| /* |
| * |
| * Copyright (c) 2022 Project CHIP Authors |
| * All rights reserved. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <inttypes.h> |
| |
| #include <crypto/PersistentStorageOperationalKeystore.h> |
| #include <lib/support/CHIPMem.h> |
| #include <lib/support/CodeUtils.h> |
| #include <lib/support/DefaultStorageKeyAllocator.h> |
| #include <lib/support/Span.h> |
| #include <lib/support/TestPersistentStorageDelegate.h> |
| #include <lib/support/UnitTestExtendedAssertions.h> |
| #include <lib/support/UnitTestRegistration.h> |
| #include <nlunit-test.h> |
| |
| #include <string> |
| |
| using namespace chip; |
| using namespace chip::Crypto; |
| |
| namespace { |
| |
| /** |
| * Implementation of OperationalKeystore for testing purposes. |
| * |
| * Not all methods of OperationalKeystore are implemented, only the currently needed. |
| * Currently this implementation supports only one fabric and one operational key. |
| * |
| * The Validate method can be used to validate the provided P256SerializedKeypair with the |
| * stored kP256SerializedKeypairRaw data. |
| */ |
| class TestOperationalKeystore final : public Crypto::OperationalKeystore |
| { |
| public: |
| constexpr static uint8_t kP256SerializedKeypairRaw[] = { |
| 0x4, 0xd0, 0x99, 0xde, 0xd1, 0x15, 0xea, 0xcf, 0x8f, 0x13, 0xde, 0xaf, 0x74, 0x65, 0xf3, 0x10, 0x3a, 0x75, 0x94, 0x51, |
| 0x37, 0x3c, 0xc, 0x9a, 0x25, 0xc7, 0xad, 0xb4, 0x31, 0x39, 0x62, 0xec, 0x12, 0xa3, 0xdf, 0x28, 0x5f, 0x2c, 0x86, 0x47, |
| 0x2d, 0x1f, 0x5d, 0x45, 0x1d, 0x9f, 0xbc, 0xe8, 0x47, 0xf2, 0x1f, 0x40, 0x17, 0x61, 0x2b, 0x9a, 0x4e, 0x68, 0x9c, 0xe9, |
| 0x9e, 0xb7, 0x45, 0xdc, 0xcd, 0xb, 0x90, 0xd0, 0x24, 0xa5, 0x6d, 0x64, 0x97, 0x62, 0x75, 0x42, 0x91, 0x74, 0xfc, 0xfe, |
| 0xcb, 0x1, 0x6c, 0xc, 0x74, 0x6f, 0x39, 0x9f, 0x5, 0x96, 0x1b, 0xe6, 0x4a, 0x97, 0xe5, 0x84, 0x72 |
| }; |
| |
| bool HasOpKeypairForFabric(FabricIndex fabricIndex) const override { return fabricIndex == mUsedFabricIndex; }; |
| |
| CHIP_ERROR NewOpKeypairForFabric(FabricIndex fabricIndex, MutableByteSpan & outCertificateSigningRequest) override |
| { |
| // Only one Fabric is supported |
| if (mUsedFabricIndex != 0) |
| { |
| ChipLogError(Test, |
| "The TestOperationalKeystore has been initialized already, please use RemoveOpKeypairForFabric or remove " |
| "the object to store a new fabric"); |
| return CHIP_ERROR_INVALID_FABRIC_INDEX; |
| } |
| mUsedFabricIndex = fabricIndex; |
| (void) outCertificateSigningRequest; |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR ExportOpKeypairForFabric(FabricIndex fabricIndex, Crypto::P256SerializedKeypair & outKeypair) override |
| { |
| VerifyOrReturnError(IsValidFabricIndex(fabricIndex), CHIP_ERROR_INVALID_FABRIC_INDEX); |
| |
| // Simulate not existing value while the fabric index is valid. |
| if (fabricIndex != mUsedFabricIndex) |
| { |
| return CHIP_ERROR_PERSISTED_STORAGE_VALUE_NOT_FOUND; |
| } |
| |
| if (outKeypair.Capacity() != sizeof(kP256SerializedKeypairRaw)) |
| { |
| return CHIP_ERROR_BUFFER_TOO_SMALL; |
| } |
| |
| memcpy(outKeypair.Bytes(), kP256SerializedKeypairRaw, outKeypair.Capacity()); |
| outKeypair.SetLength(sizeof(kP256SerializedKeypairRaw)); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR RemoveOpKeypairForFabric(FabricIndex fabricIndex) override |
| { |
| mUsedFabricIndex = 0; |
| return CHIP_NO_ERROR; |
| } |
| |
| bool ValidateKeypair(Crypto::P256SerializedKeypair & keypair) |
| { |
| return (keypair.Length() == sizeof(kP256SerializedKeypairRaw) && |
| memcmp(keypair.ConstBytes(), kP256SerializedKeypairRaw, keypair.Length()) == 0); |
| } |
| |
| // Not implemented methods, they are not used in any tests yet. |
| bool HasPendingOpKeypair() const override { return false; } |
| CHIP_ERROR ActivateOpKeypairForFabric(FabricIndex fabricIndex, const Crypto::P256PublicKey & nocPublicKey) override |
| { |
| return CHIP_ERROR_NOT_IMPLEMENTED; |
| } |
| CHIP_ERROR CommitOpKeypairForFabric(FabricIndex fabricIndex) override { return CHIP_ERROR_NOT_IMPLEMENTED; } |
| CHIP_ERROR MigrateOpKeypairForFabric(FabricIndex fabricIndex, OperationalKeystore & operationalKeystore) const override |
| { |
| return CHIP_ERROR_NOT_IMPLEMENTED; |
| } |
| void RevertPendingKeypair() override {} |
| CHIP_ERROR SignWithOpKeypair(FabricIndex fabricIndex, const ByteSpan & message, |
| Crypto::P256ECDSASignature & outSignature) const override |
| { |
| return CHIP_ERROR_NOT_IMPLEMENTED; |
| } |
| Crypto::P256Keypair * AllocateEphemeralKeypairForCASE() override { return nullptr; } |
| void ReleaseEphemeralKeypair(Crypto::P256Keypair * keypair) override {} |
| |
| private: |
| FabricIndex mUsedFabricIndex = 0; |
| }; |
| |
| void TestBasicLifeCycle(nlTestSuite * inSuite, void * inContext) |
| { |
| TestPersistentStorageDelegate storageDelegate; |
| PersistentStorageOperationalKeystore opKeystore; |
| |
| FabricIndex kFabricIndex = 111; |
| FabricIndex kBadFabricIndex = static_cast<FabricIndex>(kFabricIndex + 10u); |
| |
| // Failure before Init of ActivateOpKeypairForFabric |
| P256PublicKey placeHolderPublicKey; |
| CHIP_ERROR err = opKeystore.ActivateOpKeypairForFabric(kFabricIndex, placeHolderPublicKey); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE); |
| NL_TEST_ASSERT(inSuite, storageDelegate.GetNumKeys() == 0); |
| |
| // Failure before Init of NewOpKeypairForFabric |
| uint8_t unusedCsrBuf[kMIN_CSR_Buffer_Size]; |
| MutableByteSpan unusedCsrSpan{ unusedCsrBuf }; |
| err = opKeystore.NewOpKeypairForFabric(kFabricIndex, unusedCsrSpan); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE); |
| |
| // Failure before Init of CommitOpKeypairForFabric |
| err = opKeystore.CommitOpKeypairForFabric(kFabricIndex); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE); |
| |
| // Failure before Init of RemoveOpKeypairForFabric |
| err = opKeystore.RemoveOpKeypairForFabric(kFabricIndex); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE); |
| |
| // Success after Init |
| err = opKeystore.Init(&storageDelegate); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| |
| // Can generate a key and get a CSR |
| uint8_t csrBuf[kMIN_CSR_Buffer_Size]; |
| MutableByteSpan csrSpan{ csrBuf }; |
| err = opKeystore.NewOpKeypairForFabric(kFabricIndex, csrSpan); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasPendingOpKeypair() == true); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasOpKeypairForFabric(kFabricIndex) == false); |
| |
| P256PublicKey csrPublicKey1; |
| err = VerifyCertificateSigningRequest(csrSpan.data(), csrSpan.size(), csrPublicKey1); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| NL_TEST_ASSERT(inSuite, csrPublicKey1.Matches(csrPublicKey1)); |
| |
| // Can regenerate a second CSR and it has different PK |
| csrSpan = MutableByteSpan{ csrBuf }; |
| err = opKeystore.NewOpKeypairForFabric(kFabricIndex, csrSpan); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasPendingOpKeypair() == true); |
| |
| // Cannot NewOpKeypair for a different fabric if one already pending |
| uint8_t badCsrBuf[kMIN_CSR_Buffer_Size]; |
| MutableByteSpan badCsrSpan = MutableByteSpan{ badCsrBuf }; |
| err = opKeystore.NewOpKeypairForFabric(kBadFabricIndex, badCsrSpan); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_FABRIC_INDEX); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasPendingOpKeypair() == true); |
| |
| P256PublicKey csrPublicKey2; |
| err = VerifyCertificateSigningRequest(csrSpan.data(), csrSpan.size(), csrPublicKey2); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| NL_TEST_ASSERT(inSuite, !csrPublicKey1.Matches(csrPublicKey2)); |
| |
| // Fail to generate CSR for invalid fabrics |
| csrSpan = MutableByteSpan{ csrBuf }; |
| err = opKeystore.NewOpKeypairForFabric(kUndefinedFabricIndex, csrSpan); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_FABRIC_INDEX); |
| |
| csrSpan = MutableByteSpan{ csrBuf }; |
| err = opKeystore.NewOpKeypairForFabric(kMaxValidFabricIndex + 1, csrSpan); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_FABRIC_INDEX); |
| |
| // No storage done by NewOpKeypairForFabric |
| NL_TEST_ASSERT(inSuite, storageDelegate.GetNumKeys() == 0); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasOpKeypairForFabric(kFabricIndex) == false); |
| |
| // Even after error, the previous valid pending keypair stays valid. |
| NL_TEST_ASSERT(inSuite, opKeystore.HasPendingOpKeypair() == true); |
| |
| // Activating with mismatching fabricIndex and matching public key fails |
| err = opKeystore.ActivateOpKeypairForFabric(kBadFabricIndex, csrPublicKey2); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_FABRIC_INDEX); |
| NL_TEST_ASSERT(inSuite, storageDelegate.GetNumKeys() == 0); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasPendingOpKeypair() == true); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasOpKeypairForFabric(kFabricIndex) == false); |
| |
| // Activating with matching fabricIndex and mismatching public key fails |
| err = opKeystore.ActivateOpKeypairForFabric(kFabricIndex, csrPublicKey1); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_PUBLIC_KEY); |
| NL_TEST_ASSERT(inSuite, storageDelegate.GetNumKeys() == 0); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasPendingOpKeypair() == true); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasOpKeypairForFabric(kFabricIndex) == false); |
| |
| uint8_t message[] = { 1, 2, 3, 4 }; |
| P256ECDSASignature sig1; |
| // Before successful activation, cannot sign |
| err = opKeystore.SignWithOpKeypair(kFabricIndex, ByteSpan{ message }, sig1); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_FABRIC_INDEX); |
| |
| // Activating with matching fabricIndex and matching public key succeeds |
| err = opKeystore.ActivateOpKeypairForFabric(kFabricIndex, csrPublicKey2); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| |
| // Activating does not store, and keeps pending |
| NL_TEST_ASSERT(inSuite, storageDelegate.GetNumKeys() == 0); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasPendingOpKeypair() == true); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasOpKeypairForFabric(kFabricIndex) == true); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasOpKeypairForFabric(kBadFabricIndex) == false); |
| |
| // Can't sign for wrong fabric after activation |
| P256ECDSASignature sig2; |
| err = opKeystore.SignWithOpKeypair(kBadFabricIndex, ByteSpan{ message }, sig2); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_FABRIC_INDEX); |
| |
| // Can sign after activation |
| err = opKeystore.SignWithOpKeypair(kFabricIndex, ByteSpan{ message }, sig2); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| |
| // Signature matches pending key |
| err = csrPublicKey2.ECDSA_validate_msg_signature(message, sizeof(message), sig2); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| |
| // Signature does not match a previous pending key |
| err = csrPublicKey1.ECDSA_validate_msg_signature(message, sizeof(message), sig2); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_SIGNATURE); |
| |
| // Committing with mismatching fabric fails, leaves pending |
| err = opKeystore.CommitOpKeypairForFabric(kBadFabricIndex); |
| NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_FABRIC_INDEX); |
| NL_TEST_ASSERT(inSuite, storageDelegate.GetNumKeys() == 0); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasPendingOpKeypair() == true); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasOpKeypairForFabric(kFabricIndex) == true); |
| |
| // Committing key resets pending state and adds storage |
| std::string opKeyStorageKey = DefaultStorageKeyAllocator::FabricOpKey(kFabricIndex).KeyName(); |
| err = opKeystore.CommitOpKeypairForFabric(kFabricIndex); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasPendingOpKeypair() == false); |
| NL_TEST_ASSERT(inSuite, storageDelegate.GetNumKeys() == 1); |
| NL_TEST_ASSERT(inSuite, storageDelegate.HasKey(opKeyStorageKey) == true); |
| |
| // Exporting a key |
| P256SerializedKeypair serializedKeypair; |
| NL_TEST_ASSERT(inSuite, opKeystore.ExportOpKeypairForFabric(kFabricIndex, serializedKeypair) == CHIP_NO_ERROR); |
| |
| // Exporting a key from the bad fabric index |
| NL_TEST_ASSERT(inSuite, |
| opKeystore.ExportOpKeypairForFabric(kBadFabricIndex, serializedKeypair) == |
| CHIP_ERROR_PERSISTED_STORAGE_VALUE_NOT_FOUND); |
| |
| // After committing, signing works with the key that was pending |
| P256ECDSASignature sig3; |
| uint8_t message2[] = { 10, 11, 12, 13 }; |
| err = opKeystore.SignWithOpKeypair(kFabricIndex, ByteSpan{ message2 }, sig3); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| |
| err = csrPublicKey2.ECDSA_validate_msg_signature(message2, sizeof(message2), sig3); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| |
| // Let's remove the opkey for a fabric, it disappears |
| err = opKeystore.RemoveOpKeypairForFabric(kFabricIndex); |
| NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasPendingOpKeypair() == false); |
| NL_TEST_ASSERT(inSuite, opKeystore.HasOpKeypairForFabric(kFabricIndex) == false); |
| NL_TEST_ASSERT(inSuite, storageDelegate.GetNumKeys() == 0); |
| NL_TEST_ASSERT(inSuite, storageDelegate.HasKey(opKeyStorageKey) == false); |
| |
| opKeystore.Finish(); |
| } |
| |
| void TestEphemeralKeys(nlTestSuite * inSuite, void * inContext) |
| { |
| chip::TestPersistentStorageDelegate storage; |
| |
| PersistentStorageOperationalKeystore opKeyStore; |
| NL_TEST_ASSERT_SUCCESS(inSuite, opKeyStore.Init(&storage)); |
| |
| Crypto::P256ECDSASignature sig; |
| uint8_t message[] = { 'm', 's', 'g' }; |
| |
| Crypto::P256Keypair * ephemeralKeypair = opKeyStore.AllocateEphemeralKeypairForCASE(); |
| NL_TEST_ASSERT(inSuite, ephemeralKeypair != nullptr); |
| NL_TEST_ASSERT_SUCCESS(inSuite, ephemeralKeypair->Initialize(Crypto::ECPKeyTarget::ECDSA)); |
| |
| NL_TEST_ASSERT_SUCCESS(inSuite, ephemeralKeypair->ECDSA_sign_msg(message, sizeof(message), sig)); |
| NL_TEST_ASSERT_SUCCESS(inSuite, ephemeralKeypair->Pubkey().ECDSA_validate_msg_signature(message, sizeof(message), sig)); |
| |
| opKeyStore.ReleaseEphemeralKeypair(ephemeralKeypair); |
| |
| opKeyStore.Finish(); |
| } |
| |
| void TestMigrationKeys(nlTestSuite * inSuite, void * inContext) |
| { |
| |
| chip::TestPersistentStorageDelegate storageDelegate; |
| TestOperationalKeystore testOperationalKeystore; |
| PersistentStorageOperationalKeystore opKeyStore; |
| FabricIndex kFabricIndex = 111; |
| std::string opKeyStorageKey = DefaultStorageKeyAllocator::FabricOpKey(kFabricIndex).KeyName(); |
| |
| opKeyStore.Init(&storageDelegate); |
| |
| // Failure on invalid Fabric indexes |
| NL_TEST_ASSERT(inSuite, |
| opKeyStore.MigrateOpKeypairForFabric(kUndefinedFabricIndex, testOperationalKeystore) == |
| CHIP_ERROR_INVALID_FABRIC_INDEX); |
| NL_TEST_ASSERT(inSuite, |
| opKeyStore.MigrateOpKeypairForFabric(kMaxValidFabricIndex + 1, testOperationalKeystore) == |
| CHIP_ERROR_INVALID_FABRIC_INDEX); |
| |
| // The key does not exists in the any of the Operational Keystores |
| NL_TEST_ASSERT(inSuite, storageDelegate.HasKey(opKeyStorageKey) == false); |
| NL_TEST_ASSERT(inSuite, testOperationalKeystore.HasOpKeypairForFabric(kFabricIndex) == false); |
| NL_TEST_ASSERT(inSuite, |
| opKeyStore.MigrateOpKeypairForFabric(kFabricIndex, testOperationalKeystore) == |
| CHIP_ERROR_PERSISTED_STORAGE_VALUE_NOT_FOUND); |
| |
| // Create a key in the old Operational Keystore |
| uint8_t csrBuf[kMIN_CSR_Buffer_Size]; |
| MutableByteSpan csrSpan{ csrBuf }; |
| NL_TEST_ASSERT(inSuite, testOperationalKeystore.NewOpKeypairForFabric(kFabricIndex, csrSpan) == CHIP_NO_ERROR); |
| |
| // Migrate the key to the PersistentStorageOperationalKeystore |
| NL_TEST_ASSERT(inSuite, opKeyStore.MigrateOpKeypairForFabric(kFabricIndex, testOperationalKeystore) == CHIP_NO_ERROR); |
| NL_TEST_ASSERT(inSuite, storageDelegate.GetNumKeys() == 1); |
| NL_TEST_ASSERT(inSuite, storageDelegate.HasKey(opKeyStorageKey) == true); |
| NL_TEST_ASSERT(inSuite, testOperationalKeystore.HasOpKeypairForFabric(kFabricIndex) == false); |
| |
| // Verify the migration |
| P256SerializedKeypair serializedKeypair; |
| NL_TEST_ASSERT(inSuite, opKeyStore.ExportOpKeypairForFabric(kFabricIndex, serializedKeypair) == CHIP_NO_ERROR); |
| NL_TEST_ASSERT(inSuite, testOperationalKeystore.ValidateKeypair(serializedKeypair)); |
| |
| // Verify that migration method returns success when there is no OpKey stored in the old keystore, but already exists in PSA |
| // ITS. |
| NL_TEST_ASSERT(inSuite, opKeyStore.MigrateOpKeypairForFabric(kFabricIndex, testOperationalKeystore) == CHIP_NO_ERROR); |
| |
| // The key already exists in ITS, but there is an another attempt to migrate the new key. |
| // The key should not be overwritten, but the key from the previous persistent keystore should be removed. |
| MutableByteSpan csrSpan2{ csrBuf }; |
| NL_TEST_ASSERT(inSuite, testOperationalKeystore.NewOpKeypairForFabric(kFabricIndex, csrSpan2) == CHIP_NO_ERROR); |
| NL_TEST_ASSERT(inSuite, testOperationalKeystore.HasOpKeypairForFabric(kFabricIndex) == true); |
| NL_TEST_ASSERT(inSuite, opKeyStore.MigrateOpKeypairForFabric(kFabricIndex, testOperationalKeystore) == CHIP_NO_ERROR); |
| NL_TEST_ASSERT(inSuite, testOperationalKeystore.HasOpKeypairForFabric(kFabricIndex) == false); |
| |
| opKeyStore.Finish(); |
| } |
| |
| /** |
| * Test Suite. It lists all the test functions. |
| */ |
| static const nlTest sTests[] = { NL_TEST_DEF("Test Basic Lifecycle of PersistentStorageOperationalKeystore", TestBasicLifeCycle), |
| NL_TEST_DEF("Test ephemeral key management", TestEphemeralKeys), |
| NL_TEST_DEF("Test keys migration ", TestMigrationKeys), NL_TEST_SENTINEL() }; |
| |
| /** |
| * Set up the test suite. |
| */ |
| int Test_Setup(void * inContext) |
| { |
| CHIP_ERROR error = chip::Platform::MemoryInit(); |
| VerifyOrReturnError(error == CHIP_NO_ERROR, FAILURE); |
| return SUCCESS; |
| } |
| |
| /** |
| * Tear down the test suite. |
| */ |
| int Test_Teardown(void * inContext) |
| { |
| chip::Platform::MemoryShutdown(); |
| return SUCCESS; |
| } |
| |
| } // namespace |
| |
| /** |
| * Main |
| */ |
| int TestPersistentStorageOperationalKeystore() |
| { |
| nlTestSuite theSuite = { "PersistentStorageOperationalKeystore tests", &sTests[0], Test_Setup, Test_Teardown }; |
| |
| // Run test suite againt one context. |
| nlTestRunner(&theSuite, nullptr); |
| return nlTestRunnerStats(&theSuite); |
| } |
| |
| CHIP_REGISTER_TEST_SUITE(TestPersistentStorageOperationalKeystore) |