
if (taskStatusArray != NULL)
{
/* Generate raw status information about each task. */
arraySize = uxTaskGetSystemState(taskStatusArray, arraySize, &dummy);
/* For each populated position in the taskStatusArray array,
format the raw data as human readable ASCII data. */
for (x = 0; x < arraySize; x++)
{
ThreadMetrics * thread = new ThreadMetrics();
if (thread)
{
Platform::CopyString(thread->NameBuf, taskStatusArray[x].pcTaskName);
thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf));
thread->id = taskStatusArray[x].xTaskNumber;
thread->stackFreeMinimum.Emplace(taskStatusArray[x].usStackHighWaterMark);
/* Unsupported metrics */
// thread->stackSize
// thread->stackFreeCurrent
thread->Next = head;
head = thread;
}
}
*threadMetricsOut = head;
/* The array is no longer needed, free the memory it consumes. */
chip::Platform::MemoryFree(taskStatusArray);
}
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics)
{
while (threadMetrics)
{
ThreadMetrics * del = threadMetrics;
threadMetrics = threadMetrics->Next;
delete del;
}
}
// General Diagnostics Getters
CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount)
{
uint32_t count = 0;
CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
rebootCount = static_cast<uint16_t>(count);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason)
{
uint32_t reason = 0;
CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
bootReason = static_cast<BootReasonType>(reason);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime)
{
System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp();
System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime();
if (currentTime >= startTime)
{
upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count();
return CHIP_NO_ERROR;
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
uint64_t upTime = 0;
if (GetUpTime(upTime) == CHIP_NO_ERROR)
{
uint32_t totalHours = 0;
if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR)
{
VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600);
return CHIP_NO_ERROR;
}
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveHardwareFaults(GeneralFaults<kMaxHardwareFaults> & hardwareFaults)
{
#if CHIP_CONFIG_TEST
ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_TYPE_RADIO));
ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_TYPE_SENSOR));
ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_TYPE_POWER_SOURCE));
ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_TYPE_USER_INTERFACE_FAULT));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveRadioFaults(GeneralFaults<kMaxRadioFaults> & radioFaults)
{
#if CHIP_CONFIG_TEST
ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_TYPE_THREAD_FAULT));
ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_TYPE_BLE_FAULT));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveNetworkFaults(GeneralFaults<kMaxNetworkFaults> & networkFaults)
{
#if CHIP_CONFIG_TEST
ReturnErrorOnFailure(networkFaults.add(EMBER_ZCL_NETWORK_FAULT_TYPE_HARDWARE_FAILURE));
ReturnErrorOnFailure(networkFaults.add(EMBER_ZCL_NETWORK_FAULT_TYPE_NETWORK_JAMMED));
ReturnErrorOnFailure(networkFaults.add(EMBER_ZCL_NETWORK_FAULT_TYPE_CONNECTION_FAILED));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp)
{
NetworkInterface * ifp = new NetworkInterface();
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
const char * threadNetworkName = otThreadGetNetworkName(ThreadStackMgrImpl().OTInstance());
ifp->name = Span<const char>(threadNetworkName, strlen(threadNetworkName));
ifp->isOperational = true;
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
ifp->type = InterfaceType::EMBER_ZCL_INTERFACE_TYPE_THREAD;
uint8_t macBuffer[ConfigurationManager::kPrimaryMACAddressLength];
ConfigurationMgr().GetPrimary802154MACAddress(macBuffer);
ifp->hardwareAddress = ByteSpan(macBuffer, ConfigurationManager::kPrimaryMACAddressLength);
#else
NetworkInterface * head = NULL;
for (Inet::InterfaceIterator interfaceIterator; interfaceIterator.HasCurrent(); interfaceIterator.Next())
{
interfaceIterator.GetInterfaceName(ifp->Name, Inet::InterfaceId::kMaxIfNameLength);
ifp->name = CharSpan::fromCharString(ifp->Name);
ifp->isOperational = true;
Inet::InterfaceType interfaceType;
CHIP_ERROR err = interfaceIterator.GetInterfaceType(interfaceType);
if (err == CHIP_NO_ERROR || err == CHIP_ERROR_NOT_IMPLEMENTED)
{
switch (interfaceType)
{
case Inet::InterfaceType::Unknown:
ifp->type = EMBER_ZCL_INTERFACE_TYPE_UNSPECIFIED;
break;
case Inet::InterfaceType::WiFi:
ifp->type = EMBER_ZCL_INTERFACE_TYPE_WI_FI;
break;
case Inet::InterfaceType::Ethernet:
ifp->type = EMBER_ZCL_INTERFACE_TYPE_ETHERNET;
break;
case Inet::InterfaceType::Thread:
ifp->type = EMBER_ZCL_INTERFACE_TYPE_THREAD;
break;
case Inet::InterfaceType::Cellular:
ifp->type = EMBER_ZCL_INTERFACE_TYPE_CELLULAR;
break;
default:
ifp->type = EMBER_ZCL_INTERFACE_TYPE_WI_FI;
break;
}
}
else
{
ChipLogError(DeviceLayer, "Failed to get interface type");
}
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
uint8_t addressSize;
if (interfaceIterator.GetHardwareAddress(ifp->MacAddress, addressSize, sizeof(ifp->MacAddress)) != CHIP_NO_ERROR)
{
ChipLogError(DeviceLayer, "Failed to get network hardware address");
}
else
{
ifp->hardwareAddress = ByteSpan(ifp->MacAddress, addressSize);
}
// Assuming IPv6-only support
Inet::InterfaceAddressIterator interfaceAddressIterator;
uint8_t ipv6AddressesCount = 0;
while (interfaceAddressIterator.HasCurrent() && ipv6AddressesCount < kMaxIPv6AddrCount)
{
if (interfaceAddressIterator.GetInterfaceId() == interfaceIterator.GetInterfaceId())
{
chip::Inet::IPAddress ipv6Address;
if (interfaceAddressIterator.GetAddress(ipv6Address) == CHIP_NO_ERROR)
{
memcpy(ifp->Ipv6AddressesBuffer[ipv6AddressesCount], ipv6Address.Addr, kMaxIPv6AddrSize);
ifp->Ipv6AddressSpans[ipv6AddressesCount] = ByteSpan(ifp->Ipv6AddressesBuffer[ipv6AddressesCount]);
ipv6AddressesCount++;
}
}
interfaceAddressIterator.Next();
}
ifp->IPv6Addresses = chip::app::DataModel::List<chip::ByteSpan>(ifp->Ipv6AddressSpans, ipv6AddressesCount);
head = ifp;
}
*netifpp = head;
#endif
*netifpp = ifp;
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp)
{
while (netifp)
{
NetworkInterface * del = netifp;
netifp = netifp->Next;
delete del;
}
}
#if SL_WIFI
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(ByteSpan & BssId)
{
wfx_wifi_scan_result_t ap;
int32_t err = wfx_get_ap_info(&ap);
static uint8_t bssid[6];
if (err == 0)
{
memcpy(bssid, ap.bssid, 6);
BssId = ByteSpan(bssid, 6);
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(uint8_t & securityType)
{
wfx_wifi_scan_result_t ap;
int32_t err = wfx_get_ap_info(&ap);
if (err == 0)
{
securityType = ap.security;
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(uint8_t & wifiVersion)
{
wifiVersion = EMBER_ZCL_WI_FI_VERSION_TYPE_802__11N;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber)
{
wfx_wifi_scan_result_t ap;
int32_t err = wfx_get_ap_info(&ap);
if (err == 0)
{
channelNumber = ap.chan;
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi)
{
wfx_wifi_scan_result_t ap;
int32_t err = wfx_get_ap_info(&ap);
if (err == 0)
{
rssi = ap.rssi;
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount)
{
wfx_wifi_scan_ext_t extra_info;
int32_t err = wfx_get_ap_ext(&extra_info);
if (err == 0)
{
beaconLostCount = extra_info.beacon_lost_count;
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiCurrentMaxRate(uint64_t & currentMaxRate)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount)
{
wfx_wifi_scan_ext_t extra_info;
int32_t err = wfx_get_ap_ext(&extra_info);
if (err == 0)
{
packetMulticastRxCount = extra_info.mcast_rx_count;
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount)
{
wfx_wifi_scan_ext_t extra_info;
int32_t err = wfx_get_ap_ext(&extra_info);
if (err == 0)
{
packetMulticastTxCount = extra_info.mcast_tx_count;
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount)
{
wfx_wifi_scan_ext_t extra_info;
int32_t err = wfx_get_ap_ext(&extra_info);
if (err == 0)
{
packetUnicastRxCount = extra_info.ucast_rx_count;
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount)
{
wfx_wifi_scan_ext_t extra_info;
int32_t err = wfx_get_ap_ext(&extra_info);
if (err == 0)
{
packetUnicastTxCount = extra_info.ucast_tx_count;
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount)
{
wfx_wifi_scan_ext_t extra_info;
int32_t err = wfx_get_ap_ext(&extra_info);
if (err == 0)
{
overrunCount = extra_info.overrun_count;
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts()
{
int32_t err = wfx_reset_counts();
if (err == 0)
{
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
#endif // SL_WIFI
DiagnosticDataProvider & GetDiagnosticDataProviderImpl()
{
return DiagnosticDataProviderImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip