blob: 2418ab85978eb24f7c46d9c449848c6cc6c21b49 [file] [log] [blame]
/*
*
* Copyright (c) 2021 Project CHIP Authors
* Copyright (c) 2021 Google LLC.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "AppTask.h"
#include "AppEvent.h"
#include <app/server/OnboardingCodesUtil.h>
#include <app/server/Server.h>
#include <lib/core/ErrorStr.h>
#include <app/server/OnboardingCodesUtil.h>
#include <credentials/DeviceAttestationCredsProvider.h>
#include <credentials/examples/DeviceAttestationCredsExample.h>
#include <inet/EndPointStateOpenThread.h>
#include <lib/support/ThreadOperationalDataset.h>
#include <platform/CHIPDeviceLayer.h>
#include <platform/internal/DeviceNetworkInfo.h>
#include <app-common/zap-generated/attributes/Accessors.h>
#include <app-common/zap-generated/ids/Clusters.h>
#include <app/util/attribute-storage.h>
#include <DeviceInfoProviderImpl.h>
/* OTA related includes */
#if CHIP_DEVICE_CONFIG_ENABLE_OTA_REQUESTOR
#include "OtaSupport.h"
#include <app/clusters/ota-requestor/BDXDownloader.h>
#include <app/clusters/ota-requestor/DefaultOTARequestor.h>
#include <app/clusters/ota-requestor/DefaultOTARequestorDriver.h>
#include <app/clusters/ota-requestor/DefaultOTARequestorStorage.h>
#include <src/platform/nxp/common/ota/OTAImageProcessorImpl.h>
#endif
#include "DefaultTestEventTriggerDelegate.h"
#include "Keyboard.h"
#include "LED.h"
#include "LEDWidget.h"
#include "app_config.h"
#if CHIP_CRYPTO_HSM
#include <crypto/hsm/CHIPCryptoPALHsm.h>
#endif
#ifdef ENABLE_HSM_DEVICE_ATTESTATION
#include "DeviceAttestationSe05xCredsExample.h"
#endif
#define FACTORY_RESET_TRIGGER_TIMEOUT 6000
#define FACTORY_RESET_CANCEL_WINDOW_TIMEOUT 3000
#define APP_TASK_STACK_SIZE (4096)
#define APP_TASK_PRIORITY 2
#define APP_EVENT_QUEUE_SIZE 10
TimerHandle_t sFunctionTimer; // FreeRTOS app sw timer.
static QueueHandle_t sAppEventQueue;
static LEDWidget sStatusLED;
static LEDWidget sLightLED;
static bool sIsThreadProvisioned = false;
static bool sHaveBLEConnections = false;
static uint32_t eventMask = 0;
#if CHIP_DEVICE_CONFIG_THREAD_ENABLE_CLI
extern "C" void K32WUartProcess(void);
#endif
using namespace ::chip::Credentials;
using namespace ::chip::DeviceLayer;
using namespace chip;
using namespace chip::app;
AppTask AppTask::sAppTask;
#if CONFIG_CHIP_LOAD_REAL_FACTORY_DATA
static chip::DeviceLayer::FactoryDataProviderImpl sFactoryDataProvider;
#if CHIP_DEVICE_CONFIG_USE_CUSTOM_PROVIDER
static chip::DeviceLayer::CustomFactoryDataProvider sCustomFactoryDataProvider;
#endif
#endif
// This key is for testing/certification only and should not be used in production devices.
// For production devices this key must be provided from factory data.
uint8_t sTestEventTriggerEnableKey[TestEventTriggerDelegate::kEnableKeyLength] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
static Identify gIdentify = { chip::EndpointId{ 1 }, AppTask::OnIdentifyStart, AppTask::OnIdentifyStop,
Clusters::Identify::IdentifyTypeEnum::kVisibleIndicator, AppTask::OnTriggerEffect,
// Use invalid value for identifiers to enable TriggerEffect command
// to stop Identify command for each effect
Clusters::Identify::EffectIdentifierEnum::kUnknownEnumValue,
Clusters::Identify::EffectVariantEnum::kDefault };
/* OTA related variables */
#if CHIP_DEVICE_CONFIG_ENABLE_OTA_REQUESTOR
static DefaultOTARequestor gRequestorCore;
static DefaultOTARequestorStorage gRequestorStorage;
static DeviceLayer::DefaultOTARequestorDriver gRequestorUser;
static BDXDownloader gDownloader;
constexpr uint16_t requestedOtaBlockSize = 1024;
#endif
#if CONFIG_CHIP_LOAD_REAL_FACTORY_DATA && CONFIG_CHIP_OTA_FACTORY_DATA_PROCESSOR
CHIP_ERROR CustomFactoryDataRestoreMechanism(void)
{
K32W_LOG("This is a custom factory data restore mechanism.");
return CHIP_NO_ERROR;
}
#endif
CHIP_ERROR AppTask::StartAppTask()
{
CHIP_ERROR err = CHIP_NO_ERROR;
sAppEventQueue = xQueueCreate(APP_EVENT_QUEUE_SIZE, sizeof(AppEvent));
if (sAppEventQueue == NULL)
{
err = APP_ERROR_EVENT_QUEUE_FAILED;
K32W_LOG("Failed to allocate app event queue");
assert(err == CHIP_NO_ERROR);
}
return err;
}
#if CHIP_DEVICE_CONFIG_ENABLE_OTA_REQUESTOR
static void CheckOtaEntry()
{
K32W_LOG("Current OTA_ENTRY_TOP_ADDR: 0x%x", OTA_ENTRY_TOP_ADDR);
CustomOtaEntries_t ota_entries;
if (gOtaSuccess_c == OTA_GetCustomEntries(&ota_entries) && ota_entries.ota_state != otaNoImage)
{
if (ota_entries.ota_state == otaApplied)
{
K32W_LOG("OTA successfully applied");
#if CONFIG_CHIP_LOAD_REAL_FACTORY_DATA && CONFIG_CHIP_OTA_FACTORY_DATA_PROCESSOR
// If this point is reached, it means OTA_CommitCustomEntries was successfully called.
// Delete the factory data backup to stop doing a restore when the factory data provider
// is initialized. This ensures that both the factory data and app were updated, otherwise
// revert to the backed up factory data.
PDM_vDeleteDataRecord(kNvmId_FactoryDataBackup);
#endif
}
else
{
K32W_LOG("OTA failed with status %d", ota_entries.ota_state);
}
// Clear the entry
OTA_ResetCustomEntries();
}
else
{
K32W_LOG("Unable to access OTA entries structure");
}
}
#endif
CHIP_ERROR AppTask::Init()
{
CHIP_ERROR err = CHIP_NO_ERROR;
PlatformMgr().AddEventHandler(MatterEventHandler, 0);
// Init ZCL Data Model and start server
PlatformMgr().ScheduleWork(InitServer, 0);
#if CHIP_DEVICE_CONFIG_ENABLE_OTA_REQUESTOR
CheckOtaEntry();
#endif
#if CONFIG_CHIP_LOAD_REAL_FACTORY_DATA
#if CONFIG_CHIP_OTA_FACTORY_DATA_PROCESSOR
sFactoryDataProvider.RegisterRestoreMechanism(CustomFactoryDataRestoreMechanism);
#endif
ReturnErrorOnFailure(sFactoryDataProvider.Init());
SetDeviceInstanceInfoProvider(&sFactoryDataProvider);
SetDeviceAttestationCredentialsProvider(&sFactoryDataProvider);
SetCommissionableDataProvider(&sFactoryDataProvider);
#if CHIP_DEVICE_CONFIG_USE_CUSTOM_PROVIDER
sCustomFactoryDataProvider.ParseFunctionExample();
#endif
#else
#ifdef ENABLE_HSM_DEVICE_ATTESTATION
SetDeviceAttestationCredentialsProvider(Examples::GetExampleSe05xDACProvider());
#else
SetDeviceAttestationCredentialsProvider(Examples::GetExampleDACProvider());
#endif
#endif // CONFIG_CHIP_LOAD_REAL_FACTORY_DATA
// QR code will be used with CHIP Tool
AppTask::PrintOnboardingInfo();
/* HW init leds */
LED_Init();
if (LightingMgr().Init() != 0)
{
K32W_LOG("LightingMgr().Init() failed");
assert(0);
}
LightingMgr().SetCallbacks(ActionInitiated, ActionCompleted);
/* start with all LEDS turnedd off */
sStatusLED.Init(SYSTEM_STATE_LED);
sLightLED.Init(LIGHT_STATE_LED);
UpdateDeviceState();
/* intialize the Keyboard and button press calback */
KBD_Init(KBD_Callback);
// Create FreeRTOS sw timer for Function Selection.
sFunctionTimer = xTimerCreate("FnTmr", // Just a text name, not used by the RTOS kernel
1, // == default timer period (mS)
false, // no timer reload (==one-shot)
(void *) this, // init timer id = app task obj context
TimerEventHandler // timer callback handler
);
if (sFunctionTimer == NULL)
{
err = APP_ERROR_CREATE_TIMER_FAILED;
K32W_LOG("app_timer_create() failed");
assert(err == CHIP_NO_ERROR);
}
// Print the current software version
char currentSoftwareVer[ConfigurationManager::kMaxSoftwareVersionStringLength + 1] = { 0 };
err = ConfigurationMgr().GetSoftwareVersionString(currentSoftwareVer, sizeof(currentSoftwareVer));
if (err != CHIP_NO_ERROR)
{
K32W_LOG("Get version error");
assert(err == CHIP_NO_ERROR);
}
uint32_t currentVersion;
err = ConfigurationMgr().GetSoftwareVersion(currentVersion);
K32W_LOG("Current Software Version: %s, %" PRIu32, currentSoftwareVer, currentVersion);
#if CHIP_DEVICE_CONFIG_ENABLE_OTA_REQUESTOR
/* SSBL will always be seen as booting from address 0, thanks to the remapping mechanism.
* This means the SSBL version will always offset from address 0. */
extern uint32_t __MATTER_SSBL_VERSION_START[];
K32W_LOG("Current SSBL Version: %ld. Found at address 0x%lx", *((uint32_t *) __MATTER_SSBL_VERSION_START),
(uint32_t) __MATTER_SSBL_VERSION_START);
#endif
return err;
}
void LockOpenThreadTask(void)
{
chip::DeviceLayer::ThreadStackMgr().LockThreadStack();
}
void UnlockOpenThreadTask(void)
{
chip::DeviceLayer::ThreadStackMgr().UnlockThreadStack();
}
void AppTask::InitServer(intptr_t arg)
{
static chip::CommonCaseDeviceServerInitParams initParams;
(void) initParams.InitializeStaticResourcesBeforeServerInit();
auto & infoProvider = chip::DeviceLayer::DeviceInfoProviderImpl::GetDefaultInstance();
infoProvider.SetStorageDelegate(initParams.persistentStorageDelegate);
chip::DeviceLayer::SetDeviceInfoProvider(&infoProvider);
// Init ZCL Data Model and start server
static DefaultTestEventTriggerDelegate sTestEventTriggerDelegate{ ByteSpan(sTestEventTriggerEnableKey) };
initParams.testEventTriggerDelegate = &sTestEventTriggerDelegate;
chip::Inet::EndPointStateOpenThread::OpenThreadEndpointInitParam nativeParams;
nativeParams.lockCb = LockOpenThreadTask;
nativeParams.unlockCb = UnlockOpenThreadTask;
nativeParams.openThreadInstancePtr = chip::DeviceLayer::ThreadStackMgrImpl().OTInstance();
initParams.endpointNativeParams = static_cast<void *>(&nativeParams);
VerifyOrDie((chip::Server::GetInstance().Init(initParams)) == CHIP_NO_ERROR);
}
void AppTask::PrintOnboardingInfo()
{
chip::PayloadContents payload;
CHIP_ERROR err = GetPayloadContents(payload, chip::RendezvousInformationFlags(chip::RendezvousInformationFlag::kBLE));
if (err != CHIP_NO_ERROR)
{
ChipLogError(AppServer, "GetPayloadContents() failed: %" CHIP_ERROR_FORMAT, err.Format());
}
payload.commissioningFlow = chip::CommissioningFlow::kUserActionRequired;
PrintOnboardingCodes(payload);
}
#if CHIP_DEVICE_CONFIG_ENABLE_OTA_REQUESTOR
void AppTask::InitOTA(intptr_t arg)
{
// Initialize and interconnect the Requestor and Image Processor objects -- START
SetRequestorInstance(&gRequestorCore);
gRequestorStorage.Init(chip::Server::GetInstance().GetPersistentStorage());
gRequestorCore.Init(chip::Server::GetInstance(), gRequestorStorage, gRequestorUser, gDownloader);
gRequestorUser.SetMaxDownloadBlockSize(requestedOtaBlockSize);
auto & imageProcessor = OTAImageProcessorImpl::GetDefaultInstance();
gRequestorUser.Init(&gRequestorCore, &imageProcessor);
CHIP_ERROR err = imageProcessor.Init(&gDownloader);
if (err != CHIP_NO_ERROR)
{
K32W_LOG("Image processor init failed");
assert(err == CHIP_NO_ERROR);
}
// Connect the gDownloader and Image Processor objects
gDownloader.SetImageProcessorDelegate(&imageProcessor);
// Initialize and interconnect the Requestor and Image Processor objects -- END
}
#endif
void AppTask::AppTaskMain(void * pvParameter)
{
AppEvent event;
CHIP_ERROR err = sAppTask.Init();
if (err != CHIP_NO_ERROR)
{
K32W_LOG("AppTask.Init() failed");
assert(err == CHIP_NO_ERROR);
}
while (true)
{
BaseType_t eventReceived = xQueueReceive(sAppEventQueue, &event, pdMS_TO_TICKS(10));
while (eventReceived == pdTRUE)
{
sAppTask.DispatchEvent(&event);
eventReceived = xQueueReceive(sAppEventQueue, &event, 0);
}
// Collect connectivity and configuration state from the CHIP stack. Because the
// CHIP event loop is being run in a separate task, the stack must be locked
// while these values are queried. However we use a non-blocking lock request
// (TryLockChipStack()) to avoid blocking other UI activities when the CHIP
// task is busy (e.g. with a long crypto operation).
if (PlatformMgr().TryLockChipStack())
{
#if CHIP_DEVICE_CONFIG_THREAD_ENABLE_CLI
K32WUartProcess();
#endif
sHaveBLEConnections = (ConnectivityMgr().NumBLEConnections() != 0);
PlatformMgr().UnlockChipStack();
}
// Update the status LED if factory reset or identify process have not been initiated.
//
// If system has "full connectivity", keep the LED On constantly.
//
// If thread and service provisioned, but not attached to the thread network yet OR no
// connectivity to the service OR subscriptions are not fully established
// THEN blink the LED Off for a short period of time.
//
// If the system has ble connection(s) uptill the stage above, THEN blink the LEDs at an even
// rate of 100ms.
//
// Otherwise, blink the LED ON for a very short time.
if (sAppTask.mFunction != kFunction_FactoryReset)
{
if (sIsThreadProvisioned)
{
sStatusLED.Blink(950, 50);
}
else if (sHaveBLEConnections)
{
sStatusLED.Blink(100, 100);
}
else
{
sStatusLED.Blink(50, 950);
}
}
sStatusLED.Animate();
sLightLED.Animate();
HandleKeyboard();
}
}
void AppTask::ButtonEventHandler(uint8_t pin_no, uint8_t button_action)
{
if ((pin_no != RESET_BUTTON) && (pin_no != LIGHT_BUTTON) && (pin_no != OTA_BUTTON) && (pin_no != BLE_BUTTON))
{
return;
}
AppEvent button_event;
button_event.Type = AppEvent::kEventType_Button;
button_event.ButtonEvent.PinNo = pin_no;
button_event.ButtonEvent.Action = button_action;
if (pin_no == RESET_BUTTON)
{
button_event.Handler = ResetActionEventHandler;
}
else if (pin_no == LIGHT_BUTTON)
{
button_event.Handler = LightActionEventHandler;
}
else if (pin_no == OTA_BUTTON)
{
button_event.Handler = OTAHandler;
}
else if (pin_no == BLE_BUTTON)
{
button_event.Handler = BleHandler;
#if !(defined OM15082)
if (button_action == RESET_BUTTON_PUSH)
{
button_event.Handler = ResetActionEventHandler;
}
#endif
}
sAppTask.PostEvent(&button_event);
}
void AppTask::KBD_Callback(uint8_t events)
{
eventMask = eventMask | (uint32_t) (1 << events);
}
void AppTask::HandleKeyboard(void)
{
uint8_t keyEvent = 0xFF;
uint8_t pos = 0;
while (eventMask)
{
for (pos = 0; pos < (8 * sizeof(eventMask)); pos++)
{
if (eventMask & (1 << pos))
{
keyEvent = pos;
eventMask = eventMask & ~(1 << pos);
break;
}
}
switch (keyEvent)
{
case gKBD_EventPB1_c:
#if (defined OM15082)
ButtonEventHandler(RESET_BUTTON, RESET_BUTTON_PUSH);
break;
#else
ButtonEventHandler(BLE_BUTTON, BLE_BUTTON_PUSH);
break;
#endif
case gKBD_EventPB2_c:
ButtonEventHandler(LIGHT_BUTTON, LIGHT_BUTTON_PUSH);
break;
case gKBD_EventPB3_c:
ButtonEventHandler(OTA_BUTTON, OTA_BUTTON_PUSH);
break;
case gKBD_EventPB4_c:
ButtonEventHandler(BLE_BUTTON, BLE_BUTTON_PUSH);
break;
#if !(defined OM15082)
case gKBD_EventLongPB1_c:
ButtonEventHandler(BLE_BUTTON, RESET_BUTTON_PUSH);
break;
#endif
default:
break;
}
}
}
void AppTask::TimerEventHandler(TimerHandle_t xTimer)
{
AppEvent event;
event.Type = AppEvent::kEventType_Timer;
event.TimerEvent.Context = (void *) xTimer;
event.Handler = FunctionTimerEventHandler;
sAppTask.PostEvent(&event);
}
void AppTask::FunctionTimerEventHandler(AppEvent * aEvent)
{
if (aEvent->Type != AppEvent::kEventType_Timer)
return;
K32W_LOG("Device will factory reset...");
// Actually trigger Factory Reset
chip::Server::GetInstance().ScheduleFactoryReset();
}
void AppTask::ResetActionEventHandler(AppEvent * aEvent)
{
if (aEvent->ButtonEvent.PinNo != RESET_BUTTON && aEvent->ButtonEvent.PinNo != BLE_BUTTON)
return;
if (sAppTask.mResetTimerActive)
{
sAppTask.CancelTimer();
sAppTask.mFunction = kFunction_NoneSelected;
RestoreLightingState();
K32W_LOG("Factory Reset was cancelled!");
}
else
{
uint32_t resetTimeout = FACTORY_RESET_TRIGGER_TIMEOUT;
if (sAppTask.mFunction != kFunction_NoneSelected)
{
K32W_LOG("Another function is scheduled. Could not initiate Factory Reset!");
return;
}
K32W_LOG("Factory Reset Triggered. Push the RESET button within %lu ms to cancel!", resetTimeout);
sAppTask.mFunction = kFunction_FactoryReset;
/* LEDs will start blinking to signal that a Factory Reset was scheduled */
sStatusLED.Set(false);
sLightLED.Set(false);
sStatusLED.Blink(500);
sLightLED.Blink(500);
sAppTask.StartTimer(FACTORY_RESET_TRIGGER_TIMEOUT);
}
}
void AppTask::LightActionEventHandler(AppEvent * aEvent)
{
LightingManager::Action_t action;
CHIP_ERROR err = CHIP_NO_ERROR;
int32_t actor = 0;
bool initiated = false;
if (sAppTask.mFunction != kFunction_NoneSelected)
{
K32W_LOG("Another function is scheduled. Could not initiate ON/OFF Light command!");
return;
}
if (aEvent->Type == AppEvent::kEventType_TurnOn)
{
action = static_cast<LightingManager::Action_t>(aEvent->LightEvent.Action);
actor = aEvent->LightEvent.Actor;
}
else if (aEvent->Type == AppEvent::kEventType_Button)
{
actor = AppEvent::kEventType_Button;
if (LightingMgr().IsTurnedOff())
{
action = LightingManager::TURNON_ACTION;
}
else
{
action = LightingManager::TURNOFF_ACTION;
}
}
else
{
err = APP_ERROR_UNHANDLED_EVENT;
action = LightingManager::INVALID_ACTION;
}
if (err == CHIP_NO_ERROR)
{
initiated = LightingMgr().InitiateAction(actor, action);
if (!initiated)
{
K32W_LOG("Action is already in progress or active.");
}
}
}
void AppTask::OTAHandler(AppEvent * aEvent)
{
if (aEvent->ButtonEvent.PinNo != OTA_BUTTON)
return;
#if CHIP_DEVICE_CONFIG_ENABLE_OTA_REQUESTOR
if (sAppTask.mFunction != kFunction_NoneSelected)
{
K32W_LOG("Another function is scheduled. Could not initiate OTA!");
return;
}
PlatformMgr().ScheduleWork(StartOTAQuery, 0);
#endif
}
#if CHIP_DEVICE_CONFIG_ENABLE_OTA_REQUESTOR
void AppTask::StartOTAQuery(intptr_t arg)
{
GetRequestorInstance()->TriggerImmediateQuery();
}
#endif
void AppTask::BleHandler(AppEvent * aEvent)
{
if (aEvent->ButtonEvent.PinNo != BLE_BUTTON)
return;
if (sAppTask.mFunction != kFunction_NoneSelected)
{
K32W_LOG("Another function is scheduled. Could not toggle BLE state!");
return;
}
PlatformMgr().ScheduleWork(AppTask::BleStartAdvertising, 0);
}
void AppTask::BleStartAdvertising(intptr_t arg)
{
if (ConnectivityMgr().IsBLEAdvertisingEnabled())
{
ConnectivityMgr().SetBLEAdvertisingEnabled(false);
K32W_LOG("Stopped BLE Advertising!");
}
else
{
ConnectivityMgr().SetBLEAdvertisingEnabled(true);
if (chip::Server::GetInstance().GetCommissioningWindowManager().OpenBasicCommissioningWindow() == CHIP_NO_ERROR)
{
K32W_LOG("Started BLE Advertising!");
}
else
{
K32W_LOG("OpenBasicCommissioningWindow() failed");
}
}
}
void AppTask::MatterEventHandler(const ChipDeviceEvent * event, intptr_t)
{
if (event->Type == DeviceEventType::kServiceProvisioningChange && event->ServiceProvisioningChange.IsServiceProvisioned)
{
if (event->ServiceProvisioningChange.IsServiceProvisioned)
{
sIsThreadProvisioned = TRUE;
}
else
{
sIsThreadProvisioned = FALSE;
}
}
#if CHIP_DEVICE_CONFIG_ENABLE_OTA_REQUESTOR
if (event->Type == DeviceEventType::kDnssdInitialized)
{
K32W_LOG("Dnssd platform initialized.");
PlatformMgr().ScheduleWork(AppTask::InitOTA, 0);
}
#endif
#if CONFIG_CHIP_NFC_COMMISSIONING
if (event->Type == DeviceEventType::kCHIPoBLEAdvertisingChange && event->CHIPoBLEAdvertisingChange.Result == kActivity_Stopped)
{
if (!NFCMgr().IsTagEmulationStarted())
{
K32W_LOG("NFC Tag emulation is already stopped!");
}
else
{
NFCMgr().StopTagEmulation();
K32W_LOG("Stopped NFC Tag Emulation!");
}
}
else if (event->Type == DeviceEventType::kCHIPoBLEAdvertisingChange &&
event->CHIPoBLEAdvertisingChange.Result == kActivity_Started)
{
if (NFCMgr().IsTagEmulationStarted())
{
K32W_LOG("NFC Tag emulation is already started!");
}
else
{
ShareQRCodeOverNFC(chip::RendezvousInformationFlags(chip::RendezvousInformationFlag::kBLE));
K32W_LOG("Started NFC Tag Emulation!");
}
}
#endif
}
void AppTask::CancelTimer()
{
if (xTimerStop(sFunctionTimer, 0) == pdFAIL)
{
K32W_LOG("app timer stop() failed");
}
mResetTimerActive = false;
}
void AppTask::StartTimer(uint32_t aTimeoutInMs)
{
if (xTimerIsTimerActive(sFunctionTimer))
{
K32W_LOG("app timer already started!");
CancelTimer();
}
// timer is not active, change its period to required value (== restart).
// FreeRTOS- Block for a maximum of 100 ticks if the change period command
// cannot immediately be sent to the timer command queue.
if (xTimerChangePeriod(sFunctionTimer, aTimeoutInMs / portTICK_PERIOD_MS, 100) != pdPASS)
{
K32W_LOG("app timer start() failed");
}
mResetTimerActive = true;
}
void AppTask::ActionInitiated(LightingManager::Action_t aAction, int32_t aActor)
{
// start flashing the LEDs rapidly to indicate action initiation.
if (aAction == LightingManager::TURNON_ACTION)
{
K32W_LOG("Turn on Action has been initiated")
}
else if (aAction == LightingManager::TURNOFF_ACTION)
{
K32W_LOG("Turn off Action has been initiated")
}
if (aActor == AppEvent::kEventType_Button)
{
sAppTask.mSyncClusterToButtonAction = true;
}
sAppTask.mFunction = kFunctionTurnOnTurnOff;
}
void AppTask::ActionCompleted(LightingManager::Action_t aAction)
{
// Turn on the light LED if in a TURNON state OR
// Turn off the light LED if in a TURNOFF state.
if (aAction == LightingManager::TURNON_ACTION)
{
K32W_LOG("Turn on action has been completed")
sLightLED.Set(true);
}
else if (aAction == LightingManager::TURNOFF_ACTION)
{
K32W_LOG("Turn off action has been completed")
sLightLED.Set(false);
}
if (sAppTask.mSyncClusterToButtonAction)
{
sAppTask.UpdateClusterState();
sAppTask.mSyncClusterToButtonAction = false;
}
sAppTask.mFunction = kFunction_NoneSelected;
}
void AppTask::RestoreLightingState(void)
{
/* restore initial state for the LED indicating Lighting state */
if (LightingMgr().IsTurnedOff())
{
sLightLED.Set(false);
}
else
{
sLightLED.Set(true);
}
}
void AppTask::OnIdentifyStart(Identify * identify)
{
if ((kFunction_NoneSelected != sAppTask.mFunction) && (kFunction_TriggerEffect != sAppTask.mFunction))
{
K32W_LOG("Another function is scheduled. Could not initiate Identify process!");
return;
}
if (kFunction_TriggerEffect == sAppTask.mFunction)
{
chip::DeviceLayer::SystemLayer().CancelTimer(OnTriggerEffectComplete, identify);
OnTriggerEffectComplete(&chip::DeviceLayer::SystemLayer(), identify);
}
ChipLogProgress(Zcl, "Identify process has started. Status LED should blink with a period of 0.5 seconds.");
sAppTask.mFunction = kFunction_Identify;
sLightLED.Set(false);
sLightLED.Blink(250);
}
void AppTask::OnIdentifyStop(Identify * identify)
{
if (kFunction_Identify == sAppTask.mFunction)
{
ChipLogProgress(Zcl, "Identify process has stopped.");
sAppTask.mFunction = kFunction_NoneSelected;
RestoreLightingState();
}
}
void AppTask::OnTriggerEffectComplete(chip::System::Layer * systemLayer, void * appState)
{
// Let Identify command take over if called during TriggerEffect already running
if (kFunction_TriggerEffect == sAppTask.mFunction)
{
ChipLogProgress(Zcl, "TriggerEffect has stopped.");
sAppTask.mFunction = kFunction_NoneSelected;
// TriggerEffect finished - reset identifiers
// Use invalid value for identifiers to enable TriggerEffect command
// to stop Identify command for each effect
gIdentify.mCurrentEffectIdentifier = Clusters::Identify::EffectIdentifierEnum::kUnknownEnumValue;
gIdentify.mTargetEffectIdentifier = Clusters::Identify::EffectIdentifierEnum::kUnknownEnumValue;
gIdentify.mEffectVariant = Clusters::Identify::EffectVariantEnum::kDefault;
RestoreLightingState();
}
}
void AppTask::OnTriggerEffect(Identify * identify)
{
// Allow overlapping TriggerEffect calls
if ((kFunction_NoneSelected != sAppTask.mFunction) && (kFunction_TriggerEffect != sAppTask.mFunction))
{
K32W_LOG("Another function is scheduled. Could not initiate Identify process!");
return;
}
sAppTask.mFunction = kFunction_TriggerEffect;
uint16_t timerDelay = 0;
ChipLogProgress(Zcl, "TriggerEffect has started.");
switch (identify->mCurrentEffectIdentifier)
{
case Clusters::Identify::EffectIdentifierEnum::kBlink:
timerDelay = 2;
break;
case Clusters::Identify::EffectIdentifierEnum::kBreathe:
timerDelay = 15;
break;
case Clusters::Identify::EffectIdentifierEnum::kOkay:
timerDelay = 4;
break;
case Clusters::Identify::EffectIdentifierEnum::kChannelChange:
ChipLogProgress(Zcl, "Channel Change effect not supported, using effect %d",
to_underlying(Clusters::Identify::EffectIdentifierEnum::kBlink));
timerDelay = 2;
break;
case Clusters::Identify::EffectIdentifierEnum::kFinishEffect:
chip::DeviceLayer::SystemLayer().CancelTimer(OnTriggerEffectComplete, identify);
timerDelay = 1;
break;
case Clusters::Identify::EffectIdentifierEnum::kStopEffect:
chip::DeviceLayer::SystemLayer().CancelTimer(OnTriggerEffectComplete, identify);
OnTriggerEffectComplete(&chip::DeviceLayer::SystemLayer(), identify);
break;
default:
ChipLogProgress(Zcl, "Invalid effect identifier.");
}
if (timerDelay)
{
sLightLED.Set(false);
sLightLED.Blink(500);
chip::DeviceLayer::SystemLayer().StartTimer(chip::System::Clock::Seconds16(timerDelay), OnTriggerEffectComplete, identify);
}
}
void AppTask::PostTurnOnActionRequest(int32_t aActor, LightingManager::Action_t aAction)
{
AppEvent event;
event.Type = AppEvent::kEventType_TurnOn;
event.LightEvent.Actor = aActor;
event.LightEvent.Action = aAction;
event.Handler = LightActionEventHandler;
PostEvent(&event);
}
void AppTask::PostEvent(const AppEvent * aEvent)
{
portBASE_TYPE taskToWake = pdFALSE;
if (sAppEventQueue != NULL)
{
if (__get_IPSR())
{
if (!xQueueSendToFrontFromISR(sAppEventQueue, aEvent, &taskToWake))
{
K32W_LOG("Failed to post event to app task event queue");
}
portYIELD_FROM_ISR(taskToWake);
}
else
{
if (!xQueueSend(sAppEventQueue, aEvent, 1))
{
K32W_LOG("Failed to post event to app task event queue");
}
}
}
}
void AppTask::DispatchEvent(AppEvent * aEvent)
{
if (aEvent->Handler)
{
aEvent->Handler(aEvent);
}
else
{
K32W_LOG("Event received with no handler. Dropping event.");
}
}
void AppTask::UpdateClusterState(void)
{
PlatformMgr().ScheduleWork(UpdateClusterStateInternal, 0);
}
void AppTask::UpdateClusterStateInternal(intptr_t arg)
{
uint8_t newValue = !LightingMgr().IsTurnedOff();
// write the new on/off value
Protocols::InteractionModel::Status status = app::Clusters::OnOff::Attributes::OnOff::Set(1, newValue);
if (status != Protocols::InteractionModel::Status::Success)
{
ChipLogError(NotSpecified, "ERR: updating on/off %x", to_underlying(status));
}
}
void AppTask::UpdateDeviceState(void)
{
PlatformMgr().ScheduleWork(UpdateDeviceStateInternal, 0);
}
void AppTask::UpdateDeviceStateInternal(intptr_t arg)
{
bool onoffAttrValue = 0;
/* get onoff attribute value */
(void) app::Clusters::OnOff::Attributes::OnOff::Get(1, &onoffAttrValue);
/* set the device state */
sLightLED.Set(onoffAttrValue);
LightingMgr().SetState(onoffAttrValue);
}
extern "C" void OTAIdleActivities(void)
{
#if CHIP_DEVICE_CONFIG_ENABLE_OTA_REQUESTOR
OTA_TransactionResume();
#endif
}
extern "C" bool AppHaveBLEConnections(void)
{
return sHaveBLEConnections;
}