blob: 9e6e0f074d5e520fac7adeb80670c28b01fcdf7c [file] [log] [blame]
/**
*
* Copyright (c) 2020 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "thermostat-server.h"
#include "PresetStructWithOwnedMembers.h"
#include <app/util/attribute-storage.h>
#include <app-common/zap-generated/attributes/Accessors.h>
#include <app-common/zap-generated/callback.h>
#include <app-common/zap-generated/cluster-objects.h>
#include <app-common/zap-generated/ids/Attributes.h>
#include <app/CommandHandler.h>
#include <app/ConcreteAttributePath.h>
#include <app/ConcreteCommandPath.h>
#include <app/server/Server.h>
#include <app/util/endpoint-config-api.h>
#include <lib/core/CHIPEncoding.h>
using namespace chip;
using namespace chip::app;
using namespace chip::app::Clusters;
using namespace chip::app::Clusters::Thermostat;
using namespace chip::app::Clusters::Thermostat::Structs;
using namespace chip::app::Clusters::Thermostat::Attributes;
using namespace Protocols::InteractionModel;
constexpr int16_t kDefaultAbsMinHeatSetpointLimit = 700; // 7C (44.5 F) is the default
constexpr int16_t kDefaultAbsMaxHeatSetpointLimit = 3000; // 30C (86 F) is the default
constexpr int16_t kDefaultMinHeatSetpointLimit = 700; // 7C (44.5 F) is the default
constexpr int16_t kDefaultMaxHeatSetpointLimit = 3000; // 30C (86 F) is the default
constexpr int16_t kDefaultAbsMinCoolSetpointLimit = 1600; // 16C (61 F) is the default
constexpr int16_t kDefaultAbsMaxCoolSetpointLimit = 3200; // 32C (90 F) is the default
constexpr int16_t kDefaultMinCoolSetpointLimit = 1600; // 16C (61 F) is the default
constexpr int16_t kDefaultMaxCoolSetpointLimit = 3200; // 32C (90 F) is the default
constexpr int16_t kDefaultHeatingSetpoint = 2000;
constexpr int16_t kDefaultCoolingSetpoint = 2600;
constexpr int8_t kDefaultDeadBand = 25; // 2.5C is the default
// IMPORTANT NOTE:
// No Side effects are permitted in emberAfThermostatClusterServerPreAttributeChangedCallback
// If a setpoint changes is required as a result of setpoint limit change
// it does not happen here. It is the responsibility of the device to adjust the setpoint(s)
// as required in emberAfThermostatClusterServerPostAttributeChangedCallback
// limit change validation assures that there is at least 1 setpoint that will be valid
#define FEATURE_MAP_HEAT 0x01
#define FEATURE_MAP_COOL 0x02
#define FEATURE_MAP_OCC 0x04
#define FEATURE_MAP_SCH 0x08
#define FEATURE_MAP_SB 0x10
#define FEATURE_MAP_AUTO 0x20
#define FEATURE_MAP_DEFAULT FEATURE_MAP_HEAT | FEATURE_MAP_COOL | FEATURE_MAP_AUTO
static_assert(kThermostatEndpointCount <= kEmberInvalidEndpointIndex, "Thermostat Delegate table size error");
Delegate * gDelegateTable[kThermostatEndpointCount] = { nullptr };
namespace chip {
namespace app {
namespace Clusters {
namespace Thermostat {
ThermostatAttrAccess gThermostatAttrAccess;
int16_t EnforceHeatingSetpointLimits(int16_t HeatingSetpoint, EndpointId endpoint)
{
// Optional Mfg supplied limits
int16_t AbsMinHeatSetpointLimit = kDefaultAbsMinHeatSetpointLimit;
int16_t AbsMaxHeatSetpointLimit = kDefaultAbsMaxHeatSetpointLimit;
// Optional User supplied limits
int16_t MinHeatSetpointLimit = kDefaultMinHeatSetpointLimit;
int16_t MaxHeatSetpointLimit = kDefaultMaxHeatSetpointLimit;
// Attempt to read the setpoint limits
// Absmin/max are manufacturer limits
// min/max are user imposed min/max
// Note that the limits are initialized above per the spec limits
// if they are not present Get() will not update the value so the defaults are used
Status status;
// https://github.com/CHIP-Specifications/connectedhomeip-spec/issues/3724
// behavior is not specified when Abs * values are not present and user values are present
// implemented behavior accepts the user values without regard to default Abs values.
// Per global matter data model policy
// if a attribute is not present then it's default shall be used.
status = AbsMinHeatSetpointLimit::Get(endpoint, &AbsMinHeatSetpointLimit);
if (status != Status::Success)
{
ChipLogError(Zcl, "Warning: AbsMinHeatSetpointLimit missing using default");
}
status = AbsMaxHeatSetpointLimit::Get(endpoint, &AbsMaxHeatSetpointLimit);
if (status != Status::Success)
{
ChipLogError(Zcl, "Warning: AbsMaxHeatSetpointLimit missing using default");
}
status = MinHeatSetpointLimit::Get(endpoint, &MinHeatSetpointLimit);
if (status != Status::Success)
{
MinHeatSetpointLimit = AbsMinHeatSetpointLimit;
}
status = MaxHeatSetpointLimit::Get(endpoint, &MaxHeatSetpointLimit);
if (status != Status::Success)
{
MaxHeatSetpointLimit = AbsMaxHeatSetpointLimit;
}
// Make sure the user imposed limits are within the manufacturer imposed limits
// https://github.com/CHIP-Specifications/connectedhomeip-spec/issues/3725
// Spec does not specify the behavior is the requested setpoint exceeds the limit allowed
// This implementation clamps at the limit.
// resolution of 3725 is to clamp.
if (MinHeatSetpointLimit < AbsMinHeatSetpointLimit)
MinHeatSetpointLimit = AbsMinHeatSetpointLimit;
if (MaxHeatSetpointLimit > AbsMaxHeatSetpointLimit)
MaxHeatSetpointLimit = AbsMaxHeatSetpointLimit;
if (HeatingSetpoint < MinHeatSetpointLimit)
HeatingSetpoint = MinHeatSetpointLimit;
if (HeatingSetpoint > MaxHeatSetpointLimit)
HeatingSetpoint = MaxHeatSetpointLimit;
return HeatingSetpoint;
}
int16_t EnforceCoolingSetpointLimits(int16_t CoolingSetpoint, EndpointId endpoint)
{
// Optional Mfg supplied limits
int16_t AbsMinCoolSetpointLimit = kDefaultAbsMinCoolSetpointLimit;
int16_t AbsMaxCoolSetpointLimit = kDefaultAbsMaxCoolSetpointLimit;
// Optional User supplied limits
int16_t MinCoolSetpointLimit = kDefaultMinCoolSetpointLimit;
int16_t MaxCoolSetpointLimit = kDefaultMaxCoolSetpointLimit;
// Attempt to read the setpoint limits
// Absmin/max are manufacturer limits
// min/max are user imposed min/max
// Note that the limits are initialized above per the spec limits
// if they are not present Get() will not update the value so the defaults are used
Status status;
// https://github.com/CHIP-Specifications/connectedhomeip-spec/issues/3724
// behavior is not specified when Abs * values are not present and user values are present
// implemented behavior accepts the user values without regard to default Abs values.
// Per global matter data model policy
// if a attribute is not present then it's default shall be used.
status = AbsMinCoolSetpointLimit::Get(endpoint, &AbsMinCoolSetpointLimit);
if (status != Status::Success)
{
ChipLogError(Zcl, "Warning: AbsMinCoolSetpointLimit missing using default");
}
status = AbsMaxCoolSetpointLimit::Get(endpoint, &AbsMaxCoolSetpointLimit);
if (status != Status::Success)
{
ChipLogError(Zcl, "Warning: AbsMaxCoolSetpointLimit missing using default");
}
status = MinCoolSetpointLimit::Get(endpoint, &MinCoolSetpointLimit);
if (status != Status::Success)
{
MinCoolSetpointLimit = AbsMinCoolSetpointLimit;
}
status = MaxCoolSetpointLimit::Get(endpoint, &MaxCoolSetpointLimit);
if (status != Status::Success)
{
MaxCoolSetpointLimit = AbsMaxCoolSetpointLimit;
}
// Make sure the user imposed limits are within the manufacture imposed limits
// https://github.com/CHIP-Specifications/connectedhomeip-spec/issues/3725
// Spec does not specify the behavior is the requested setpoint exceeds the limit allowed
// This implementation clamps at the limit.
// resolution of 3725 is to clamp.
if (MinCoolSetpointLimit < AbsMinCoolSetpointLimit)
MinCoolSetpointLimit = AbsMinCoolSetpointLimit;
if (MaxCoolSetpointLimit > AbsMaxCoolSetpointLimit)
MaxCoolSetpointLimit = AbsMaxCoolSetpointLimit;
if (CoolingSetpoint < MinCoolSetpointLimit)
CoolingSetpoint = MinCoolSetpointLimit;
if (CoolingSetpoint > MaxCoolSetpointLimit)
CoolingSetpoint = MaxCoolSetpointLimit;
return CoolingSetpoint;
}
Delegate * GetDelegate(EndpointId endpoint)
{
uint16_t ep =
emberAfGetClusterServerEndpointIndex(endpoint, Thermostat::Id, MATTER_DM_THERMOSTAT_CLUSTER_SERVER_ENDPOINT_COUNT);
return (ep >= ArraySize(gDelegateTable) ? nullptr : gDelegateTable[ep]);
}
void SetDefaultDelegate(EndpointId endpoint, Delegate * delegate)
{
uint16_t ep =
emberAfGetClusterServerEndpointIndex(endpoint, Thermostat::Id, MATTER_DM_THERMOSTAT_CLUSTER_SERVER_ENDPOINT_COUNT);
// if endpoint is found, add the delegate in the delegate table
if (ep < ArraySize(gDelegateTable))
{
gDelegateTable[ep] = delegate;
}
}
CHIP_ERROR ThermostatAttrAccess::Read(const ConcreteReadAttributePath & aPath, AttributeValueEncoder & aEncoder)
{
VerifyOrDie(aPath.mClusterId == Thermostat::Id);
uint32_t ourFeatureMap;
bool localTemperatureNotExposedSupported = (FeatureMap::Get(aPath.mEndpointId, &ourFeatureMap) == Status::Success) &&
((ourFeatureMap & to_underlying(Feature::kLocalTemperatureNotExposed)) != 0);
switch (aPath.mAttributeId)
{
case LocalTemperature::Id:
if (localTemperatureNotExposedSupported)
{
return aEncoder.EncodeNull();
}
break;
case RemoteSensing::Id:
if (localTemperatureNotExposedSupported)
{
BitMask<RemoteSensingBitmap> valueRemoteSensing;
Status status = RemoteSensing::Get(aPath.mEndpointId, &valueRemoteSensing);
if (status != Status::Success)
{
StatusIB statusIB(status);
return statusIB.ToChipError();
}
valueRemoteSensing.Clear(RemoteSensingBitmap::kLocalTemperature);
return aEncoder.Encode(valueRemoteSensing);
}
break;
case PresetTypes::Id: {
auto delegate = GetDelegate(aPath.mEndpointId);
VerifyOrReturnError(delegate != nullptr, CHIP_ERROR_INCORRECT_STATE, ChipLogError(Zcl, "Delegate is null"));
return aEncoder.EncodeList([delegate](const auto & encoder) -> CHIP_ERROR {
for (uint8_t i = 0; true; i++)
{
PresetTypeStruct::Type presetType;
auto err = delegate->GetPresetTypeAtIndex(i, presetType);
if (err == CHIP_ERROR_PROVIDER_LIST_EXHAUSTED)
{
return CHIP_NO_ERROR;
}
ReturnErrorOnFailure(err);
ReturnErrorOnFailure(encoder.Encode(presetType));
}
});
}
break;
case NumberOfPresets::Id: {
auto delegate = GetDelegate(aPath.mEndpointId);
VerifyOrReturnError(delegate != nullptr, CHIP_ERROR_INCORRECT_STATE, ChipLogError(Zcl, "Delegate is null"));
ReturnErrorOnFailure(aEncoder.Encode(delegate->GetNumberOfPresets()));
}
break;
case Presets::Id: {
auto delegate = GetDelegate(aPath.mEndpointId);
VerifyOrReturnError(delegate != nullptr, CHIP_ERROR_INCORRECT_STATE, ChipLogError(Zcl, "Delegate is null"));
auto & subjectDescriptor = aEncoder.GetSubjectDescriptor();
if (InAtomicWrite(aPath.mEndpointId, subjectDescriptor, MakeOptional(aPath.mAttributeId)))
{
return aEncoder.EncodeList([delegate](const auto & encoder) -> CHIP_ERROR {
for (uint8_t i = 0; true; i++)
{
PresetStructWithOwnedMembers preset;
auto err = delegate->GetPendingPresetAtIndex(i, preset);
if (err == CHIP_ERROR_PROVIDER_LIST_EXHAUSTED)
{
return CHIP_NO_ERROR;
}
ReturnErrorOnFailure(err);
ReturnErrorOnFailure(encoder.Encode(preset));
}
});
}
return aEncoder.EncodeList([delegate](const auto & encoder) -> CHIP_ERROR {
for (uint8_t i = 0; true; i++)
{
PresetStructWithOwnedMembers preset;
auto err = delegate->GetPresetAtIndex(i, preset);
if (err == CHIP_ERROR_PROVIDER_LIST_EXHAUSTED)
{
return CHIP_NO_ERROR;
}
ReturnErrorOnFailure(err);
ReturnErrorOnFailure(encoder.Encode(preset));
}
});
}
break;
case ActivePresetHandle::Id: {
auto delegate = GetDelegate(aPath.mEndpointId);
VerifyOrReturnError(delegate != nullptr, CHIP_ERROR_INCORRECT_STATE, ChipLogError(Zcl, "Delegate is null"));
uint8_t buffer[kPresetHandleSize];
MutableByteSpan activePresetHandleSpan(buffer);
auto activePresetHandle = DataModel::MakeNullable(activePresetHandleSpan);
CHIP_ERROR err = delegate->GetActivePresetHandle(activePresetHandle);
ReturnErrorOnFailure(err);
ReturnErrorOnFailure(aEncoder.Encode(activePresetHandle));
}
break;
case ScheduleTypes::Id: {
return aEncoder.EncodeList([](const auto & encoder) -> CHIP_ERROR { return CHIP_NO_ERROR; });
}
break;
case Schedules::Id: {
return aEncoder.EncodeList([](const auto & encoder) -> CHIP_ERROR { return CHIP_NO_ERROR; });
}
break;
default: // return CHIP_NO_ERROR and just read from the attribute store in default
break;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR ThermostatAttrAccess::Write(const ConcreteDataAttributePath & aPath, AttributeValueDecoder & aDecoder)
{
VerifyOrDie(aPath.mClusterId == Thermostat::Id);
EndpointId endpoint = aPath.mEndpointId;
auto & subjectDescriptor = aDecoder.GetSubjectDescriptor();
// Check atomic attributes first
switch (aPath.mAttributeId)
{
case Presets::Id: {
auto delegate = GetDelegate(endpoint);
VerifyOrReturnError(delegate != nullptr, CHIP_ERROR_INCORRECT_STATE, ChipLogError(Zcl, "Delegate is null"));
// Presets are not editable, return INVALID_IN_STATE.
VerifyOrReturnError(InAtomicWrite(endpoint, MakeOptional(aPath.mAttributeId)), CHIP_IM_GLOBAL_STATUS(InvalidInState),
ChipLogError(Zcl, "Presets are not editable"));
// OK, we're in an atomic write, make sure the requesting node is the same one that started the atomic write,
// otherwise return BUSY.
if (!InAtomicWrite(endpoint, subjectDescriptor, MakeOptional(aPath.mAttributeId)))
{
ChipLogError(Zcl, "Another node is editing presets. Server is busy. Try again later");
return CHIP_IM_GLOBAL_STATUS(Busy);
}
// If the list operation is replace all, clear the existing pending list, iterate over the new presets list
// and add to the pending presets list.
if (!aPath.IsListOperation() || aPath.mListOp == ConcreteDataAttributePath::ListOperation::ReplaceAll)
{
// Clear the pending presets list
delegate->ClearPendingPresetList();
Presets::TypeInfo::DecodableType newPresetsList;
ReturnErrorOnFailure(aDecoder.Decode(newPresetsList));
// Iterate over the presets and call the delegate to append to the list of pending presets.
auto iter = newPresetsList.begin();
while (iter.Next())
{
const PresetStruct::Type & preset = iter.GetValue();
ReturnErrorOnFailure(AppendPendingPreset(delegate, preset));
}
return iter.GetStatus();
}
// If the list operation is AppendItem, call the delegate to append the item to the list of pending presets.
if (aPath.mListOp == ConcreteDataAttributePath::ListOperation::AppendItem)
{
PresetStruct::Type preset;
ReturnErrorOnFailure(aDecoder.Decode(preset));
return AppendPendingPreset(delegate, preset);
}
}
break;
case Schedules::Id: {
return CHIP_ERROR_NOT_IMPLEMENTED;
}
break;
}
// This is not an atomic attribute, so check to make sure we don't have an atomic write going for this client
if (InAtomicWrite(endpoint, subjectDescriptor))
{
ChipLogError(Zcl, "Can not write to non-atomic attributes during atomic write");
return CHIP_IM_GLOBAL_STATUS(InvalidInState);
}
uint32_t ourFeatureMap;
bool localTemperatureNotExposedSupported = (FeatureMap::Get(aPath.mEndpointId, &ourFeatureMap) == Status::Success) &&
((ourFeatureMap & to_underlying(Feature::kLocalTemperatureNotExposed)) != 0);
switch (aPath.mAttributeId)
{
case RemoteSensing::Id:
if (localTemperatureNotExposedSupported)
{
uint8_t valueRemoteSensing;
ReturnErrorOnFailure(aDecoder.Decode(valueRemoteSensing));
if (valueRemoteSensing & 0x01) // If setting bit 1 (LocalTemperature RemoteSensing bit)
{
return CHIP_IM_GLOBAL_STATUS(ConstraintError);
}
Status status = RemoteSensing::Set(aPath.mEndpointId, valueRemoteSensing);
StatusIB statusIB(status);
return statusIB.ToChipError();
}
break;
default: // return CHIP_NO_ERROR and just write to the attribute store in default
break;
}
return CHIP_NO_ERROR;
}
void ThermostatAttrAccess::OnFabricRemoved(const FabricTable & fabricTable, FabricIndex fabricIndex)
{
for (size_t i = 0; i < ArraySize(mAtomicWriteSessions); ++i)
{
auto & atomicWriteState = mAtomicWriteSessions[i];
if (atomicWriteState.state == AtomicWriteState::Open && atomicWriteState.nodeId.GetFabricIndex() == fabricIndex)
{
ResetAtomicWrite(atomicWriteState.endpointId);
}
}
}
void MatterThermostatClusterServerAttributeChangedCallback(const ConcreteAttributePath & attributePath)
{
uint32_t flags;
if (FeatureMap::Get(attributePath.mEndpointId, &flags) != Status::Success)
{
ChipLogError(Zcl, "MatterThermostatClusterServerAttributeChangedCallback: could not get feature flags");
return;
}
auto featureMap = BitMask<Feature, uint32_t>(flags);
if (!featureMap.Has(Feature::kPresets))
{
// This server does not support presets, so nothing to do
return;
}
bool occupied = true;
if (featureMap.Has(Feature::kOccupancy))
{
BitMask<OccupancyBitmap, uint8_t> occupancy;
if (Occupancy::Get(attributePath.mEndpointId, &occupancy) == Status::Success)
{
occupied = occupancy.Has(OccupancyBitmap::kOccupied);
}
}
bool clearActivePreset = false;
switch (attributePath.mAttributeId)
{
case OccupiedHeatingSetpoint::Id:
case OccupiedCoolingSetpoint::Id:
clearActivePreset = occupied;
break;
case UnoccupiedHeatingSetpoint::Id:
case UnoccupiedCoolingSetpoint::Id:
clearActivePreset = !occupied;
break;
}
if (!clearActivePreset)
{
return;
}
ChipLogProgress(Zcl, "Setting active preset to null");
gThermostatAttrAccess.SetActivePreset(attributePath.mEndpointId, std::nullopt);
}
} // namespace Thermostat
} // namespace Clusters
} // namespace app
} // namespace chip
void emberAfThermostatClusterServerInitCallback(chip::EndpointId endpoint)
{
// TODO
// Get from the "real thermostat"
// current mode
// current occupied heating setpoint
// current unoccupied heating setpoint
// current occupied cooling setpoint
// current unoccupied cooling setpoint
// and update the zcl cluster values
// This should be a callback defined function
// with weak binding so that real thermostat
// can get the values.
// or should this just be the responsibility of the thermostat application?
}
Protocols::InteractionModel::Status
MatterThermostatClusterServerPreAttributeChangedCallback(const app::ConcreteAttributePath & attributePath,
EmberAfAttributeType attributeType, uint16_t size, uint8_t * value)
{
EndpointId endpoint = attributePath.mEndpointId;
int16_t requested;
// Limits will be needed for all checks
// so we just get them all now
int16_t AbsMinHeatSetpointLimit;
int16_t AbsMaxHeatSetpointLimit;
int16_t MinHeatSetpointLimit;
int16_t MaxHeatSetpointLimit;
int16_t AbsMinCoolSetpointLimit;
int16_t AbsMaxCoolSetpointLimit;
int16_t MinCoolSetpointLimit;
int16_t MaxCoolSetpointLimit;
int8_t DeadBand = 0;
int16_t DeadBandTemp = 0;
int16_t OccupiedCoolingSetpoint;
int16_t OccupiedHeatingSetpoint;
int16_t UnoccupiedCoolingSetpoint;
int16_t UnoccupiedHeatingSetpoint;
uint32_t OurFeatureMap;
bool AutoSupported = false;
bool HeatSupported = false;
bool CoolSupported = false;
bool OccupancySupported = false;
if (FeatureMap::Get(endpoint, &OurFeatureMap) != Status::Success)
OurFeatureMap = FEATURE_MAP_DEFAULT;
if (OurFeatureMap & 1 << 5) // Bit 5 is Auto Mode supported
AutoSupported = true;
if (OurFeatureMap & 1 << 0)
HeatSupported = true;
if (OurFeatureMap & 1 << 1)
CoolSupported = true;
if (OurFeatureMap & 1 << 2)
OccupancySupported = true;
if (AutoSupported)
{
if (MinSetpointDeadBand::Get(endpoint, &DeadBand) != Status::Success)
{
DeadBand = kDefaultDeadBand;
}
DeadBandTemp = static_cast<int16_t>(DeadBand * 10);
}
if (AbsMinCoolSetpointLimit::Get(endpoint, &AbsMinCoolSetpointLimit) != Status::Success)
AbsMinCoolSetpointLimit = kDefaultAbsMinCoolSetpointLimit;
if (AbsMaxCoolSetpointLimit::Get(endpoint, &AbsMaxCoolSetpointLimit) != Status::Success)
AbsMaxCoolSetpointLimit = kDefaultAbsMaxCoolSetpointLimit;
if (MinCoolSetpointLimit::Get(endpoint, &MinCoolSetpointLimit) != Status::Success)
MinCoolSetpointLimit = AbsMinCoolSetpointLimit;
if (MaxCoolSetpointLimit::Get(endpoint, &MaxCoolSetpointLimit) != Status::Success)
MaxCoolSetpointLimit = AbsMaxCoolSetpointLimit;
if (AbsMinHeatSetpointLimit::Get(endpoint, &AbsMinHeatSetpointLimit) != Status::Success)
AbsMinHeatSetpointLimit = kDefaultAbsMinHeatSetpointLimit;
if (AbsMaxHeatSetpointLimit::Get(endpoint, &AbsMaxHeatSetpointLimit) != Status::Success)
AbsMaxHeatSetpointLimit = kDefaultAbsMaxHeatSetpointLimit;
if (MinHeatSetpointLimit::Get(endpoint, &MinHeatSetpointLimit) != Status::Success)
MinHeatSetpointLimit = AbsMinHeatSetpointLimit;
if (MaxHeatSetpointLimit::Get(endpoint, &MaxHeatSetpointLimit) != Status::Success)
MaxHeatSetpointLimit = AbsMaxHeatSetpointLimit;
if (CoolSupported)
if (OccupiedCoolingSetpoint::Get(endpoint, &OccupiedCoolingSetpoint) != Status::Success)
{
ChipLogError(Zcl, "Error: Can not read Occupied Cooling Setpoint");
return Status::Failure;
}
if (HeatSupported)
if (OccupiedHeatingSetpoint::Get(endpoint, &OccupiedHeatingSetpoint) != Status::Success)
{
ChipLogError(Zcl, "Error: Can not read Occupied Heating Setpoint");
return Status::Failure;
}
if (CoolSupported && OccupancySupported)
if (UnoccupiedCoolingSetpoint::Get(endpoint, &UnoccupiedCoolingSetpoint) != Status::Success)
{
ChipLogError(Zcl, "Error: Can not read Unoccupied Cooling Setpoint");
return Status::Failure;
}
if (HeatSupported && OccupancySupported)
if (UnoccupiedHeatingSetpoint::Get(endpoint, &UnoccupiedHeatingSetpoint) != Status::Success)
{
ChipLogError(Zcl, "Error: Can not read Unoccupied Heating Setpoint");
return Status::Failure;
}
switch (attributePath.mAttributeId)
{
case OccupiedHeatingSetpoint::Id: {
requested = static_cast<int16_t>(chip::Encoding::LittleEndian::Get16(value));
if (!HeatSupported)
return Status::UnsupportedAttribute;
if (requested < AbsMinHeatSetpointLimit || requested < MinHeatSetpointLimit || requested > AbsMaxHeatSetpointLimit ||
requested > MaxHeatSetpointLimit)
return Status::InvalidValue;
if (AutoSupported)
{
if (requested > OccupiedCoolingSetpoint - DeadBandTemp)
return Status::InvalidValue;
}
return Status::Success;
}
case OccupiedCoolingSetpoint::Id: {
requested = static_cast<int16_t>(chip::Encoding::LittleEndian::Get16(value));
if (!CoolSupported)
return Status::UnsupportedAttribute;
if (requested < AbsMinCoolSetpointLimit || requested < MinCoolSetpointLimit || requested > AbsMaxCoolSetpointLimit ||
requested > MaxCoolSetpointLimit)
return Status::InvalidValue;
if (AutoSupported)
{
if (requested < OccupiedHeatingSetpoint + DeadBandTemp)
return Status::InvalidValue;
}
return Status::Success;
}
case UnoccupiedHeatingSetpoint::Id: {
requested = static_cast<int16_t>(chip::Encoding::LittleEndian::Get16(value));
if (!(HeatSupported && OccupancySupported))
return Status::UnsupportedAttribute;
if (requested < AbsMinHeatSetpointLimit || requested < MinHeatSetpointLimit || requested > AbsMaxHeatSetpointLimit ||
requested > MaxHeatSetpointLimit)
return Status::InvalidValue;
if (AutoSupported)
{
if (requested > UnoccupiedCoolingSetpoint - DeadBandTemp)
return Status::InvalidValue;
}
return Status::Success;
}
case UnoccupiedCoolingSetpoint::Id: {
requested = static_cast<int16_t>(chip::Encoding::LittleEndian::Get16(value));
if (!(CoolSupported && OccupancySupported))
return Status::UnsupportedAttribute;
if (requested < AbsMinCoolSetpointLimit || requested < MinCoolSetpointLimit || requested > AbsMaxCoolSetpointLimit ||
requested > MaxCoolSetpointLimit)
return Status::InvalidValue;
if (AutoSupported)
{
if (requested < UnoccupiedHeatingSetpoint + DeadBandTemp)
return Status::InvalidValue;
}
return Status::Success;
}
case MinHeatSetpointLimit::Id: {
requested = static_cast<int16_t>(chip::Encoding::LittleEndian::Get16(value));
if (!HeatSupported)
return Status::UnsupportedAttribute;
if (requested < AbsMinHeatSetpointLimit || requested > MaxHeatSetpointLimit || requested > AbsMaxHeatSetpointLimit)
return Status::InvalidValue;
if (AutoSupported)
{
if (requested > MinCoolSetpointLimit - DeadBandTemp)
return Status::InvalidValue;
}
return Status::Success;
}
case MaxHeatSetpointLimit::Id: {
requested = static_cast<int16_t>(chip::Encoding::LittleEndian::Get16(value));
if (!HeatSupported)
return Status::UnsupportedAttribute;
if (requested < AbsMinHeatSetpointLimit || requested < MinHeatSetpointLimit || requested > AbsMaxHeatSetpointLimit)
return Status::InvalidValue;
if (AutoSupported)
{
if (requested > MaxCoolSetpointLimit - DeadBandTemp)
return Status::InvalidValue;
}
return Status::Success;
}
case MinCoolSetpointLimit::Id: {
requested = static_cast<int16_t>(chip::Encoding::LittleEndian::Get16(value));
if (!CoolSupported)
return Status::UnsupportedAttribute;
if (requested < AbsMinCoolSetpointLimit || requested > MaxCoolSetpointLimit || requested > AbsMaxCoolSetpointLimit)
return Status::InvalidValue;
if (AutoSupported)
{
if (requested < MinHeatSetpointLimit + DeadBandTemp)
return Status::InvalidValue;
}
return Status::Success;
}
case MaxCoolSetpointLimit::Id: {
requested = static_cast<int16_t>(chip::Encoding::LittleEndian::Get16(value));
if (!CoolSupported)
return Status::UnsupportedAttribute;
if (requested < AbsMinCoolSetpointLimit || requested < MinCoolSetpointLimit || requested > AbsMaxCoolSetpointLimit)
return Status::InvalidValue;
if (AutoSupported)
{
if (requested < MaxHeatSetpointLimit + DeadBandTemp)
return Status::InvalidValue;
}
return Status::Success;
}
case MinSetpointDeadBand::Id: {
requested = *value;
if (!AutoSupported)
return Status::UnsupportedAttribute;
if (requested < 0 || requested > 25)
return Status::InvalidValue;
return Status::Success;
}
case ControlSequenceOfOperation::Id: {
uint8_t requestedCSO;
requestedCSO = *value;
if (requestedCSO > to_underlying(ControlSequenceOfOperationEnum::kCoolingAndHeatingWithReheat))
return Status::InvalidValue;
return Status::Success;
}
case SystemMode::Id: {
ControlSequenceOfOperationEnum ControlSequenceOfOperation;
Status status = ControlSequenceOfOperation::Get(endpoint, &ControlSequenceOfOperation);
if (status != Status::Success)
{
return Status::InvalidValue;
}
auto RequestedSystemMode = static_cast<SystemModeEnum>(*value);
if (ControlSequenceOfOperation > ControlSequenceOfOperationEnum::kCoolingAndHeatingWithReheat ||
RequestedSystemMode > SystemModeEnum::kFanOnly)
{
return Status::InvalidValue;
}
switch (ControlSequenceOfOperation)
{
case ControlSequenceOfOperationEnum::kCoolingOnly:
case ControlSequenceOfOperationEnum::kCoolingWithReheat:
if (RequestedSystemMode == SystemModeEnum::kHeat || RequestedSystemMode == SystemModeEnum::kEmergencyHeat)
return Status::InvalidValue;
else
return Status::Success;
case ControlSequenceOfOperationEnum::kHeatingOnly:
case ControlSequenceOfOperationEnum::kHeatingWithReheat:
if (RequestedSystemMode == SystemModeEnum::kCool || RequestedSystemMode == SystemModeEnum::kPrecooling)
return Status::InvalidValue;
else
return Status::Success;
default:
return Status::Success;
}
}
default:
return Status::Success;
}
}
void MatterThermostatClusterServerAttributeChangedCallback(const ConcreteAttributePath & attributePath)
{
Thermostat::MatterThermostatClusterServerAttributeChangedCallback(attributePath);
}
bool emberAfThermostatClusterClearWeeklyScheduleCallback(app::CommandHandler * commandObj,
const app::ConcreteCommandPath & commandPath,
const Commands::ClearWeeklySchedule::DecodableType & commandData)
{
// TODO
return false;
}
bool emberAfThermostatClusterGetWeeklyScheduleCallback(app::CommandHandler * commandObj,
const app::ConcreteCommandPath & commandPath,
const Commands::GetWeeklySchedule::DecodableType & commandData)
{
// TODO
return false;
}
bool emberAfThermostatClusterSetWeeklyScheduleCallback(app::CommandHandler * commandObj,
const app::ConcreteCommandPath & commandPath,
const Commands::SetWeeklySchedule::DecodableType & commandData)
{
// TODO
return false;
}
bool emberAfThermostatClusterSetActiveScheduleRequestCallback(
CommandHandler * commandObj, const ConcreteCommandPath & commandPath,
const Clusters::Thermostat::Commands::SetActiveScheduleRequest::DecodableType & commandData)
{
// TODO
return false;
}
bool emberAfThermostatClusterSetpointRaiseLowerCallback(app::CommandHandler * commandObj,
const app::ConcreteCommandPath & commandPath,
const Commands::SetpointRaiseLower::DecodableType & commandData)
{
auto & mode = commandData.mode;
auto & amount = commandData.amount;
EndpointId aEndpointId = commandPath.mEndpointId;
int16_t HeatingSetpoint = kDefaultHeatingSetpoint, CoolingSetpoint = kDefaultCoolingSetpoint; // Set to defaults to be safe
Status status = Status::Failure;
Status WriteCoolingSetpointStatus = Status::Failure;
Status WriteHeatingSetpointStatus = Status::Failure;
int16_t DeadBandTemp = 0;
int8_t DeadBand = 0;
uint32_t OurFeatureMap;
bool AutoSupported = false;
bool HeatSupported = false;
bool CoolSupported = false;
if (FeatureMap::Get(aEndpointId, &OurFeatureMap) != Status::Success)
OurFeatureMap = FEATURE_MAP_DEFAULT;
if (OurFeatureMap & 1 << 5) // Bit 5 is Auto Mode supported
AutoSupported = true;
if (OurFeatureMap & 1 << 0)
HeatSupported = true;
if (OurFeatureMap & 1 << 1)
CoolSupported = true;
if (AutoSupported)
{
if (MinSetpointDeadBand::Get(aEndpointId, &DeadBand) != Status::Success)
DeadBand = kDefaultDeadBand;
DeadBandTemp = static_cast<int16_t>(DeadBand * 10);
}
switch (mode)
{
case SetpointRaiseLowerModeEnum::kBoth:
if (HeatSupported && CoolSupported)
{
int16_t DesiredCoolingSetpoint, CoolLimit, DesiredHeatingSetpoint, HeatLimit;
if (OccupiedCoolingSetpoint::Get(aEndpointId, &CoolingSetpoint) == Status::Success)
{
DesiredCoolingSetpoint = static_cast<int16_t>(CoolingSetpoint + amount * 10);
CoolLimit = static_cast<int16_t>(DesiredCoolingSetpoint -
EnforceCoolingSetpointLimits(DesiredCoolingSetpoint, aEndpointId));
{
if (OccupiedHeatingSetpoint::Get(aEndpointId, &HeatingSetpoint) == Status::Success)
{
DesiredHeatingSetpoint = static_cast<int16_t>(HeatingSetpoint + amount * 10);
HeatLimit = static_cast<int16_t>(DesiredHeatingSetpoint -
EnforceHeatingSetpointLimits(DesiredHeatingSetpoint, aEndpointId));
{
if (CoolLimit != 0 || HeatLimit != 0)
{
if (abs(CoolLimit) <= abs(HeatLimit))
{
// We are limited by the Heating Limit
DesiredHeatingSetpoint = static_cast<int16_t>(DesiredHeatingSetpoint - HeatLimit);
DesiredCoolingSetpoint = static_cast<int16_t>(DesiredCoolingSetpoint - HeatLimit);
}
else
{
// We are limited by Cooling Limit
DesiredHeatingSetpoint = static_cast<int16_t>(DesiredHeatingSetpoint - CoolLimit);
DesiredCoolingSetpoint = static_cast<int16_t>(DesiredCoolingSetpoint - CoolLimit);
}
}
WriteCoolingSetpointStatus = OccupiedCoolingSetpoint::Set(aEndpointId, DesiredCoolingSetpoint);
if (WriteCoolingSetpointStatus != Status::Success)
{
ChipLogError(Zcl, "Error: SetOccupiedCoolingSetpoint failed!");
}
WriteHeatingSetpointStatus = OccupiedHeatingSetpoint::Set(aEndpointId, DesiredHeatingSetpoint);
if (WriteHeatingSetpointStatus != Status::Success)
{
ChipLogError(Zcl, "Error: SetOccupiedHeatingSetpoint failed!");
}
}
}
}
}
}
if (CoolSupported && !HeatSupported)
{
if (OccupiedCoolingSetpoint::Get(aEndpointId, &CoolingSetpoint) == Status::Success)
{
CoolingSetpoint = static_cast<int16_t>(CoolingSetpoint + amount * 10);
CoolingSetpoint = EnforceCoolingSetpointLimits(CoolingSetpoint, aEndpointId);
WriteCoolingSetpointStatus = OccupiedCoolingSetpoint::Set(aEndpointId, CoolingSetpoint);
if (WriteCoolingSetpointStatus != Status::Success)
{
ChipLogError(Zcl, "Error: SetOccupiedCoolingSetpoint failed!");
}
}
}
if (HeatSupported && !CoolSupported)
{
if (OccupiedHeatingSetpoint::Get(aEndpointId, &HeatingSetpoint) == Status::Success)
{
HeatingSetpoint = static_cast<int16_t>(HeatingSetpoint + amount * 10);
HeatingSetpoint = EnforceHeatingSetpointLimits(HeatingSetpoint, aEndpointId);
WriteHeatingSetpointStatus = OccupiedHeatingSetpoint::Set(aEndpointId, HeatingSetpoint);
if (WriteHeatingSetpointStatus != Status::Success)
{
ChipLogError(Zcl, "Error: SetOccupiedHeatingSetpoint failed!");
}
}
}
if ((!HeatSupported || WriteHeatingSetpointStatus == Status::Success) &&
(!CoolSupported || WriteCoolingSetpointStatus == Status::Success))
status = Status::Success;
break;
case SetpointRaiseLowerModeEnum::kCool:
if (CoolSupported)
{
if (OccupiedCoolingSetpoint::Get(aEndpointId, &CoolingSetpoint) == Status::Success)
{
CoolingSetpoint = static_cast<int16_t>(CoolingSetpoint + amount * 10);
CoolingSetpoint = EnforceCoolingSetpointLimits(CoolingSetpoint, aEndpointId);
if (AutoSupported)
{
// Need to check if we can move the cooling setpoint while maintaining the dead band
if (OccupiedHeatingSetpoint::Get(aEndpointId, &HeatingSetpoint) == Status::Success)
{
if (CoolingSetpoint - HeatingSetpoint < DeadBandTemp)
{
// Dead Band Violation
// Try to adjust it
HeatingSetpoint = static_cast<int16_t>(CoolingSetpoint - DeadBandTemp);
if (HeatingSetpoint == EnforceHeatingSetpointLimits(HeatingSetpoint, aEndpointId))
{
// Desired cooling setpoint is enforcable
// Set the new cooling and heating setpoints
if (OccupiedHeatingSetpoint::Set(aEndpointId, HeatingSetpoint) == Status::Success)
{
if (OccupiedCoolingSetpoint::Set(aEndpointId, CoolingSetpoint) == Status::Success)
status = Status::Success;
}
else
ChipLogError(Zcl, "Error: SetOccupiedHeatingSetpoint failed!");
}
else
{
ChipLogError(Zcl, "Error: Could Not adjust heating setpoint to maintain dead band!");
status = Status::InvalidCommand;
}
}
else
status = OccupiedCoolingSetpoint::Set(aEndpointId, CoolingSetpoint);
}
else
ChipLogError(Zcl, "Error: GetOccupiedHeatingSetpoint failed!");
}
else
{
status = OccupiedCoolingSetpoint::Set(aEndpointId, CoolingSetpoint);
}
}
else
ChipLogError(Zcl, "Error: GetOccupiedCoolingSetpoint failed!");
}
else
status = Status::InvalidCommand;
break;
case SetpointRaiseLowerModeEnum::kHeat:
if (HeatSupported)
{
if (OccupiedHeatingSetpoint::Get(aEndpointId, &HeatingSetpoint) == Status::Success)
{
HeatingSetpoint = static_cast<int16_t>(HeatingSetpoint + amount * 10);
HeatingSetpoint = EnforceHeatingSetpointLimits(HeatingSetpoint, aEndpointId);
if (AutoSupported)
{
// Need to check if we can move the cooling setpoint while maintaining the dead band
if (OccupiedCoolingSetpoint::Get(aEndpointId, &CoolingSetpoint) == Status::Success)
{
if (CoolingSetpoint - HeatingSetpoint < DeadBandTemp)
{
// Dead Band Violation
// Try to adjust it
CoolingSetpoint = static_cast<int16_t>(HeatingSetpoint + DeadBandTemp);
if (CoolingSetpoint == EnforceCoolingSetpointLimits(CoolingSetpoint, aEndpointId))
{
// Desired cooling setpoint is enforcable
// Set the new cooling and heating setpoints
if (OccupiedCoolingSetpoint::Set(aEndpointId, CoolingSetpoint) == Status::Success)
{
if (OccupiedHeatingSetpoint::Set(aEndpointId, HeatingSetpoint) == Status::Success)
status = Status::Success;
}
else
ChipLogError(Zcl, "Error: SetOccupiedCoolingSetpoint failed!");
}
else
{
ChipLogError(Zcl, "Error: Could Not adjust cooling setpoint to maintain dead band!");
status = Status::InvalidCommand;
}
}
else
status = OccupiedHeatingSetpoint::Set(aEndpointId, HeatingSetpoint);
}
else
ChipLogError(Zcl, "Error: GetOccupiedCoolingSetpoint failed!");
}
else
{
status = OccupiedHeatingSetpoint::Set(aEndpointId, HeatingSetpoint);
}
}
else
ChipLogError(Zcl, "Error: GetOccupiedHeatingSetpoint failed!");
}
else
status = Status::InvalidCommand;
break;
default:
status = Status::InvalidCommand;
break;
}
commandObj->AddStatus(commandPath, status);
return true;
}
void MatterThermostatPluginServerInitCallback()
{
Server::GetInstance().GetFabricTable().AddFabricDelegate(&gThermostatAttrAccess);
AttributeAccessInterfaceRegistry::Instance().Register(&gThermostatAttrAccess);
}