tree: fc610f465497cda9b6d4cb390da0005a09506dd9 [path history] [tgz]
  1. main/
  2. third_party/
  3. .gitignore
  4. CMakeLists.txt
  5. partitions.csv
  6. README.md
  7. sdkconfig.defaults
examples/bridge-app/esp32/README.md

CHIP ESP32 Bridge App Example

A prototype application that demonstrates dynamic endpoint with device commissioning and cluster control. It adds the non-chip device as endpoints on a bridge(Matter device). In this example four light devices supporting on-off cluster have been added as endpoints

  1. Light1 at endpoint 2
  2. Light2 at endpoint 6
  3. Light3 at endpoint 4
  4. Light4 at endpoint 5


Dynamic Endpoints

The Bridge Example makes use of Dynamic Endpoints. Current SDK support is limited for dynamic endpoints, since endpoints are typically defined (along with the clusters and attributes they contain) in a .zap file which then generates code and static structures to define the endpoints.

To support endpoints that are not statically defined, the ZCL attribute storage mechanisms will hold additional endpoint information for NUM_DYNAMIC_ENDPOINTS additional endpoints. These additional endpoint structures must be defined by the application and can change at runtime.

To facilitate the creation of these endpoint structures, several macros are defined:

DECLARE_DYNAMIC_ATTRIBUTE_LIST_BEGIN(attrListName) DECLARE_DYNAMIC_ATTRIBUTE(attId, attType, attSizeBytes, attrMask) DECLARE_DYNAMIC_ATTRIBUTE_LIST_END(clusterRevision)

  • These three macros are used to declare a list of attributes for use within a cluster. The declaration must begin with the DECLARE_DYNAMIC_ATTRIBUTE_LIST_BEGIN macro which will define the name of the allocated attribute structure. Each attribute is then added by the DECLARE_DYNAMIC_ATTRIBUTE macro. Finally, DECLARE_DYNAMIC_ATTRIBUTE_LIST_END macro should be used to close the definition.

  • All attributes defined with these macros will be configured as ATTRIBUTE_MASK_EXTERNAL_STORAGE in the ZCL database and therefore will rely on the application to maintain storage for the attribute. Consequently, reads or writes to these attributes must be handled within the application by the emberAfExternalAttributeWriteCallback and emberAfExternalAttributeReadCallback functions. See the bridge application's main.cpp for an example of this implementation.

DECLARE_DYNAMIC_CLUSTER_LIST_BEGIN(clusterListName) DECLARE_DYNAMIC_CLUSTER(clusterId, clusterAttrs) DECLARE_DYNAMIC_CLUSTER_LIST_END

  • These three macros are used to declare a list of clusters for use within a endpoint. The declaration must begin with the DECLARE_DYNAMIC_CLUSTER_LIST_BEGIN macro which will define the name of the allocated cluster structure. Each cluster is then added by the DECLARE_DYNAMIC_CLUSTER macro referencing attribute list previously defined by the DECLARE_DYNAMIC_ATTRIBUTE... macros. Finally, DECLARE_DYNAMIC_CLUSTER_LIST_END macro should be used to close the definition.

DECLARE_DYNAMIC_ENDPOINT(endpointName, clusterList)

  • This macro is used to declare an endpoint and its associated cluster list, which must be previously defined by the DECLARE_DYNAMIC_CLUSTER... macros.

Building the Example Application

Building the example application requires the use of the Espressif ESP32 IoT Development Framework and the xtensa-esp32-elf toolchain.

The VSCode devcontainer has these components pre-installed, so you can skip this step. To install these components manually, follow these steps:

  • Clone the Espressif ESP-IDF and checkout branch release/v4.4

      $ mkdir ${HOME}/tools
      $ cd ${HOME}/tools
      $ git clone https://github.com/espressif/esp-idf.git
      $ cd esp-idf
      $ git checkout release/v4.4
      $ git submodule update --init
      $ ./install.sh
    
  • Install ninja-build

      $ sudo apt-get install ninja-build
    

Currently building in VSCode and deploying from native is not supported, so make sure the IDF_PATH has been exported(See the manual setup steps above).

  • Setting up the environment

    $ cd ${HOME}/tools/esp-idf
    $ ./install.sh
    $ . ./export.sh
    $ cd {path-to-connectedhomeip}
    

    To download and install packages.

    $ source ./scripts/bootstrap.sh
    $ source ./scripts/activate.sh
    

    If packages are already installed then simply activate them.

    $ source ./scripts/activate.sh
    
  • Configuration Options

    This application uses ESP32-DevKitC as a default device type. To use other ESP32 based device types, please refer examples/all-clusters-app/esp32

  • To build the demo application.

      $ idf.py build
    
  • After building the application, to flash it outside of VSCode, connect your device via USB. Then run the following command to flash the demo application onto the device and then monitor its output. If necessary, replace /dev/tty.SLAB_USBtoUART(MacOS) with the correct USB device name for your system(like /dev/ttyUSB0 on Linux). Note that sometimes you might have to press and hold the boot button on the device while it's trying to connect before flashing. For ESP32-DevKitC devices this is labeled in the functional description diagram.

      $ idf.py -p /dev/tty.SLAB_USBtoUART flash monitor
    

    Note: Some users might have to install the VCP driver before the device shows up on /dev/tty.

  • Quit the monitor by hitting Ctrl+].

    Note: You can see a menu of various monitor commands by hitting Ctrl+t Ctrl+h while the monitor is running.

  • If desired, the monitor can be run again like so:

      $ idf.py -p /dev/tty.SLAB_USBtoUART monitor
    

Commissioning and cluster control

Commissioning can be carried out using WiFi, BLE or Bypass.

  1. Set the Rendezvous Mode for commissioning using menuconfig; the default Rendezvous mode is BLE.

     $ idf.py menuconfig
    

Select the Rendezvous Mode via Demo -> Rendezvous Mode. If Rendezvous Mode is Bypass then set the credentials of the WiFi Network (i.e. SSID and Password from menuconfig).

idf.py menuconfig -> Component config -> CHIP Device Layer -> WiFi Station Options

  1. Now flash the device with the same command as before. (Use the right /dev device)

      $ idf.py -p /dev/tty.SLAB_USBtoUART flash monitor
    
  2. The device should boot up. When device connects to your network, you will see a log like this on the device console.

      I (5524) chip[DL]: SYSTEM_EVENT_STA_GOT_IP
      I (5524) chip[DL]: IPv4 address changed on WiFi station interface: <IP_ADDRESS>...
    
  3. Use python based device controller or
    standalone chip-tool
    or
    iOS chip-tool app
    or
    Android chip-tool app
    to communicate with the device.

Note: The ESP32 does not support 5GHz networks. Also, the Device will persist your network configuration. To erase it, simply run.

$ idf.py -p /dev/tty.SLAB_USBtoUART erase_flash

Setting up Python Controller

Once ESP32 is up and running, we need to set up a device controller to perform commissioning and cluster control.

  • Set up python controller.

       $ cd {path-to-connectedhomeip}
       $ ./scripts/build_python.sh -m platform
    
  • Execute the controller.

       $ source ./out/python_env/bin/activate
       $ chip-device-ctrl
    

Commissioning over BLE

  • Establish the secure session over BLE. BLE is the default mode in the application and is configurable through menuconfig.

     - chip-device-ctrl > ble-scan
     - chip-device-ctrl > connect -ble 3840 20202021 135246
    
     Parameters:
     1. Discriminator: 3840 (configurable through menuconfig)
     2. Setup-pin-code: 20202021 (configurable through menuconfig)
     3. Node ID: Optional.
        If not passed in this command, then it is auto-generated by the controller and displayed in the output of connect.
        The same value should be used in the next commands.
        We have chosen a random node ID which is 135246.
    
  • Add credentials of the Wi-Fi network you want the ESP32 to connect to, using the AddWiFiNetwork command and then enable the ESP32 to connect to it using EnableWiFiNetwork command. In this example, we have used TESTSSID and TESTPASSWD as the SSID and passphrase respectively.

     - chip-device-ctrl > zcl NetworkCommissioning AddWiFiNetwork 135246 0 0 ssid=str:TESTSSID credentials=str:TESTPASSWD breadcrumb=0 timeoutMs=1000
    
     - chip-device-ctrl > zcl NetworkCommissioning EnableNetwork 135246 0 0 networkID=str:TESTSSID breadcrumb=0 timeoutMs=1000
    
  • Close the BLE connection to ESP32, as it is not required hereafter.

     - chip-device-ctrl > close-ble
    
  • Resolve DNS-SD name and update address of the node in the device controller. Get fabric ID using get-fabricid and use the decimal value of compressed fabric id.

     - chip-device-ctrl > get-fabricid
    
     - chip-device-ctrl > resolve <Compressed Fabric ID> 135246
    

Cluster Control

  • After successful commissioning, use the OnOff cluster commands to control the OnOff attribute on different light devices connected on specific endpoints. This allows you to toggle a parameter implemented by the device to be On or Off.

    chip-device-ctrl > zcl OnOff On 135246 2 0