blob: 30d1f71cb0ff644295353db95145a3fe15a125b2 [file] [log] [blame]
/*
*
* Copyright (c) 2021-2022 Project CHIP Authors
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* This file implements the the CHIP CASE Session object that provides
* APIs for constructing a secure session using a certificate from the device's
* operational credentials.
*
*/
#include <protocols/secure_channel/CASESession.h>
#include <atomic>
#include <inttypes.h>
#include <memory>
#include <string.h>
#include <lib/core/CHIPEncoding.h>
#include <lib/core/CHIPSafeCasts.h>
#include <lib/support/CHIPMem.h>
#include <lib/support/CodeUtils.h>
#include <lib/support/SafeInt.h>
#include <lib/support/ScopedBuffer.h>
#include <lib/support/TypeTraits.h>
#include <messaging/SessionParameters.h>
#include <platform/PlatformManager.h>
#include <protocols/Protocols.h>
#include <protocols/secure_channel/CASEDestinationId.h>
#include <protocols/secure_channel/PairingSession.h>
#include <protocols/secure_channel/SessionResumptionStorage.h>
#include <protocols/secure_channel/StatusReport.h>
#include <system/SystemClock.h>
#include <system/TLVPacketBufferBackingStore.h>
#include <tracing/macros.h>
#include <transport/SessionManager.h>
namespace {
enum
{
kTag_TBEData_SenderNOC = 1,
kTag_TBEData_SenderICAC = 2,
kTag_TBEData_Signature = 3,
kTag_TBEData_ResumptionID = 4,
};
enum
{
kTag_TBSData_SenderNOC = 1,
kTag_TBSData_SenderICAC = 2,
kTag_TBSData_SenderPubKey = 3,
kTag_TBSData_ReceiverPubKey = 4,
};
enum
{
kTag_Sigma1_InitiatorRandom = 1,
kTag_Sigma1_InitiatorSessionId = 2,
kTag_Sigma1_DestinationId = 3,
kTag_Sigma1_InitiatorEphPubKey = 4,
kTag_Sigma1_InitiatorMRPParams = 5,
kTag_Sigma1_ResumptionID = 6,
kTag_Sigma1_InitiatorResumeMIC = 7,
};
enum
{
kTag_Sigma2_ResponderRandom = 1,
kTag_Sigma2_ResponderSessionId = 2,
kTag_Sigma2_ResponderEphPubKey = 3,
kTag_Sigma2_Encrypted2 = 4,
kTag_Sigma2_ResponderMRPParams = 5,
};
enum
{
kTag_Sigma3_Encrypted3 = 1,
};
} // namespace
namespace chip {
using namespace Crypto;
using namespace Credentials;
using namespace Messaging;
using namespace Encoding;
using namespace Protocols::SecureChannel;
constexpr uint8_t kKDFSR2Info[] = { 0x53, 0x69, 0x67, 0x6d, 0x61, 0x32 };
constexpr uint8_t kKDFSR3Info[] = { 0x53, 0x69, 0x67, 0x6d, 0x61, 0x33 };
constexpr uint8_t kKDFS1RKeyInfo[] = { 0x53, 0x69, 0x67, 0x6d, 0x61, 0x31, 0x5f, 0x52, 0x65, 0x73, 0x75, 0x6d, 0x65 };
constexpr uint8_t kKDFS2RKeyInfo[] = { 0x53, 0x69, 0x67, 0x6d, 0x61, 0x32, 0x5f, 0x52, 0x65, 0x73, 0x75, 0x6d, 0x65 };
constexpr uint8_t kResume1MIC_Nonce[] =
/* "NCASE_SigmaS1" */ { 0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69, 0x67, 0x6d, 0x61, 0x53, 0x31 };
constexpr uint8_t kResume2MIC_Nonce[] =
/* "NCASE_SigmaS2" */ { 0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69, 0x67, 0x6d, 0x61, 0x53, 0x32 };
constexpr uint8_t kTBEData2_Nonce[] =
/* "NCASE_Sigma2N" */ { 0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69, 0x67, 0x6d, 0x61, 0x32, 0x4e };
constexpr uint8_t kTBEData3_Nonce[] =
/* "NCASE_Sigma3N" */ { 0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69, 0x67, 0x6d, 0x61, 0x33, 0x4e };
constexpr size_t kTBEDataNonceLength = sizeof(kTBEData2_Nonce);
static_assert(sizeof(kTBEData2_Nonce) == sizeof(kTBEData3_Nonce), "TBEData2_Nonce and TBEData3_Nonce must be same size");
// Amounts of time to allow for server-side processing of messages.
//
// These timeout values only allow for the server-side processing and assume that any transport-specific
// latency will be added to them.
//
// The session establishment fails if the response is not received within the resulting timeout window,
// which accounts for both transport latency and the server-side latency.
static constexpr ExchangeContext::Timeout kExpectedLowProcessingTime = System::Clock::Seconds16(2);
static constexpr ExchangeContext::Timeout kExpectedSigma1ProcessingTime = kExpectedLowProcessingTime;
static constexpr ExchangeContext::Timeout kExpectedHighProcessingTime = System::Clock::Seconds16(30);
// Helper for managing a session's outstanding work.
// Holds work data which is provided to a scheduled work callback (standalone),
// then (if not canceled) to a scheduled after work callback (on the session).
template <class DATA>
class CASESession::WorkHelper
{
public:
// Work callback, processed in the background via `PlatformManager::ScheduleBackgroundWork`.
// This is a non-member function which does not use the associated session.
// The return value is passed to the after work callback (called afterward).
// Set `cancel` to true if calling the after work callback is not necessary.
typedef CHIP_ERROR (*WorkCallback)(DATA & data, bool & cancel);
// After work callback, processed in the main Matter task via `PlatformManager::ScheduleWork`.
// This is a member function to be called on the associated session after the work callback.
// The `status` value is the result of the work callback (called beforehand), or the status of
// queueing the after work callback back to the Matter thread, if the work callback succeeds
// but queueing fails.
//
// When this callback is called asynchronously (i.e. via ScheduleWork), the helper guarantees
// that it will keep itself (and hence `data`) alive until the callback completes.
typedef CHIP_ERROR (CASESession::*AfterWorkCallback)(DATA & data, CHIP_ERROR status);
public:
// Create a work helper using the specified session, work callback, after work callback, and data (template arg).
// Lifetime is managed by sharing between the caller (typically the session) and the helper itself (while work is scheduled).
static Platform::SharedPtr<WorkHelper> Create(CASESession & session, WorkCallback workCallback,
AfterWorkCallback afterWorkCallback)
{
struct EnableShared : public WorkHelper
{
EnableShared(CASESession & session, WorkCallback workCallback, AfterWorkCallback afterWorkCallback) :
WorkHelper(session, workCallback, afterWorkCallback)
{}
};
auto ptr = Platform::MakeShared<EnableShared>(session, workCallback, afterWorkCallback);
if (ptr)
{
ptr->mWeakPtr = ptr; // used by `ScheduleWork`
}
return ptr;
}
// Do the work immediately.
// No scheduling, no outstanding work, no shared lifetime management.
//
// The caller must guarantee that it keeps the helper alive across this call, most likely by
// holding a reference to it on the stack.
CHIP_ERROR DoWork()
{
// Ensure that this function is being called from main Matter thread
assertChipStackLockedByCurrentThread();
VerifyOrReturnError(mSession && mWorkCallback && mAfterWorkCallback, CHIP_ERROR_INCORRECT_STATE);
auto * helper = this;
bool cancel = false;
helper->mStatus = helper->mWorkCallback(helper->mData, cancel);
if (!cancel)
{
helper->mStatus = (helper->mSession->*(helper->mAfterWorkCallback))(helper->mData, helper->mStatus);
}
return helper->mStatus;
}
// Schedule the work for later execution.
// If lifetime is managed, the helper shares management while work is outstanding.
CHIP_ERROR ScheduleWork()
{
VerifyOrReturnError(mSession && mWorkCallback && mAfterWorkCallback, CHIP_ERROR_INCORRECT_STATE);
// Hold strong ptr while work is outstanding
mStrongPtr = mWeakPtr.lock(); // set in `Create`
auto status = DeviceLayer::PlatformMgr().ScheduleBackgroundWork(WorkHandler, reinterpret_cast<intptr_t>(this));
if (status != CHIP_NO_ERROR)
{
// Release strong ptr since scheduling failed.
mStrongPtr.reset();
}
return status;
}
// Cancel the work, by clearing the associated session.
void CancelWork() { mSession.store(nullptr); }
bool IsCancelled() const { return mSession.load() == nullptr; }
// This API returns true when background thread fails to schedule the AfterWorkCallback
bool UnableToScheduleAfterWorkCallback() { return mScheduleAfterWorkFailed.load(); }
// Do after work immediately.
// No scheduling, no outstanding work, no shared lifetime management.
void DoAfterWork()
{
VerifyOrDie(UnableToScheduleAfterWorkCallback());
AfterWorkHandler(reinterpret_cast<intptr_t>(this));
}
private:
// Create a work helper using the specified session, work callback, after work callback, and data (template arg).
// Lifetime is not managed, see `Create` for that option.
WorkHelper(CASESession & session, WorkCallback workCallback, AfterWorkCallback afterWorkCallback) :
mSession(&session), mWorkCallback(workCallback), mAfterWorkCallback(afterWorkCallback)
{}
// Handler for the work callback.
static void WorkHandler(intptr_t arg)
{
auto * helper = reinterpret_cast<WorkHelper *>(arg);
// Hold strong ptr while work is handled
auto strongPtr(std::move(helper->mStrongPtr));
VerifyOrReturn(!helper->IsCancelled());
bool cancel = false;
// Execute callback in background thread; data must be OK with this
helper->mStatus = helper->mWorkCallback(helper->mData, cancel);
VerifyOrReturn(!cancel && !helper->IsCancelled());
// Hold strong ptr to ourselves while work is outstanding
helper->mStrongPtr.swap(strongPtr);
auto status = DeviceLayer::PlatformMgr().ScheduleWork(AfterWorkHandler, reinterpret_cast<intptr_t>(helper));
if (status != CHIP_NO_ERROR)
{
ChipLogError(SecureChannel, "Failed to Schedule the AfterWorkCallback on foreground thread: %" CHIP_ERROR_FORMAT,
status.Format());
// We failed to schedule after work callback, so setting mScheduleAfterWorkFailed flag to true
// This can be checked from foreground thread and after work callback can be retried
helper->mStatus = status;
// Release strong ptr to self since scheduling failed, because nothing guarantees
// that AfterWorkHandler will get called at this point to release the reference,
// and we don't want to leak. That said, we want to ensure that "helper" stays
// alive through the end of this function (so we can set mScheduleAfterWorkFailed
// on it), but also want to avoid racing on the single SharedPtr instance in
// helper->mStrongPtr. That means we need to not touch helper->mStrongPtr after
// writing to mScheduleAfterWorkFailed.
//
// The simplest way to do this is to move the reference in helper->mStrongPtr to
// our stack, where it outlives all our accesses to "helper".
strongPtr.swap(helper->mStrongPtr);
// helper and any of its state should not be touched after storing mScheduleAfterWorkFailed.
helper->mScheduleAfterWorkFailed.store(true);
}
}
// Handler for the after work callback.
static void AfterWorkHandler(intptr_t arg)
{
// Ensure that this function is being called from main Matter thread
assertChipStackLockedByCurrentThread();
auto * helper = reinterpret_cast<WorkHelper *>(arg);
// Hold strong ptr while work is handled, and ensure that helper->mStrongPtr does not keep
// holding a reference.
auto strongPtr(std::move(helper->mStrongPtr));
if (!strongPtr)
{
// This can happen if scheduling AfterWorkHandler failed. Just grab a strong ref
// to handler directly, to fulfill our API contract of holding a strong reference
// across the after-work callback. At this point, we are guaranteed that the
// background thread is not touching the helper anymore.
strongPtr = helper->mWeakPtr.lock();
}
if (auto * session = helper->mSession.load())
{
// Execute callback in Matter thread; session should be OK with this
(session->*(helper->mAfterWorkCallback))(helper->mData, helper->mStatus);
}
}
private:
// Lifetime management: `ScheduleWork` sets `mStrongPtr` from `mWeakPtr`.
Platform::WeakPtr<WorkHelper> mWeakPtr;
// Lifetime management: `ScheduleWork` sets `mStrongPtr` from `mWeakPtr`.
Platform::SharedPtr<WorkHelper> mStrongPtr;
// Associated session, cleared by `CancelWork`.
std::atomic<CASESession *> mSession;
// Work callback, called by `WorkHandler`.
WorkCallback mWorkCallback;
// After work callback, called by `AfterWorkHandler`.
AfterWorkCallback mAfterWorkCallback;
// Return value of `mWorkCallback`, passed to `mAfterWorkCallback`.
CHIP_ERROR mStatus;
// If background thread fails to schedule AfterWorkCallback then this flag is set to true
// and CASEServer then can check this one and run the AfterWorkCallback for us.
//
// When this happens, the write to this boolean _must_ be the last code that touches this
// object on the background thread. After that, the Matter thread owns the object.
std::atomic<bool> mScheduleAfterWorkFailed{ false };
public:
// Data passed to `mWorkCallback` and `mAfterWorkCallback`.
DATA mData;
};
struct CASESession::SendSigma3Data
{
FabricIndex fabricIndex;
// Use one or the other
const FabricTable * fabricTable;
const Crypto::OperationalKeystore * keystore;
chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R3_Signed;
size_t msg_r3_signed_len;
chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R3_Encrypted;
size_t msg_r3_encrypted_len;
chip::Platform::ScopedMemoryBuffer<uint8_t> icacBuf;
MutableByteSpan icaCert;
chip::Platform::ScopedMemoryBuffer<uint8_t> nocBuf;
MutableByteSpan nocCert;
P256ECDSASignature tbsData3Signature;
};
struct CASESession::HandleSigma3Data
{
chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R3_Signed;
size_t msg_r3_signed_len;
ByteSpan initiatorNOC;
ByteSpan initiatorICAC;
uint8_t rootCertBuf[kMaxCHIPCertLength];
ByteSpan fabricRCAC;
P256ECDSASignature tbsData3Signature;
FabricId fabricId;
NodeId initiatorNodeId;
ValidationContext validContext;
};
CASESession::~CASESession()
{
// Let's clear out any security state stored in the object, before destroying it.
Clear();
}
void CASESession::OnSessionReleased()
{
// Call into our super-class before we clear our state.
PairingSession::OnSessionReleased();
Clear();
}
void CASESession::Clear()
{
MATTER_TRACE_SCOPE("Clear", "CASESession");
// Cancel any outstanding work.
if (mSendSigma3Helper)
{
mSendSigma3Helper->CancelWork();
mSendSigma3Helper.reset();
}
if (mHandleSigma3Helper)
{
mHandleSigma3Helper->CancelWork();
mHandleSigma3Helper.reset();
}
// This function zeroes out and resets the memory used by the object.
// It's done so that no security related information will be leaked.
mCommissioningHash.Clear();
PairingSession::Clear();
mState = State::kInitialized;
Crypto::ClearSecretData(mIPK);
if (mFabricsTable != nullptr)
{
mFabricsTable->RemoveFabricDelegate(this);
mFabricsTable->ReleaseEphemeralKeypair(mEphemeralKey);
mEphemeralKey = nullptr;
}
mLocalNodeId = kUndefinedNodeId;
mPeerNodeId = kUndefinedNodeId;
mFabricsTable = nullptr;
mFabricIndex = kUndefinedFabricIndex;
}
void CASESession::InvalidateIfPendingEstablishmentOnFabric(FabricIndex fabricIndex)
{
if (mFabricIndex != fabricIndex)
{
return;
}
if (!IsSessionEstablishmentInProgress())
{
return;
}
AbortPendingEstablish(CHIP_ERROR_CANCELLED);
}
CHIP_ERROR CASESession::Init(SessionManager & sessionManager, Credentials::CertificateValidityPolicy * policy,
SessionEstablishmentDelegate * delegate, const ScopedNodeId & sessionEvictionHint)
{
MATTER_TRACE_SCOPE("Init", "CASESession");
VerifyOrReturnError(delegate != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(mGroupDataProvider != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(sessionManager.GetSessionKeystore() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
Clear();
ReturnErrorOnFailure(mCommissioningHash.Begin());
mDelegate = delegate;
ReturnErrorOnFailure(AllocateSecureSession(sessionManager, sessionEvictionHint));
mValidContext.Reset();
mValidContext.mRequiredKeyUsages.Set(KeyUsageFlags::kDigitalSignature);
mValidContext.mRequiredKeyPurposes.Set(KeyPurposeFlags::kServerAuth);
mValidContext.mValidityPolicy = policy;
return CHIP_NO_ERROR;
}
CHIP_ERROR
CASESession::PrepareForSessionEstablishment(SessionManager & sessionManager, FabricTable * fabricTable,
SessionResumptionStorage * sessionResumptionStorage,
Credentials::CertificateValidityPolicy * policy,
SessionEstablishmentDelegate * delegate, const ScopedNodeId & previouslyEstablishedPeer,
Optional<ReliableMessageProtocolConfig> mrpLocalConfig)
{
MATTER_TRACE_SCOPE("PrepareForSessionEstablishment", "CASESession");
// Below VerifyOrReturnError is not SuccessOrExit since we only want to goto `exit:` after
// Init has been successfully called.
VerifyOrReturnError(fabricTable != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
ReturnErrorOnFailure(Init(sessionManager, policy, delegate, previouslyEstablishedPeer));
CHIP_ERROR err = CHIP_NO_ERROR;
SuccessOrExit(err = fabricTable->AddFabricDelegate(this));
mFabricsTable = fabricTable;
mRole = CryptoContext::SessionRole::kResponder;
mSessionResumptionStorage = sessionResumptionStorage;
mLocalMRPConfig = mrpLocalConfig.ValueOr(GetDefaultMRPConfig());
ChipLogDetail(SecureChannel, "Allocated SecureSession (%p) - waiting for Sigma1 msg",
mSecureSessionHolder.Get().Value()->AsSecureSession());
exit:
if (err != CHIP_NO_ERROR)
{
Clear();
}
return err;
}
CHIP_ERROR CASESession::EstablishSession(SessionManager & sessionManager, FabricTable * fabricTable, ScopedNodeId peerScopedNodeId,
ExchangeContext * exchangeCtxt, SessionResumptionStorage * sessionResumptionStorage,
Credentials::CertificateValidityPolicy * policy, SessionEstablishmentDelegate * delegate,
Optional<ReliableMessageProtocolConfig> mrpLocalConfig)
{
MATTER_TRACE_SCOPE("EstablishSession", "CASESession");
CHIP_ERROR err = CHIP_NO_ERROR;
// Return early on error here, as we have not initialized any state yet
ReturnErrorCodeIf(exchangeCtxt == nullptr, CHIP_ERROR_INVALID_ARGUMENT);
ReturnErrorCodeIf(fabricTable == nullptr, CHIP_ERROR_INVALID_ARGUMENT);
// Use FabricTable directly to avoid situation of dangling index from stale FabricInfo
// until we factor-out any FabricInfo direct usage.
ReturnErrorCodeIf(peerScopedNodeId.GetFabricIndex() == kUndefinedFabricIndex, CHIP_ERROR_INVALID_ARGUMENT);
const auto * fabricInfo = fabricTable->FindFabricWithIndex(peerScopedNodeId.GetFabricIndex());
ReturnErrorCodeIf(fabricInfo == nullptr, CHIP_ERROR_INVALID_ARGUMENT);
err = Init(sessionManager, policy, delegate, peerScopedNodeId);
mRole = CryptoContext::SessionRole::kInitiator;
// We are setting the exchange context specifically before checking for error.
// This is to make sure the exchange will get closed if Init() returned an error.
mExchangeCtxt = exchangeCtxt;
// From here onwards, let's go to exit on error, as some state might have already
// been initialized
SuccessOrExit(err);
SuccessOrExit(err = fabricTable->AddFabricDelegate(this));
mFabricsTable = fabricTable;
mFabricIndex = fabricInfo->GetFabricIndex();
mSessionResumptionStorage = sessionResumptionStorage;
mLocalMRPConfig = mrpLocalConfig.ValueOr(GetDefaultMRPConfig());
mExchangeCtxt->UseSuggestedResponseTimeout(kExpectedSigma1ProcessingTime);
mPeerNodeId = peerScopedNodeId.GetNodeId();
mLocalNodeId = fabricInfo->GetNodeId();
ChipLogProgress(SecureChannel, "Initiating session on local FabricIndex %u from 0x" ChipLogFormatX64 " -> 0x" ChipLogFormatX64,
static_cast<unsigned>(mFabricIndex), ChipLogValueX64(mLocalNodeId), ChipLogValueX64(mPeerNodeId));
err = SendSigma1();
SuccessOrExit(err);
exit:
if (err != CHIP_NO_ERROR)
{
Clear();
}
return err;
}
void CASESession::OnResponseTimeout(ExchangeContext * ec)
{
MATTER_TRACE_SCOPE("OnResponseTimeout", "CASESession");
VerifyOrReturn(ec != nullptr, ChipLogError(SecureChannel, "CASESession::OnResponseTimeout was called by null exchange"));
VerifyOrReturn(mExchangeCtxt == ec, ChipLogError(SecureChannel, "CASESession::OnResponseTimeout exchange doesn't match"));
ChipLogError(SecureChannel, "CASESession timed out while waiting for a response from the peer. Current state was %u",
to_underlying(mState));
MATTER_TRACE_COUNTER("CASETimeout");
// Discard the exchange so that Clear() doesn't try aborting it. The
// exchange will handle that.
DiscardExchange();
AbortPendingEstablish(CHIP_ERROR_TIMEOUT);
}
void CASESession::AbortPendingEstablish(CHIP_ERROR err)
{
MATTER_TRACE_SCOPE("AbortPendingEstablish", "CASESession");
// This needs to come before Clear() which will reset mState.
SessionEstablishmentStage state = MapCASEStateToSessionEstablishmentStage(mState);
Clear();
// Do this last in case the delegate frees us.
NotifySessionEstablishmentError(err, state);
}
CHIP_ERROR CASESession::DeriveSecureSession(CryptoContext & session) const
{
switch (mState)
{
case State::kFinished: {
std::array<uint8_t, sizeof(mIPK) + kSHA256_Hash_Length> msg_salt;
{
Encoding::LittleEndian::BufferWriter bbuf(msg_salt);
bbuf.Put(mIPK, sizeof(mIPK));
bbuf.Put(mMessageDigest, sizeof(mMessageDigest));
VerifyOrReturnError(bbuf.Fit(), CHIP_ERROR_BUFFER_TOO_SMALL);
}
ReturnErrorOnFailure(session.InitFromSecret(*mSessionManager->GetSessionKeystore(), mSharedSecret.Span(),
ByteSpan(msg_salt), CryptoContext::SessionInfoType::kSessionEstablishment,
mRole));
return CHIP_NO_ERROR;
}
case State::kFinishedViaResume: {
std::array<uint8_t, sizeof(mInitiatorRandom) + decltype(mResumeResumptionId)().size()> msg_salt;
{
Encoding::LittleEndian::BufferWriter bbuf(msg_salt);
bbuf.Put(mInitiatorRandom, sizeof(mInitiatorRandom));
bbuf.Put(mResumeResumptionId.data(), mResumeResumptionId.size());
VerifyOrReturnError(bbuf.Fit(), CHIP_ERROR_BUFFER_TOO_SMALL);
}
ReturnErrorOnFailure(session.InitFromSecret(*mSessionManager->GetSessionKeystore(), mSharedSecret.Span(),
ByteSpan(msg_salt), CryptoContext::SessionInfoType::kSessionResumption, mRole));
return CHIP_NO_ERROR;
}
default:
return CHIP_ERROR_INCORRECT_STATE;
}
}
CHIP_ERROR CASESession::RecoverInitiatorIpk()
{
Credentials::GroupDataProvider::KeySet ipkKeySet;
CHIP_ERROR err = mGroupDataProvider->GetIpkKeySet(mFabricIndex, ipkKeySet);
if (err != CHIP_NO_ERROR)
{
ChipLogError(SecureChannel, "Failed to obtain IPK for initiating: %" CHIP_ERROR_FORMAT, err.Format());
return err;
}
if ((ipkKeySet.num_keys_used == 0) || (ipkKeySet.num_keys_used > Credentials::GroupDataProvider::KeySet::kEpochKeysMax))
{
ChipLogError(SecureChannel, "Found invalid IPK keyset for initiator.");
return CHIP_ERROR_INTERNAL;
}
// For the generation of the Destination Identifier,
// the originator SHALL use the operational group key with the second oldest
// EpochStartTime, if one exists, otherwise it SHALL use the single operational
// group key available. The EpochStartTime are already ordered
size_t ipkIndex = (ipkKeySet.num_keys_used > 1) ? ((ipkKeySet.num_keys_used - 1) - 1) : 0;
memcpy(&mIPK[0], ipkKeySet.epoch_keys[ipkIndex].key, sizeof(mIPK));
// Leaving this logging code for debug, but this cannot be enabled at runtime
// since it leaks private security material.
#if 0
ChipLogProgress(SecureChannel, "RecoverInitiatorIpk: GroupDataProvider %p, Got IPK for FabricIndex %u", mGroupDataProvider,
static_cast<unsigned>(mFabricIndex));
ChipLogByteSpan(SecureChannel, ByteSpan(mIPK));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::SendSigma1()
{
MATTER_TRACE_SCOPE("SendSigma1", "CASESession");
size_t data_len = TLV::EstimateStructOverhead(kSigmaParamRandomNumberSize, // initiatorRandom
sizeof(uint16_t), // initiatorSessionId,
kSHA256_Hash_Length, // destinationId
kP256_PublicKey_Length, // InitiatorEphPubKey,
SessionParameters::kEstimatedTLVSize, // initiatorSessionParams
SessionResumptionStorage::kResumptionIdSize, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES);
System::PacketBufferTLVWriter tlvWriter;
System::PacketBufferHandle msg_R1;
TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified;
uint8_t destinationIdentifier[kSHA256_Hash_Length] = { 0 };
// Lookup fabric info.
const auto * fabricInfo = mFabricsTable->FindFabricWithIndex(mFabricIndex);
ReturnErrorCodeIf(fabricInfo == nullptr, CHIP_ERROR_INCORRECT_STATE);
// Validate that we have a session ID allocated.
VerifyOrReturnError(GetLocalSessionId().HasValue(), CHIP_ERROR_INCORRECT_STATE);
// Generate an ephemeral keypair
mEphemeralKey = mFabricsTable->AllocateEphemeralKeypairForCASE();
VerifyOrReturnError(mEphemeralKey != nullptr, CHIP_ERROR_NO_MEMORY);
ReturnErrorOnFailure(mEphemeralKey->Initialize(ECPKeyTarget::ECDH));
// Fill in the random value
ReturnErrorOnFailure(DRBG_get_bytes(mInitiatorRandom, sizeof(mInitiatorRandom)));
// Construct Sigma1 Msg
msg_R1 = System::PacketBufferHandle::New(data_len);
VerifyOrReturnError(!msg_R1.IsNull(), CHIP_ERROR_NO_MEMORY);
tlvWriter.Init(std::move(msg_R1));
ReturnErrorOnFailure(tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType));
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(1), ByteSpan(mInitiatorRandom)));
// Retrieve Session Identifier
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(2), GetLocalSessionId().Value()));
// Generate a Destination Identifier based on the node we are attempting to reach
{
// Obtain originator IPK matching the fabric where we are trying to open a session. mIPK
// will be properly set thereafter.
ReturnErrorOnFailure(RecoverInitiatorIpk());
FabricId fabricId = fabricInfo->GetFabricId();
Crypto::P256PublicKey rootPubKey;
ReturnErrorOnFailure(mFabricsTable->FetchRootPubkey(mFabricIndex, rootPubKey));
Credentials::P256PublicKeySpan rootPubKeySpan{ rootPubKey.ConstBytes() };
MutableByteSpan destinationIdSpan(destinationIdentifier);
ReturnErrorOnFailure(GenerateCaseDestinationId(ByteSpan(mIPK), ByteSpan(mInitiatorRandom), rootPubKeySpan, fabricId,
mPeerNodeId, destinationIdSpan));
}
ReturnErrorOnFailure(tlvWriter.PutBytes(TLV::ContextTag(3), destinationIdentifier, sizeof(destinationIdentifier)));
ReturnErrorOnFailure(
tlvWriter.PutBytes(TLV::ContextTag(4), mEphemeralKey->Pubkey(), static_cast<uint32_t>(mEphemeralKey->Pubkey().Length())));
ReturnErrorOnFailure(EncodeSessionParameters(TLV::ContextTag(5), mLocalMRPConfig, tlvWriter));
// Try to find persistent session, and resume it.
bool resuming = false;
if (mSessionResumptionStorage != nullptr)
{
CHIP_ERROR err = mSessionResumptionStorage->FindByScopedNodeId(fabricInfo->GetScopedNodeIdForNode(mPeerNodeId),
mResumeResumptionId, mSharedSecret, mPeerCATs);
if (err == CHIP_NO_ERROR)
{
// Found valid resumption state, try to resume the session.
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(6), mResumeResumptionId));
uint8_t initiatorResume1MIC[CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES];
MutableByteSpan resumeMICSpan(initiatorResume1MIC);
ReturnErrorOnFailure(GenerateSigmaResumeMIC(ByteSpan(mInitiatorRandom), ByteSpan(mResumeResumptionId),
ByteSpan(kKDFS1RKeyInfo), ByteSpan(kResume1MIC_Nonce), resumeMICSpan));
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(7), resumeMICSpan));
resuming = true;
}
}
ReturnErrorOnFailure(tlvWriter.EndContainer(outerContainerType));
ReturnErrorOnFailure(tlvWriter.Finalize(&msg_R1));
ReturnErrorOnFailure(mCommissioningHash.AddData(ByteSpan{ msg_R1->Start(), msg_R1->DataLength() }));
// Call delegate to send the msg to peer
ReturnErrorOnFailure(mExchangeCtxt->SendMessage(Protocols::SecureChannel::MsgType::CASE_Sigma1, std::move(msg_R1),
SendFlags(SendMessageFlags::kExpectResponse)));
mState = resuming ? State::kSentSigma1Resume : State::kSentSigma1;
ChipLogProgress(SecureChannel, "Sent Sigma1 msg");
mDelegate->OnSessionEstablishmentStarted();
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::HandleSigma1_and_SendSigma2(System::PacketBufferHandle && msg)
{
MATTER_TRACE_SCOPE("HandleSigma1_and_SendSigma2", "CASESession");
ReturnErrorOnFailure(HandleSigma1(std::move(msg)));
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::FindLocalNodeFromDestinationId(const ByteSpan & destinationId, const ByteSpan & initiatorRandom)
{
MATTER_TRACE_SCOPE("FindLocalNodeFromDestinationId", "CASESession");
VerifyOrReturnError(mFabricsTable != nullptr, CHIP_ERROR_INCORRECT_STATE);
bool found = false;
for (const FabricInfo & fabricInfo : *mFabricsTable)
{
// Basic data for candidate fabric, used to compute candidate destination identifiers
FabricId fabricId = fabricInfo.GetFabricId();
NodeId nodeId = fabricInfo.GetNodeId();
Crypto::P256PublicKey rootPubKey;
ReturnErrorOnFailure(mFabricsTable->FetchRootPubkey(fabricInfo.GetFabricIndex(), rootPubKey));
Credentials::P256PublicKeySpan rootPubKeySpan{ rootPubKey.ConstBytes() };
// Get IPK operational group key set for current candidate fabric
GroupDataProvider::KeySet ipkKeySet;
CHIP_ERROR err = mGroupDataProvider->GetIpkKeySet(fabricInfo.GetFabricIndex(), ipkKeySet);
if ((err != CHIP_NO_ERROR) ||
((ipkKeySet.num_keys_used == 0) || (ipkKeySet.num_keys_used > Credentials::GroupDataProvider::KeySet::kEpochKeysMax)))
{
continue;
}
// Try every IPK candidate we have for a match
for (size_t keyIdx = 0; keyIdx < ipkKeySet.num_keys_used; ++keyIdx)
{
uint8_t candidateDestinationId[kSHA256_Hash_Length];
MutableByteSpan candidateDestinationIdSpan(candidateDestinationId);
ByteSpan candidateIpkSpan(ipkKeySet.epoch_keys[keyIdx].key);
err = GenerateCaseDestinationId(ByteSpan(candidateIpkSpan), ByteSpan(initiatorRandom), rootPubKeySpan, fabricId, nodeId,
candidateDestinationIdSpan);
if ((err == CHIP_NO_ERROR) && (candidateDestinationIdSpan.data_equal(destinationId)))
{
// Found a match, stop working, cache IPK, update local fabric context
found = true;
MutableByteSpan ipkSpan(mIPK);
CopySpanToMutableSpan(candidateIpkSpan, ipkSpan);
mFabricIndex = fabricInfo.GetFabricIndex();
mLocalNodeId = nodeId;
break;
}
}
if (found)
{
break;
}
}
return found ? CHIP_NO_ERROR : CHIP_ERROR_KEY_NOT_FOUND;
}
CHIP_ERROR CASESession::TryResumeSession(SessionResumptionStorage::ConstResumptionIdView resumptionId, ByteSpan resume1MIC,
ByteSpan initiatorRandom)
{
MATTER_TRACE_SCOPE("TryResumeSession", "CASESession");
VerifyOrReturnError(mSessionResumptionStorage != nullptr, CHIP_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mFabricsTable != nullptr, CHIP_ERROR_INCORRECT_STATE);
SessionResumptionStorage::ConstResumptionIdView resumptionIdSpan(resumptionId);
ScopedNodeId node;
ReturnErrorOnFailure(mSessionResumptionStorage->FindByResumptionId(resumptionIdSpan, node, mSharedSecret, mPeerCATs));
// Cross check resume1MIC with the shared secret
ReturnErrorOnFailure(
ValidateSigmaResumeMIC(resume1MIC, initiatorRandom, resumptionId, ByteSpan(kKDFS1RKeyInfo), ByteSpan(kResume1MIC_Nonce)));
const auto * fabricInfo = mFabricsTable->FindFabricWithIndex(node.GetFabricIndex());
VerifyOrReturnError(fabricInfo != nullptr, CHIP_ERROR_INCORRECT_STATE);
mFabricIndex = node.GetFabricIndex();
mPeerNodeId = node.GetNodeId();
mLocalNodeId = fabricInfo->GetNodeId();
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::HandleSigma1(System::PacketBufferHandle && msg)
{
MATTER_TRACE_SCOPE("HandleSigma1", "CASESession");
CHIP_ERROR err = CHIP_NO_ERROR;
System::PacketBufferTLVReader tlvReader;
uint16_t initiatorSessionId;
ByteSpan destinationIdentifier;
ByteSpan initiatorRandom;
ChipLogProgress(SecureChannel, "Received Sigma1 msg");
MATTER_TRACE_COUNTER("Sigma1");
bool sessionResumptionRequested = false;
ByteSpan resumptionId;
ByteSpan resume1MIC;
ByteSpan initiatorPubKey;
SuccessOrExit(err = mCommissioningHash.AddData(ByteSpan{ msg->Start(), msg->DataLength() }));
tlvReader.Init(std::move(msg));
SuccessOrExit(err = ParseSigma1(tlvReader, initiatorRandom, initiatorSessionId, destinationIdentifier, initiatorPubKey,
sessionResumptionRequested, resumptionId, resume1MIC));
ChipLogDetail(SecureChannel, "Peer assigned session key ID %d", initiatorSessionId);
SetPeerSessionId(initiatorSessionId);
VerifyOrExit(mFabricsTable != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
if (sessionResumptionRequested && resumptionId.size() == SessionResumptionStorage::kResumptionIdSize &&
CHIP_NO_ERROR ==
TryResumeSession(SessionResumptionStorage::ConstResumptionIdView(resumptionId.data()), resume1MIC, initiatorRandom))
{
std::copy(initiatorRandom.begin(), initiatorRandom.end(), mInitiatorRandom);
std::copy(resumptionId.begin(), resumptionId.end(), mResumeResumptionId.begin());
// Send Sigma2Resume message to the initiator
SuccessOrExit(err = SendSigma2Resume());
mDelegate->OnSessionEstablishmentStarted();
// Early returning here, since we have sent Sigma2Resume, and no further processing is needed for the Sigma1 message
return CHIP_NO_ERROR;
}
// Attempt to match the initiator's desired destination based on local fabric table.
err = FindLocalNodeFromDestinationId(destinationIdentifier, initiatorRandom);
if (err == CHIP_NO_ERROR)
{
ChipLogProgress(SecureChannel, "CASE matched destination ID: fabricIndex %u, NodeID 0x" ChipLogFormatX64,
static_cast<unsigned>(mFabricIndex), ChipLogValueX64(mLocalNodeId));
// Side-effect of FindLocalNodeFromDestinationId success was that mFabricIndex/mLocalNodeId are now
// set to the local fabric and associated NodeId that was targeted by the initiator.
}
else
{
ChipLogError(SecureChannel, "CASE failed to match destination ID with local fabrics");
ChipLogByteSpan(SecureChannel, destinationIdentifier);
}
SuccessOrExit(err);
// ParseSigma1 ensures that:
// mRemotePubKey.Length() == initiatorPubKey.size() == kP256_PublicKey_Length.
memcpy(mRemotePubKey.Bytes(), initiatorPubKey.data(), mRemotePubKey.Length());
SuccessOrExit(err = SendSigma2());
mDelegate->OnSessionEstablishmentStarted();
exit:
if (err == CHIP_ERROR_KEY_NOT_FOUND)
{
SendStatusReport(mExchangeCtxt, kProtocolCodeNoSharedRoot);
mState = State::kInitialized;
}
else if (err != CHIP_NO_ERROR)
{
SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam);
mState = State::kInitialized;
}
return err;
}
CHIP_ERROR CASESession::SendSigma2Resume()
{
MATTER_TRACE_SCOPE("SendSigma2Resume", "CASESession");
size_t max_sigma2_resume_data_len =
TLV::EstimateStructOverhead(SessionResumptionStorage::kResumptionIdSize, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES,
sizeof(uint16_t), SessionParameters::kEstimatedTLVSize);
System::PacketBufferTLVWriter tlvWriter;
System::PacketBufferHandle msg_R2_resume;
TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified;
// Validate that we have a session ID allocated.
VerifyOrReturnError(GetLocalSessionId().HasValue(), CHIP_ERROR_INCORRECT_STATE);
msg_R2_resume = System::PacketBufferHandle::New(max_sigma2_resume_data_len);
VerifyOrReturnError(!msg_R2_resume.IsNull(), CHIP_ERROR_NO_MEMORY);
tlvWriter.Init(std::move(msg_R2_resume));
// Generate a new resumption ID
ReturnErrorOnFailure(DRBG_get_bytes(mNewResumptionId.data(), mNewResumptionId.size()));
ReturnErrorOnFailure(tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType));
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(1), mNewResumptionId));
uint8_t sigma2ResumeMIC[CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES];
MutableByteSpan resumeMICSpan(sigma2ResumeMIC);
ReturnErrorOnFailure(GenerateSigmaResumeMIC(ByteSpan(mInitiatorRandom), mNewResumptionId, ByteSpan(kKDFS2RKeyInfo),
ByteSpan(kResume2MIC_Nonce), resumeMICSpan));
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(2), resumeMICSpan));
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(3), GetLocalSessionId().Value()));
ReturnErrorOnFailure(EncodeSessionParameters(TLV::ContextTag(4), mLocalMRPConfig, tlvWriter));
ReturnErrorOnFailure(tlvWriter.EndContainer(outerContainerType));
ReturnErrorOnFailure(tlvWriter.Finalize(&msg_R2_resume));
// Call delegate to send the msg to peer
ReturnErrorOnFailure(mExchangeCtxt->SendMessage(Protocols::SecureChannel::MsgType::CASE_Sigma2Resume, std::move(msg_R2_resume),
SendFlags(SendMessageFlags::kExpectResponse)));
mState = State::kSentSigma2Resume;
ChipLogDetail(SecureChannel, "Sent Sigma2Resume msg");
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::SendSigma2()
{
MATTER_TRACE_SCOPE("SendSigma2", "CASESession");
VerifyOrReturnError(GetLocalSessionId().HasValue(), CHIP_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mFabricsTable != nullptr, CHIP_ERROR_INCORRECT_STATE);
chip::Platform::ScopedMemoryBuffer<uint8_t> icacBuf;
VerifyOrReturnError(icacBuf.Alloc(kMaxCHIPCertLength), CHIP_ERROR_NO_MEMORY);
chip::Platform::ScopedMemoryBuffer<uint8_t> nocBuf;
VerifyOrReturnError(nocBuf.Alloc(kMaxCHIPCertLength), CHIP_ERROR_NO_MEMORY);
MutableByteSpan icaCert{ icacBuf.Get(), kMaxCHIPCertLength };
ReturnErrorOnFailure(mFabricsTable->FetchICACert(mFabricIndex, icaCert));
MutableByteSpan nocCert{ nocBuf.Get(), kMaxCHIPCertLength };
ReturnErrorOnFailure(mFabricsTable->FetchNOCCert(mFabricIndex, nocCert));
// Fill in the random value
uint8_t msg_rand[kSigmaParamRandomNumberSize];
ReturnErrorOnFailure(DRBG_get_bytes(&msg_rand[0], sizeof(msg_rand)));
// Generate an ephemeral keypair
mEphemeralKey = mFabricsTable->AllocateEphemeralKeypairForCASE();
VerifyOrReturnError(mEphemeralKey != nullptr, CHIP_ERROR_NO_MEMORY);
ReturnErrorOnFailure(mEphemeralKey->Initialize(ECPKeyTarget::ECDH));
// Generate a Shared Secret
ReturnErrorOnFailure(mEphemeralKey->ECDH_derive_secret(mRemotePubKey, mSharedSecret));
uint8_t msg_salt[kIPKSize + kSigmaParamRandomNumberSize + kP256_PublicKey_Length + kSHA256_Hash_Length];
MutableByteSpan saltSpan(msg_salt);
ReturnErrorOnFailure(ConstructSaltSigma2(ByteSpan(msg_rand), mEphemeralKey->Pubkey(), ByteSpan(mIPK), saltSpan));
AutoReleaseSessionKey sr2k(*mSessionManager->GetSessionKeystore());
ReturnErrorOnFailure(DeriveSigmaKey(saltSpan, ByteSpan(kKDFSR2Info), sr2k));
// Construct Sigma2 TBS Data
size_t msg_r2_signed_len =
TLV::EstimateStructOverhead(kMaxCHIPCertLength, kMaxCHIPCertLength, kP256_PublicKey_Length, kP256_PublicKey_Length);
chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R2_Signed;
VerifyOrReturnError(msg_R2_Signed.Alloc(msg_r2_signed_len), CHIP_ERROR_NO_MEMORY);
ReturnErrorOnFailure(ConstructTBSData(nocCert, icaCert, ByteSpan(mEphemeralKey->Pubkey(), mEphemeralKey->Pubkey().Length()),
ByteSpan(mRemotePubKey, mRemotePubKey.Length()), msg_R2_Signed.Get(), msg_r2_signed_len));
// Generate a Signature
P256ECDSASignature tbsData2Signature;
ReturnErrorOnFailure(
mFabricsTable->SignWithOpKeypair(mFabricIndex, ByteSpan{ msg_R2_Signed.Get(), msg_r2_signed_len }, tbsData2Signature));
msg_R2_Signed.Free();
// Construct Sigma2 TBE Data
size_t msg_r2_signed_enc_len = TLV::EstimateStructOverhead(nocCert.size(), icaCert.size(), tbsData2Signature.Length(),
SessionResumptionStorage::kResumptionIdSize);
chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R2_Encrypted;
VerifyOrReturnError(msg_R2_Encrypted.Alloc(msg_r2_signed_enc_len + CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES), CHIP_ERROR_NO_MEMORY);
TLV::TLVWriter tlvWriter;
TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified;
tlvWriter.Init(msg_R2_Encrypted.Get(), msg_r2_signed_enc_len);
ReturnErrorOnFailure(tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType));
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBEData_SenderNOC), nocCert));
if (!icaCert.empty())
{
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBEData_SenderICAC), icaCert));
}
// We are now done with ICAC and NOC certs so we can release the memory.
{
icacBuf.Free();
icaCert = MutableByteSpan{};
nocBuf.Free();
nocCert = MutableByteSpan{};
}
ReturnErrorOnFailure(tlvWriter.PutBytes(TLV::ContextTag(kTag_TBEData_Signature), tbsData2Signature.ConstBytes(),
static_cast<uint32_t>(tbsData2Signature.Length())));
// Generate a new resumption ID
ReturnErrorOnFailure(DRBG_get_bytes(mNewResumptionId.data(), mNewResumptionId.size()));
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBEData_ResumptionID), mNewResumptionId));
ReturnErrorOnFailure(tlvWriter.EndContainer(outerContainerType));
ReturnErrorOnFailure(tlvWriter.Finalize());
msg_r2_signed_enc_len = static_cast<size_t>(tlvWriter.GetLengthWritten());
// Generate the encrypted data blob
ReturnErrorOnFailure(AES_CCM_encrypt(msg_R2_Encrypted.Get(), msg_r2_signed_enc_len, nullptr, 0, sr2k.KeyHandle(),
kTBEData2_Nonce, kTBEDataNonceLength, msg_R2_Encrypted.Get(),
msg_R2_Encrypted.Get() + msg_r2_signed_enc_len, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES));
// Construct Sigma2 Msg
size_t size_of_local_session_id = sizeof(uint16_t);
size_t data_len =
TLV::EstimateStructOverhead(kSigmaParamRandomNumberSize, size_of_local_session_id, kP256_PublicKey_Length,
msg_r2_signed_enc_len, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, SessionParameters::kEstimatedTLVSize);
System::PacketBufferHandle msg_R2 = System::PacketBufferHandle::New(data_len);
VerifyOrReturnError(!msg_R2.IsNull(), CHIP_ERROR_NO_MEMORY);
System::PacketBufferTLVWriter tlvWriterMsg2;
outerContainerType = TLV::kTLVType_NotSpecified;
tlvWriterMsg2.Init(std::move(msg_R2));
ReturnErrorOnFailure(tlvWriterMsg2.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType));
ReturnErrorOnFailure(tlvWriterMsg2.PutBytes(TLV::ContextTag(1), &msg_rand[0], sizeof(msg_rand)));
ReturnErrorOnFailure(tlvWriterMsg2.Put(TLV::ContextTag(2), GetLocalSessionId().Value()));
ReturnErrorOnFailure(tlvWriterMsg2.PutBytes(TLV::ContextTag(3), mEphemeralKey->Pubkey(),
static_cast<uint32_t>(mEphemeralKey->Pubkey().Length())));
ReturnErrorOnFailure(tlvWriterMsg2.PutBytes(TLV::ContextTag(4), msg_R2_Encrypted.Get(),
static_cast<uint32_t>(msg_r2_signed_enc_len + CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES)));
ReturnErrorOnFailure(EncodeSessionParameters(TLV::ContextTag(5), mLocalMRPConfig, tlvWriterMsg2));
ReturnErrorOnFailure(tlvWriterMsg2.EndContainer(outerContainerType));
ReturnErrorOnFailure(tlvWriterMsg2.Finalize(&msg_R2));
ReturnErrorOnFailure(mCommissioningHash.AddData(ByteSpan{ msg_R2->Start(), msg_R2->DataLength() }));
// Call delegate to send the msg to peer
ReturnErrorOnFailure(mExchangeCtxt->SendMessage(Protocols::SecureChannel::MsgType::CASE_Sigma2, std::move(msg_R2),
SendFlags(SendMessageFlags::kExpectResponse)));
mState = State::kSentSigma2;
ChipLogProgress(SecureChannel, "Sent Sigma2 msg");
MATTER_TRACE_COUNTER("Sigma2");
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::HandleSigma2Resume(System::PacketBufferHandle && msg)
{
MATTER_TRACE_SCOPE("HandleSigma2Resume", "CASESession");
CHIP_ERROR err = CHIP_NO_ERROR;
System::PacketBufferTLVReader tlvReader;
TLV::TLVType containerType = TLV::kTLVType_Structure;
uint16_t responderSessionId;
uint32_t decodeTagIdSeq = 0;
ChipLogDetail(SecureChannel, "Received Sigma2Resume msg");
MATTER_TRACE_COUNTER("Sigma2Resume");
uint8_t sigma2ResumeMIC[CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES];
tlvReader.Init(std::move(msg));
SuccessOrExit(err = tlvReader.Next(containerType, TLV::AnonymousTag()));
SuccessOrExit(err = tlvReader.EnterContainer(containerType));
SuccessOrExit(err = tlvReader.Next());
VerifyOrExit(TLV::TagNumFromTag(tlvReader.GetTag()) == ++decodeTagIdSeq, err = CHIP_ERROR_INVALID_TLV_TAG);
SessionResumptionStorage::ResumptionIdStorage resumptionId;
VerifyOrExit(tlvReader.GetLength() == resumptionId.size(), err = CHIP_ERROR_INVALID_TLV_ELEMENT);
SuccessOrExit(err = tlvReader.GetBytes(resumptionId.data(), resumptionId.size()));
SuccessOrExit(err = tlvReader.Next());
VerifyOrExit(TLV::TagNumFromTag(tlvReader.GetTag()) == ++decodeTagIdSeq, err = CHIP_ERROR_INVALID_TLV_TAG);
VerifyOrExit(tlvReader.GetLength() == CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, err = CHIP_ERROR_INVALID_TLV_ELEMENT);
SuccessOrExit(err = tlvReader.GetBytes(sigma2ResumeMIC, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES));
SuccessOrExit(err = ValidateSigmaResumeMIC(ByteSpan(sigma2ResumeMIC), ByteSpan(mInitiatorRandom), resumptionId,
ByteSpan(kKDFS2RKeyInfo), ByteSpan(kResume2MIC_Nonce)));
SuccessOrExit(err = tlvReader.Next());
VerifyOrExit(TLV::TagNumFromTag(tlvReader.GetTag()) == ++decodeTagIdSeq, err = CHIP_ERROR_INVALID_TLV_TAG);
SuccessOrExit(err = tlvReader.Get(responderSessionId));
if (tlvReader.Next() != CHIP_END_OF_TLV)
{
SuccessOrExit(err = DecodeMRPParametersIfPresent(TLV::ContextTag(4), tlvReader));
mExchangeCtxt->GetSessionHandle()->AsUnauthenticatedSession()->SetRemoteSessionParameters(GetRemoteSessionParameters());
}
ChipLogDetail(SecureChannel, "Peer assigned session session ID %d", responderSessionId);
SetPeerSessionId(responderSessionId);
if (mSessionResumptionStorage != nullptr)
{
CHIP_ERROR err2 = mSessionResumptionStorage->Save(GetPeer(), resumptionId, mSharedSecret, mPeerCATs);
if (err2 != CHIP_NO_ERROR)
ChipLogError(SecureChannel, "Unable to save session resumption state: %" CHIP_ERROR_FORMAT, err2.Format());
}
SendStatusReport(mExchangeCtxt, kProtocolCodeSuccess);
mState = State::kFinishedViaResume;
Finish();
exit:
if (err != CHIP_NO_ERROR)
{
SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam);
}
return err;
}
CHIP_ERROR CASESession::HandleSigma2_and_SendSigma3(System::PacketBufferHandle && msg)
{
MATTER_TRACE_SCOPE("HandleSigma2_and_SendSigma3", "CASESession");
ReturnErrorOnFailure(HandleSigma2(std::move(msg)));
ReturnErrorOnFailure(SendSigma3a());
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::HandleSigma2(System::PacketBufferHandle && msg)
{
MATTER_TRACE_SCOPE("HandleSigma2", "CASESession");
CHIP_ERROR err = CHIP_NO_ERROR;
System::PacketBufferTLVReader tlvReader;
TLV::TLVReader decryptedDataTlvReader;
TLV::TLVType containerType = TLV::kTLVType_Structure;
const uint8_t * buf = msg->Start();
size_t buflen = msg->DataLength();
uint8_t msg_salt[kIPKSize + kSigmaParamRandomNumberSize + kP256_PublicKey_Length + kSHA256_Hash_Length];
chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R2_Encrypted;
size_t msg_r2_encrypted_len = 0;
size_t msg_r2_encrypted_len_with_tag = 0;
chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R2_Signed;
size_t msg_r2_signed_len;
size_t max_msg_r2_signed_enc_len;
constexpr size_t kCaseOverheadForFutureTbeData = 128;
AutoReleaseSessionKey sr2k(*mSessionManager->GetSessionKeystore());
P256ECDSASignature tbsData2Signature;
NodeId responderNodeId;
P256PublicKey responderPublicKey;
uint8_t responderRandom[kSigmaParamRandomNumberSize];
ByteSpan responderNOC;
ByteSpan responderICAC;
uint16_t responderSessionId;
ChipLogProgress(SecureChannel, "Received Sigma2 msg");
FabricId fabricId = kUndefinedFabricId;
{
VerifyOrExit(mFabricsTable != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
const auto * fabricInfo = mFabricsTable->FindFabricWithIndex(mFabricIndex);
VerifyOrExit(fabricInfo != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
fabricId = fabricInfo->GetFabricId();
}
VerifyOrExit(mEphemeralKey != nullptr, err = CHIP_ERROR_INTERNAL);
VerifyOrExit(buf != nullptr, err = CHIP_ERROR_MESSAGE_INCOMPLETE);
tlvReader.Init(std::move(msg));
SuccessOrExit(err = tlvReader.Next(containerType, TLV::AnonymousTag()));
SuccessOrExit(err = tlvReader.EnterContainer(containerType));
// Retrieve Responder's Random value
SuccessOrExit(err = tlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_Sigma2_ResponderRandom)));
SuccessOrExit(err = tlvReader.GetBytes(responderRandom, sizeof(responderRandom)));
// Assign Session ID
SuccessOrExit(err = tlvReader.Next(TLV::kTLVType_UnsignedInteger, TLV::ContextTag(kTag_Sigma2_ResponderSessionId)));
SuccessOrExit(err = tlvReader.Get(responderSessionId));
ChipLogDetail(SecureChannel, "Peer assigned session session ID %d", responderSessionId);
SetPeerSessionId(responderSessionId);
// Retrieve Responder's Ephemeral Pubkey
SuccessOrExit(err = tlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_Sigma2_ResponderEphPubKey)));
SuccessOrExit(err = tlvReader.GetBytes(mRemotePubKey, static_cast<uint32_t>(mRemotePubKey.Length())));
// Generate a Shared Secret
SuccessOrExit(err = mEphemeralKey->ECDH_derive_secret(mRemotePubKey, mSharedSecret));
// Generate the S2K key
{
MutableByteSpan saltSpan(msg_salt);
SuccessOrExit(err = ConstructSaltSigma2(ByteSpan(responderRandom), mRemotePubKey, ByteSpan(mIPK), saltSpan));
SuccessOrExit(err = DeriveSigmaKey(saltSpan, ByteSpan(kKDFSR2Info), sr2k));
}
SuccessOrExit(err = mCommissioningHash.AddData(ByteSpan{ buf, buflen }));
// Generate decrypted data
SuccessOrExit(err = tlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_Sigma2_Encrypted2)));
max_msg_r2_signed_enc_len =
TLV::EstimateStructOverhead(Credentials::kMaxCHIPCertLength, Credentials::kMaxCHIPCertLength, tbsData2Signature.Length(),
SessionResumptionStorage::kResumptionIdSize, kCaseOverheadForFutureTbeData);
msg_r2_encrypted_len_with_tag = tlvReader.GetLength();
// Validate we did not receive a buffer larger than legal
VerifyOrExit(msg_r2_encrypted_len_with_tag <= max_msg_r2_signed_enc_len, err = CHIP_ERROR_INVALID_TLV_ELEMENT);
VerifyOrExit(msg_r2_encrypted_len_with_tag > CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, err = CHIP_ERROR_INVALID_TLV_ELEMENT);
VerifyOrExit(msg_R2_Encrypted.Alloc(msg_r2_encrypted_len_with_tag), err = CHIP_ERROR_NO_MEMORY);
SuccessOrExit(err = tlvReader.GetBytes(msg_R2_Encrypted.Get(), static_cast<uint32_t>(msg_r2_encrypted_len_with_tag)));
msg_r2_encrypted_len = msg_r2_encrypted_len_with_tag - CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES;
SuccessOrExit(err = AES_CCM_decrypt(msg_R2_Encrypted.Get(), msg_r2_encrypted_len, nullptr, 0,
msg_R2_Encrypted.Get() + msg_r2_encrypted_len, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES,
sr2k.KeyHandle(), kTBEData2_Nonce, kTBEDataNonceLength, msg_R2_Encrypted.Get()));
decryptedDataTlvReader.Init(msg_R2_Encrypted.Get(), msg_r2_encrypted_len);
containerType = TLV::kTLVType_Structure;
SuccessOrExit(err = decryptedDataTlvReader.Next(containerType, TLV::AnonymousTag()));
SuccessOrExit(err = decryptedDataTlvReader.EnterContainer(containerType));
SuccessOrExit(err = decryptedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBEData_SenderNOC)));
SuccessOrExit(err = decryptedDataTlvReader.Get(responderNOC));
SuccessOrExit(err = decryptedDataTlvReader.Next());
if (TLV::TagNumFromTag(decryptedDataTlvReader.GetTag()) == kTag_TBEData_SenderICAC)
{
VerifyOrExit(decryptedDataTlvReader.GetType() == TLV::kTLVType_ByteString, err = CHIP_ERROR_WRONG_TLV_TYPE);
SuccessOrExit(err = decryptedDataTlvReader.Get(responderICAC));
SuccessOrExit(err = decryptedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBEData_Signature)));
}
// Validate responder identity located in msg_r2_encrypted
// Constructing responder identity
{
CompressedFabricId unused;
FabricId responderFabricId;
SuccessOrExit(err = SetEffectiveTime());
SuccessOrExit(err = mFabricsTable->VerifyCredentials(mFabricIndex, responderNOC, responderICAC, mValidContext, unused,
responderFabricId, responderNodeId, responderPublicKey));
VerifyOrExit(fabricId == responderFabricId, err = CHIP_ERROR_INVALID_CASE_PARAMETER);
// Verify that responderNodeId (from responderNOC) matches one that was included
// in the computation of the Destination Identifier when generating Sigma1.
VerifyOrExit(mPeerNodeId == responderNodeId, err = CHIP_ERROR_INVALID_CASE_PARAMETER);
}
// Construct msg_R2_Signed and validate the signature in msg_r2_encrypted
msg_r2_signed_len = TLV::EstimateStructOverhead(sizeof(uint16_t), responderNOC.size(), responderICAC.size(),
kP256_PublicKey_Length, kP256_PublicKey_Length);
VerifyOrExit(msg_R2_Signed.Alloc(msg_r2_signed_len), err = CHIP_ERROR_NO_MEMORY);
SuccessOrExit(err = ConstructTBSData(responderNOC, responderICAC, ByteSpan(mRemotePubKey, mRemotePubKey.Length()),
ByteSpan(mEphemeralKey->Pubkey(), mEphemeralKey->Pubkey().Length()), msg_R2_Signed.Get(),
msg_r2_signed_len));
VerifyOrExit(TLV::TagNumFromTag(decryptedDataTlvReader.GetTag()) == kTag_TBEData_Signature, err = CHIP_ERROR_INVALID_TLV_TAG);
VerifyOrExit(tbsData2Signature.Capacity() >= decryptedDataTlvReader.GetLength(), err = CHIP_ERROR_INVALID_TLV_ELEMENT);
tbsData2Signature.SetLength(decryptedDataTlvReader.GetLength());
SuccessOrExit(err = decryptedDataTlvReader.GetBytes(tbsData2Signature.Bytes(), tbsData2Signature.Length()));
// Validate signature
SuccessOrExit(err = responderPublicKey.ECDSA_validate_msg_signature(msg_R2_Signed.Get(), msg_r2_signed_len, tbsData2Signature));
// Retrieve session resumption ID
SuccessOrExit(err = decryptedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBEData_ResumptionID)));
SuccessOrExit(err = decryptedDataTlvReader.GetBytes(mNewResumptionId.data(), mNewResumptionId.size()));
// Retrieve peer CASE Authenticated Tags (CATs) from peer's NOC.
SuccessOrExit(err = ExtractCATsFromOpCert(responderNOC, mPeerCATs));
// Retrieve responderMRPParams if present
if (tlvReader.Next() != CHIP_END_OF_TLV)
{
SuccessOrExit(err = DecodeMRPParametersIfPresent(TLV::ContextTag(kTag_Sigma2_ResponderMRPParams), tlvReader));
mExchangeCtxt->GetSessionHandle()->AsUnauthenticatedSession()->SetRemoteSessionParameters(GetRemoteSessionParameters());
}
exit:
if (err != CHIP_NO_ERROR)
{
SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam);
}
return err;
}
CHIP_ERROR CASESession::SendSigma3a()
{
MATTER_TRACE_SCOPE("SendSigma3", "CASESession");
CHIP_ERROR err = CHIP_NO_ERROR;
ChipLogDetail(SecureChannel, "Sending Sigma3");
auto helper = WorkHelper<SendSigma3Data>::Create(*this, &SendSigma3b, &CASESession::SendSigma3c);
VerifyOrExit(helper, err = CHIP_ERROR_NO_MEMORY);
{
auto & data = helper->mData;
VerifyOrExit(mFabricsTable != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
data.fabricIndex = mFabricIndex;
data.fabricTable = nullptr;
data.keystore = nullptr;
{
const FabricInfo * fabricInfo = mFabricsTable->FindFabricWithIndex(mFabricIndex);
VerifyOrExit(fabricInfo != nullptr, err = CHIP_ERROR_KEY_NOT_FOUND);
auto * keystore = mFabricsTable->GetOperationalKeystore();
if (!fabricInfo->HasOperationalKey() && keystore != nullptr && keystore->SupportsSignWithOpKeypairInBackground())
{
// NOTE: used to sign in background.
data.keystore = keystore;
}
else
{
// NOTE: used to sign in foreground.
data.fabricTable = mFabricsTable;
}
}
VerifyOrExit(mEphemeralKey != nullptr, err = CHIP_ERROR_INTERNAL);
VerifyOrExit(data.icacBuf.Alloc(kMaxCHIPCertLength), err = CHIP_ERROR_NO_MEMORY);
data.icaCert = MutableByteSpan{ data.icacBuf.Get(), kMaxCHIPCertLength };
VerifyOrExit(data.nocBuf.Alloc(kMaxCHIPCertLength), err = CHIP_ERROR_NO_MEMORY);
data.nocCert = MutableByteSpan{ data.nocBuf.Get(), kMaxCHIPCertLength };
SuccessOrExit(err = mFabricsTable->FetchICACert(mFabricIndex, data.icaCert));
SuccessOrExit(err = mFabricsTable->FetchNOCCert(mFabricIndex, data.nocCert));
// Prepare Sigma3 TBS Data Blob
data.msg_r3_signed_len =
TLV::EstimateStructOverhead(data.icaCert.size(), data.nocCert.size(), kP256_PublicKey_Length, kP256_PublicKey_Length);
VerifyOrExit(data.msg_R3_Signed.Alloc(data.msg_r3_signed_len), err = CHIP_ERROR_NO_MEMORY);
SuccessOrExit(err = ConstructTBSData(
data.nocCert, data.icaCert, ByteSpan(mEphemeralKey->Pubkey(), mEphemeralKey->Pubkey().Length()),
ByteSpan(mRemotePubKey, mRemotePubKey.Length()), data.msg_R3_Signed.Get(), data.msg_r3_signed_len));
if (data.keystore != nullptr)
{
SuccessOrExit(err = helper->ScheduleWork());
mSendSigma3Helper = helper;
mExchangeCtxt->WillSendMessage();
mState = State::kSendSigma3Pending;
}
else
{
SuccessOrExit(err = helper->DoWork());
}
}
exit:
if (err != CHIP_NO_ERROR)
{
SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam);
mState = State::kInitialized;
}
return err;
}
CHIP_ERROR CASESession::SendSigma3b(SendSigma3Data & data, bool & cancel)
{
// Generate a signature
if (data.keystore != nullptr)
{
// Recommended case: delegate to operational keystore
ReturnErrorOnFailure(data.keystore->SignWithOpKeypair(
data.fabricIndex, ByteSpan{ data.msg_R3_Signed.Get(), data.msg_r3_signed_len }, data.tbsData3Signature));
}
else
{
// Legacy case: delegate to fabric table fabric info
ReturnErrorOnFailure(data.fabricTable->SignWithOpKeypair(
data.fabricIndex, ByteSpan{ data.msg_R3_Signed.Get(), data.msg_r3_signed_len }, data.tbsData3Signature));
}
// Prepare Sigma3 TBE Data Blob
data.msg_r3_encrypted_len =
TLV::EstimateStructOverhead(data.nocCert.size(), data.icaCert.size(), data.tbsData3Signature.Length());
VerifyOrReturnError(data.msg_R3_Encrypted.Alloc(data.msg_r3_encrypted_len + CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES),
CHIP_ERROR_NO_MEMORY);
{
TLV::TLVWriter tlvWriter;
TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified;
tlvWriter.Init(data.msg_R3_Encrypted.Get(), data.msg_r3_encrypted_len);
ReturnErrorOnFailure(tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType));
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBEData_SenderNOC), data.nocCert));
if (!data.icaCert.empty())
{
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBEData_SenderICAC), data.icaCert));
}
// We are now done with ICAC and NOC certs so we can release the memory.
{
data.icacBuf.Free();
data.icaCert = MutableByteSpan{};
data.nocBuf.Free();
data.nocCert = MutableByteSpan{};
}
ReturnErrorOnFailure(tlvWriter.PutBytes(TLV::ContextTag(kTag_TBEData_Signature), data.tbsData3Signature.ConstBytes(),
static_cast<uint32_t>(data.tbsData3Signature.Length())));
ReturnErrorOnFailure(tlvWriter.EndContainer(outerContainerType));
ReturnErrorOnFailure(tlvWriter.Finalize());
data.msg_r3_encrypted_len = static_cast<size_t>(tlvWriter.GetLengthWritten());
}
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::SendSigma3c(SendSigma3Data & data, CHIP_ERROR status)
{
CHIP_ERROR err = CHIP_NO_ERROR;
System::PacketBufferHandle msg_R3;
size_t data_len;
uint8_t msg_salt[kIPKSize + kSHA256_Hash_Length];
AutoReleaseSessionKey sr3k(*mSessionManager->GetSessionKeystore());
VerifyOrDieWithMsg(data.keystore == nullptr || mState == State::kSendSigma3Pending, SecureChannel, "Bad internal state.");
SuccessOrExit(err = status);
// Generate S3K key
{
MutableByteSpan saltSpan(msg_salt);
SuccessOrExit(err = ConstructSaltSigma3(ByteSpan(mIPK), saltSpan));
SuccessOrExit(err = DeriveSigmaKey(saltSpan, ByteSpan(kKDFSR3Info), sr3k));
}
// Generated Encrypted data blob
SuccessOrExit(err =
AES_CCM_encrypt(data.msg_R3_Encrypted.Get(), data.msg_r3_encrypted_len, nullptr, 0, sr3k.KeyHandle(),
kTBEData3_Nonce, kTBEDataNonceLength, data.msg_R3_Encrypted.Get(),
data.msg_R3_Encrypted.Get() + data.msg_r3_encrypted_len, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES));
// Generate Sigma3 Msg
data_len = TLV::EstimateStructOverhead(CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, data.msg_r3_encrypted_len);
msg_R3 = System::PacketBufferHandle::New(data_len);
VerifyOrExit(!msg_R3.IsNull(), err = CHIP_ERROR_NO_MEMORY);
{
System::PacketBufferTLVWriter tlvWriter;
TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified;
tlvWriter.Init(std::move(msg_R3));
err = tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType);
SuccessOrExit(err);
err = tlvWriter.PutBytes(TLV::ContextTag(1), data.msg_R3_Encrypted.Get(),
static_cast<uint32_t>(data.msg_r3_encrypted_len + CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES));
SuccessOrExit(err);
err = tlvWriter.EndContainer(outerContainerType);
SuccessOrExit(err);
err = tlvWriter.Finalize(&msg_R3);
SuccessOrExit(err);
}
err = mCommissioningHash.AddData(ByteSpan{ msg_R3->Start(), msg_R3->DataLength() });
SuccessOrExit(err);
// Call delegate to send the Msg3 to peer
err = mExchangeCtxt->SendMessage(Protocols::SecureChannel::MsgType::CASE_Sigma3, std::move(msg_R3),
SendFlags(SendMessageFlags::kExpectResponse));
SuccessOrExit(err);
ChipLogProgress(SecureChannel, "Sent Sigma3 msg");
{
MutableByteSpan messageDigestSpan(mMessageDigest);
SuccessOrExit(err = mCommissioningHash.Finish(messageDigestSpan));
}
mState = State::kSentSigma3;
exit:
mSendSigma3Helper.reset();
// If data.keystore is set, processing occurred in the background, so if an error occurred,
// need to send status report (normally occurs in SendSigma3a), and discard exchange and
// abort pending establish (normally occurs in OnMessageReceived).
if (data.keystore != nullptr && err != CHIP_NO_ERROR)
{
SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam);
DiscardExchange();
AbortPendingEstablish(err);
}
return err;
}
CHIP_ERROR CASESession::HandleSigma3a(System::PacketBufferHandle && msg)
{
MATTER_TRACE_SCOPE("HandleSigma3", "CASESession");
CHIP_ERROR err = CHIP_NO_ERROR;
System::PacketBufferTLVReader tlvReader;
TLV::TLVReader decryptedDataTlvReader;
TLV::TLVType containerType = TLV::kTLVType_Structure;
const uint8_t * buf = msg->Start();
const uint16_t bufLen = msg->DataLength();
constexpr size_t kCaseOverheadForFutureTbeData = 128;
chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R3_Encrypted;
size_t msg_r3_encrypted_len = 0;
size_t msg_r3_encrypted_len_with_tag = 0;
size_t max_msg_r3_signed_enc_len;
AutoReleaseSessionKey sr3k(*mSessionManager->GetSessionKeystore());
uint8_t msg_salt[kIPKSize + kSHA256_Hash_Length];
ChipLogProgress(SecureChannel, "Received Sigma3 msg");
MATTER_TRACE_COUNTER("Sigma3");
auto helper = WorkHelper<HandleSigma3Data>::Create(*this, &HandleSigma3b, &CASESession::HandleSigma3c);
VerifyOrExit(helper, err = CHIP_ERROR_NO_MEMORY);
{
auto & data = helper->mData;
{
VerifyOrExit(mFabricsTable != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
const auto * fabricInfo = mFabricsTable->FindFabricWithIndex(mFabricIndex);
VerifyOrExit(fabricInfo != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
data.fabricId = fabricInfo->GetFabricId();
}
VerifyOrExit(mEphemeralKey != nullptr, err = CHIP_ERROR_INTERNAL);
tlvReader.Init(std::move(msg));
SuccessOrExit(err = tlvReader.Next(containerType, TLV::AnonymousTag()));
SuccessOrExit(err = tlvReader.EnterContainer(containerType));
// Fetch encrypted data
max_msg_r3_signed_enc_len = TLV::EstimateStructOverhead(Credentials::kMaxCHIPCertLength, Credentials::kMaxCHIPCertLength,
data.tbsData3Signature.Length(), kCaseOverheadForFutureTbeData);
SuccessOrExit(err = tlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_Sigma3_Encrypted3)));
msg_r3_encrypted_len_with_tag = tlvReader.GetLength();
// Validate we did not receive a buffer larger than legal
VerifyOrExit(msg_r3_encrypted_len_with_tag <= max_msg_r3_signed_enc_len, err = CHIP_ERROR_INVALID_TLV_ELEMENT);
VerifyOrExit(msg_r3_encrypted_len_with_tag > CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, err = CHIP_ERROR_INVALID_TLV_ELEMENT);
VerifyOrExit(msg_R3_Encrypted.Alloc(msg_r3_encrypted_len_with_tag), err = CHIP_ERROR_NO_MEMORY);
SuccessOrExit(err = tlvReader.GetBytes(msg_R3_Encrypted.Get(), static_cast<uint32_t>(msg_r3_encrypted_len_with_tag)));
msg_r3_encrypted_len = msg_r3_encrypted_len_with_tag - CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES;
// Step 1
{
MutableByteSpan saltSpan(msg_salt);
SuccessOrExit(err = ConstructSaltSigma3(ByteSpan(mIPK), saltSpan));
SuccessOrExit(err = DeriveSigmaKey(saltSpan, ByteSpan(kKDFSR3Info), sr3k));
}
SuccessOrExit(err = mCommissioningHash.AddData(ByteSpan{ buf, bufLen }));
// Step 2 - Decrypt data blob
SuccessOrExit(err = AES_CCM_decrypt(msg_R3_Encrypted.Get(), msg_r3_encrypted_len, nullptr, 0,
msg_R3_Encrypted.Get() + msg_r3_encrypted_len, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES,
sr3k.KeyHandle(), kTBEData3_Nonce, kTBEDataNonceLength, msg_R3_Encrypted.Get()));
decryptedDataTlvReader.Init(msg_R3_Encrypted.Get(), msg_r3_encrypted_len);
containerType = TLV::kTLVType_Structure;
SuccessOrExit(err = decryptedDataTlvReader.Next(containerType, TLV::AnonymousTag()));
SuccessOrExit(err = decryptedDataTlvReader.EnterContainer(containerType));
SuccessOrExit(err = decryptedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBEData_SenderNOC)));
SuccessOrExit(err = decryptedDataTlvReader.Get(data.initiatorNOC));
SuccessOrExit(err = decryptedDataTlvReader.Next());
if (TLV::TagNumFromTag(decryptedDataTlvReader.GetTag()) == kTag_TBEData_SenderICAC)
{
VerifyOrExit(decryptedDataTlvReader.GetType() == TLV::kTLVType_ByteString, err = CHIP_ERROR_WRONG_TLV_TYPE);
SuccessOrExit(err = decryptedDataTlvReader.Get(data.initiatorICAC));
SuccessOrExit(err = decryptedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBEData_Signature)));
}
// Step 4 - Construct Sigma3 TBS Data
data.msg_r3_signed_len = TLV::EstimateStructOverhead(sizeof(uint16_t), data.initiatorNOC.size(), data.initiatorICAC.size(),
kP256_PublicKey_Length, kP256_PublicKey_Length);
VerifyOrExit(data.msg_R3_Signed.Alloc(data.msg_r3_signed_len), err = CHIP_ERROR_NO_MEMORY);
SuccessOrExit(err = ConstructTBSData(data.initiatorNOC, data.initiatorICAC, ByteSpan(mRemotePubKey, mRemotePubKey.Length()),
ByteSpan(mEphemeralKey->Pubkey(), mEphemeralKey->Pubkey().Length()),
data.msg_R3_Signed.Get(), data.msg_r3_signed_len));
VerifyOrExit(TLV::TagNumFromTag(decryptedDataTlvReader.GetTag()) == kTag_TBEData_Signature,
err = CHIP_ERROR_INVALID_TLV_TAG);
VerifyOrExit(data.tbsData3Signature.Capacity() >= decryptedDataTlvReader.GetLength(), err = CHIP_ERROR_INVALID_TLV_ELEMENT);
data.tbsData3Signature.SetLength(decryptedDataTlvReader.GetLength());
SuccessOrExit(err = decryptedDataTlvReader.GetBytes(data.tbsData3Signature.Bytes(), data.tbsData3Signature.Length()));
// Prepare for Step 5/6
{
MutableByteSpan fabricRCAC{ data.rootCertBuf };
SuccessOrExit(err = mFabricsTable->FetchRootCert(mFabricIndex, fabricRCAC));
data.fabricRCAC = fabricRCAC;
// TODO probably should make SetEffectiveTime static and call closer to VerifyCredentials
SuccessOrExit(err = SetEffectiveTime());
}
// Copy remaining needed data into work structure
{
data.validContext = mValidContext;
// initiatorNOC and initiatorICAC are spans into msg_R3_Encrypted
// which is going away, so to save memory, redirect them to their
// copies in msg_R3_signed, which is staying around
TLV::TLVReader signedDataTlvReader;
signedDataTlvReader.Init(data.msg_R3_Signed.Get(), data.msg_r3_signed_len);
SuccessOrExit(err = signedDataTlvReader.Next(TLV::kTLVType_Structure, TLV::AnonymousTag()));
SuccessOrExit(err = signedDataTlvReader.EnterContainer(containerType));
SuccessOrExit(err = signedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBSData_SenderNOC)));
SuccessOrExit(err = signedDataTlvReader.Get(data.initiatorNOC));
if (!data.initiatorICAC.empty())
{
SuccessOrExit(err = signedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBSData_SenderICAC)));
SuccessOrExit(err = signedDataTlvReader.Get(data.initiatorICAC));
}
}
SuccessOrExit(err = helper->ScheduleWork());
mHandleSigma3Helper = helper;
mExchangeCtxt->WillSendMessage();
mState = State::kHandleSigma3Pending;
}
exit:
if (err != CHIP_NO_ERROR)
{
SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam);
}
return err;
}
CHIP_ERROR CASESession::HandleSigma3b(HandleSigma3Data & data, bool & cancel)
{
// Step 5/6
// Validate initiator identity located in msg->Start()
// Constructing responder identity
CompressedFabricId unused;
FabricId initiatorFabricId;
P256PublicKey initiatorPublicKey;
ReturnErrorOnFailure(FabricTable::VerifyCredentials(data.initiatorNOC, data.initiatorICAC, data.fabricRCAC, data.validContext,
unused, initiatorFabricId, data.initiatorNodeId, initiatorPublicKey));
VerifyOrReturnError(data.fabricId == initiatorFabricId, CHIP_ERROR_INVALID_CASE_PARAMETER);
// TODO - Validate message signature prior to validating the received operational credentials.
// The op cert check requires traversal of cert chain, that is a more expensive operation.
// If message signature check fails, the cert chain check will be unnecessary, but with the
// current flow of code, a malicious node can trigger a DoS style attack on the device.
// The same change should be made in Sigma2 processing.
// Step 7 - Validate Signature
ReturnErrorOnFailure(
initiatorPublicKey.ECDSA_validate_msg_signature(data.msg_R3_Signed.Get(), data.msg_r3_signed_len, data.tbsData3Signature));
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::HandleSigma3c(HandleSigma3Data & data, CHIP_ERROR status)
{
CHIP_ERROR err = CHIP_NO_ERROR;
VerifyOrExit(mState == State::kHandleSigma3Pending, err = CHIP_ERROR_INCORRECT_STATE);
SuccessOrExit(err = status);
mPeerNodeId = data.initiatorNodeId;
{
MutableByteSpan messageDigestSpan(mMessageDigest);
SuccessOrExit(err = mCommissioningHash.Finish(messageDigestSpan));
}
// Retrieve peer CASE Authenticated Tags (CATs) from peer's NOC.
{
SuccessOrExit(err = ExtractCATsFromOpCert(data.initiatorNOC, mPeerCATs));
}
if (mSessionResumptionStorage != nullptr)
{
CHIP_ERROR err2 = mSessionResumptionStorage->Save(GetPeer(), mNewResumptionId, mSharedSecret, mPeerCATs);
if (err2 != CHIP_NO_ERROR)
{
ChipLogError(SecureChannel, "Unable to save session resumption state: %" CHIP_ERROR_FORMAT, err2.Format());
}
}
SendStatusReport(mExchangeCtxt, kProtocolCodeSuccess);
mState = State::kFinished;
Finish();
exit:
mHandleSigma3Helper.reset();
if (err != CHIP_NO_ERROR)
{
SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam);
// Abort the pending establish, which is normally done by CASESession::OnMessageReceived,
// but in the background processing case must be done here.
DiscardExchange();
AbortPendingEstablish(err);
}
return err;
}
CHIP_ERROR CASESession::DeriveSigmaKey(const ByteSpan & salt, const ByteSpan & info, AutoReleaseSessionKey & key) const
{
return mSessionManager->GetSessionKeystore()->DeriveKey(mSharedSecret, salt, info, key.KeyHandle());
}
CHIP_ERROR CASESession::ConstructSaltSigma2(const ByteSpan & rand, const Crypto::P256PublicKey & pubkey, const ByteSpan & ipk,
MutableByteSpan & salt)
{
uint8_t md[kSHA256_Hash_Length];
memset(salt.data(), 0, salt.size());
Encoding::LittleEndian::BufferWriter bbuf(salt.data(), salt.size());
bbuf.Put(ipk.data(), ipk.size());
bbuf.Put(rand.data(), kSigmaParamRandomNumberSize);
bbuf.Put(pubkey, pubkey.Length());
MutableByteSpan messageDigestSpan(md);
ReturnErrorOnFailure(mCommissioningHash.GetDigest(messageDigestSpan));
bbuf.Put(messageDigestSpan.data(), messageDigestSpan.size());
size_t saltWritten = 0;
VerifyOrReturnError(bbuf.Fit(saltWritten), CHIP_ERROR_BUFFER_TOO_SMALL);
salt = salt.SubSpan(0, saltWritten);
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::ConstructSaltSigma3(const ByteSpan & ipk, MutableByteSpan & salt)
{
uint8_t md[kSHA256_Hash_Length];
memset(salt.data(), 0, salt.size());
Encoding::LittleEndian::BufferWriter bbuf(salt.data(), salt.size());
bbuf.Put(ipk.data(), ipk.size());
MutableByteSpan messageDigestSpan(md);
ReturnErrorOnFailure(mCommissioningHash.GetDigest(messageDigestSpan));
bbuf.Put(messageDigestSpan.data(), messageDigestSpan.size());
size_t saltWritten = 0;
VerifyOrReturnError(bbuf.Fit(saltWritten), CHIP_ERROR_BUFFER_TOO_SMALL);
salt = salt.SubSpan(0, saltWritten);
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::ConstructSigmaResumeKey(const ByteSpan & initiatorRandom, const ByteSpan & resumptionID,
const ByteSpan & skInfo, const ByteSpan & nonce, AutoReleaseSessionKey & resumeKey)
{
constexpr size_t saltSize = kSigmaParamRandomNumberSize + SessionResumptionStorage::kResumptionIdSize;
uint8_t salt[saltSize];
memset(salt, 0, saltSize);
Encoding::LittleEndian::BufferWriter bbuf(salt, saltSize);
bbuf.Put(initiatorRandom.data(), initiatorRandom.size());
bbuf.Put(resumptionID.data(), resumptionID.size());
size_t saltWritten = 0;
VerifyOrReturnError(bbuf.Fit(saltWritten), CHIP_ERROR_BUFFER_TOO_SMALL);
return DeriveSigmaKey(ByteSpan(salt, saltWritten), skInfo, resumeKey);
}
CHIP_ERROR CASESession::GenerateSigmaResumeMIC(const ByteSpan & initiatorRandom, const ByteSpan & resumptionID,
const ByteSpan & skInfo, const ByteSpan & nonce, MutableByteSpan & resumeMIC)
{
VerifyOrReturnError(resumeMIC.size() >= CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, CHIP_ERROR_BUFFER_TOO_SMALL);
AutoReleaseSessionKey srk(*mSessionManager->GetSessionKeystore());
ReturnErrorOnFailure(ConstructSigmaResumeKey(initiatorRandom, resumptionID, skInfo, nonce, srk));
ReturnErrorOnFailure(AES_CCM_encrypt(nullptr, 0, nullptr, 0, srk.KeyHandle(), nonce.data(), nonce.size(), nullptr,
resumeMIC.data(), CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES));
resumeMIC.reduce_size(CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES);
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::ValidateSigmaResumeMIC(const ByteSpan & resumeMIC, const ByteSpan & initiatorRandom,
const ByteSpan & resumptionID, const ByteSpan & skInfo, const ByteSpan & nonce)
{
VerifyOrReturnError(resumeMIC.size() == CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, CHIP_ERROR_BUFFER_TOO_SMALL);
AutoReleaseSessionKey srk(*mSessionManager->GetSessionKeystore());
ReturnErrorOnFailure(ConstructSigmaResumeKey(initiatorRandom, resumptionID, skInfo, nonce, srk));
ReturnErrorOnFailure(AES_CCM_decrypt(nullptr, 0, nullptr, 0, resumeMIC.data(), resumeMIC.size(), srk.KeyHandle(), nonce.data(),
nonce.size(), nullptr));
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::ConstructTBSData(const ByteSpan & senderNOC, const ByteSpan & senderICAC, const ByteSpan & senderPubKey,
const ByteSpan & receiverPubKey, uint8_t * tbsData, size_t & tbsDataLen)
{
TLV::TLVWriter tlvWriter;
TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified;
tlvWriter.Init(tbsData, tbsDataLen);
ReturnErrorOnFailure(tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType));
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBSData_SenderNOC), senderNOC));
if (!senderICAC.empty())
{
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBSData_SenderICAC), senderICAC));
}
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBSData_SenderPubKey), senderPubKey));
ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBSData_ReceiverPubKey), receiverPubKey));
ReturnErrorOnFailure(tlvWriter.EndContainer(outerContainerType));
ReturnErrorOnFailure(tlvWriter.Finalize());
tbsDataLen = static_cast<size_t>(tlvWriter.GetLengthWritten());
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::SetEffectiveTime()
{
System::Clock::Milliseconds64 currentUnixTimeMS;
CHIP_ERROR err = System::SystemClock().GetClock_RealTimeMS(currentUnixTimeMS);
if (err == CHIP_NO_ERROR)
{
// If the system has given us a wall clock time, we must use it or
// fail. Conversion failures here are therefore always an error.
System::Clock::Seconds32 currentUnixTime = std::chrono::duration_cast<System::Clock::Seconds32>(currentUnixTimeMS);
ReturnErrorOnFailure(mValidContext.SetEffectiveTimeFromUnixTime<CurrentChipEpochTime>(currentUnixTime));
}
else
{
// If we don't have wall clock time, the spec dictates that we should
// fall back to Last Known Good Time. Ultimately, the calling application's
// validity policy will determine whether this is permissible.
System::Clock::Seconds32 lastKnownGoodChipEpochTime;
ChipLogError(SecureChannel,
"The device does not support GetClock_RealTimeMS() API: %" CHIP_ERROR_FORMAT
". Falling back to Last Known Good UTC Time",
err.Format());
VerifyOrReturnError(mFabricsTable != nullptr, CHIP_ERROR_INCORRECT_STATE);
err = mFabricsTable->GetLastKnownGoodChipEpochTime(lastKnownGoodChipEpochTime);
if (err != CHIP_NO_ERROR)
{
// If we have no time available, the Validity Policy will
// determine what to do.
ChipLogError(SecureChannel, "Failed to retrieve Last Known Good UTC Time");
}
else
{
mValidContext.SetEffectiveTime<LastKnownGoodChipEpochTime>(lastKnownGoodChipEpochTime);
}
}
return CHIP_NO_ERROR;
}
void CASESession::OnSuccessStatusReport()
{
ChipLogProgress(SecureChannel, "Success status report received. Session was established");
if (mSessionResumptionStorage != nullptr)
{
CHIP_ERROR err2 = mSessionResumptionStorage->Save(GetPeer(), mNewResumptionId, mSharedSecret, mPeerCATs);
if (err2 != CHIP_NO_ERROR)
ChipLogError(SecureChannel, "Unable to save session resumption state: %" CHIP_ERROR_FORMAT, err2.Format());
}
switch (mState)
{
case State::kSentSigma3:
mState = State::kFinished;
break;
case State::kSentSigma2Resume:
mState = State::kFinishedViaResume;
break;
default:
VerifyOrDie(false && "Reached invalid internal state keeping in CASE session");
break;
}
Finish();
}
CHIP_ERROR CASESession::OnFailureStatusReport(Protocols::SecureChannel::GeneralStatusCode generalCode, uint16_t protocolCode)
{
CHIP_ERROR err = CHIP_NO_ERROR;
switch (protocolCode)
{
case kProtocolCodeInvalidParam:
err = CHIP_ERROR_INVALID_CASE_PARAMETER;
break;
case kProtocolCodeNoSharedRoot:
err = CHIP_ERROR_NO_SHARED_TRUSTED_ROOT;
break;
case kProtocolCodeBusy:
err = CHIP_ERROR_BUSY;
break;
default:
err = CHIP_ERROR_INTERNAL;
break;
};
mState = State::kInitialized;
ChipLogError(SecureChannel, "Received error (protocol code %d) during pairing process: %" CHIP_ERROR_FORMAT, protocolCode,
err.Format());
return err;
}
CHIP_ERROR CASESession::ParseSigma1(TLV::ContiguousBufferTLVReader & tlvReader, ByteSpan & initiatorRandom,
uint16_t & initiatorSessionId, ByteSpan & destinationId, ByteSpan & initiatorEphPubKey,
bool & resumptionRequested, ByteSpan & resumptionId, ByteSpan & initiatorResumeMIC)
{
using namespace TLV;
constexpr uint8_t kInitiatorRandomTag = 1;
constexpr uint8_t kInitiatorSessionIdTag = 2;
constexpr uint8_t kDestinationIdTag = 3;
constexpr uint8_t kInitiatorPubKeyTag = 4;
constexpr uint8_t kInitiatorMRPParamsTag = 5;
constexpr uint8_t kResumptionIDTag = 6;
constexpr uint8_t kResume1MICTag = 7;
TLVType containerType = kTLVType_Structure;
ReturnErrorOnFailure(tlvReader.Next(containerType, AnonymousTag()));
ReturnErrorOnFailure(tlvReader.EnterContainer(containerType));
ReturnErrorOnFailure(tlvReader.Next(ContextTag(kInitiatorRandomTag)));
ReturnErrorOnFailure(tlvReader.GetByteView(initiatorRandom));
VerifyOrReturnError(initiatorRandom.size() == kSigmaParamRandomNumberSize, CHIP_ERROR_INVALID_CASE_PARAMETER);
ReturnErrorOnFailure(tlvReader.Next(ContextTag(kInitiatorSessionIdTag)));
ReturnErrorOnFailure(tlvReader.Get(initiatorSessionId));
ReturnErrorOnFailure(tlvReader.Next(ContextTag(kDestinationIdTag)));
ReturnErrorOnFailure(tlvReader.GetByteView(destinationId));
VerifyOrReturnError(destinationId.size() == kSHA256_Hash_Length, CHIP_ERROR_INVALID_CASE_PARAMETER);
ReturnErrorOnFailure(tlvReader.Next(ContextTag(kInitiatorPubKeyTag)));
ReturnErrorOnFailure(tlvReader.GetByteView(initiatorEphPubKey));
VerifyOrReturnError(initiatorEphPubKey.size() == kP256_PublicKey_Length, CHIP_ERROR_INVALID_CASE_PARAMETER);
// Optional members start here.
CHIP_ERROR err = tlvReader.Next();
if (err == CHIP_NO_ERROR && tlvReader.GetTag() == ContextTag(kInitiatorMRPParamsTag))
{
ReturnErrorOnFailure(DecodeMRPParametersIfPresent(TLV::ContextTag(kInitiatorMRPParamsTag), tlvReader));
mExchangeCtxt->GetSessionHandle()->AsUnauthenticatedSession()->SetRemoteSessionParameters(GetRemoteSessionParameters());
err = tlvReader.Next();
}
bool resumptionIDTagFound = false;
bool resume1MICTagFound = false;
if (err == CHIP_NO_ERROR && tlvReader.GetTag() == ContextTag(kResumptionIDTag))
{
resumptionIDTagFound = true;
ReturnErrorOnFailure(tlvReader.GetByteView(resumptionId));
VerifyOrReturnError(resumptionId.size() == SessionResumptionStorage::kResumptionIdSize, CHIP_ERROR_INVALID_CASE_PARAMETER);
err = tlvReader.Next();
}
if (err == CHIP_NO_ERROR && tlvReader.GetTag() == ContextTag(kResume1MICTag))
{
resume1MICTagFound = true;
ReturnErrorOnFailure(tlvReader.GetByteView(initiatorResumeMIC));
VerifyOrReturnError(initiatorResumeMIC.size() == CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, CHIP_ERROR_INVALID_CASE_PARAMETER);
err = tlvReader.Next();
}
if (err == CHIP_END_OF_TLV)
{
// We ran out of struct members, but that's OK, because they were optional.
err = CHIP_NO_ERROR;
}
ReturnErrorOnFailure(err);
ReturnErrorOnFailure(tlvReader.ExitContainer(containerType));
if (resumptionIDTagFound && resume1MICTagFound)
{
resumptionRequested = true;
}
else if (!resumptionIDTagFound && !resume1MICTagFound)
{
resumptionRequested = false;
}
else
{
return CHIP_ERROR_UNEXPECTED_TLV_ELEMENT;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::ValidateReceivedMessage(ExchangeContext * ec, const PayloadHeader & payloadHeader,
const System::PacketBufferHandle & msg)
{
VerifyOrReturnError(ec != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
// mExchangeCtxt can be nullptr if this is the first message (CASE_Sigma1) received by CASESession
// via UnsolicitedMessageHandler. The exchange context is allocated by exchange manager and provided
// to the handler (CASESession object).
if (mExchangeCtxt != nullptr)
{
if (mExchangeCtxt != ec)
{
ReturnErrorOnFailure(CHIP_ERROR_INVALID_ARGUMENT);
}
}
else
{
mExchangeCtxt = ec;
}
mExchangeCtxt->UseSuggestedResponseTimeout(kExpectedHighProcessingTime);
VerifyOrReturnError(!msg.IsNull(), CHIP_ERROR_INVALID_ARGUMENT);
return CHIP_NO_ERROR;
}
CHIP_ERROR CASESession::OnMessageReceived(ExchangeContext * ec, const PayloadHeader & payloadHeader,
System::PacketBufferHandle && msg)
{
MATTER_TRACE_SCOPE("OnMessageReceived", "CASESession");
CHIP_ERROR err = ValidateReceivedMessage(ec, payloadHeader, msg);
Protocols::SecureChannel::MsgType msgType = static_cast<Protocols::SecureChannel::MsgType>(payloadHeader.GetMessageType());
SuccessOrExit(err);
#if CONFIG_BUILD_FOR_HOST_UNIT_TEST
if (mStopHandshakeAtState.HasValue() && mState == mStopHandshakeAtState.Value())
{
mStopHandshakeAtState = Optional<State>::Missing();
// For testing purposes we are trying to stop a successful CASESession from happening by dropping part of the
// handshake in the middle. We are trying to keep both sides of the CASESession establishment in an active
// pending state. In order to keep this side open we have to tell the exchange context that we will send an
// async message.
//
// Should you need to resume the CASESession, you could theoretically pass along the msg to a callback that gets
// registered when setting mStopHandshakeAtState.
mExchangeCtxt->WillSendMessage();
return CHIP_NO_ERROR;
}
#endif // CONFIG_BUILD_FOR_HOST_UNIT_TEST
#if CHIP_CONFIG_SLOW_CRYPTO
if (msgType == Protocols::SecureChannel::MsgType::CASE_Sigma1 || msgType == Protocols::SecureChannel::MsgType::CASE_Sigma2 ||
msgType == Protocols::SecureChannel::MsgType::CASE_Sigma2Resume ||
msgType == Protocols::SecureChannel::MsgType::CASE_Sigma3)
{
SuccessOrExit(err = mExchangeCtxt->FlushAcks());
}
#endif // CHIP_CONFIG_SLOW_CRYPTO
// By default, CHIP_ERROR_INVALID_MESSAGE_TYPE is returned if in the current state
// a message handler is not defined for the received message type.
err = CHIP_ERROR_INVALID_MESSAGE_TYPE;
switch (mState)
{
case State::kInitialized:
if (msgType == Protocols::SecureChannel::MsgType::CASE_Sigma1)
{
err = HandleSigma1_and_SendSigma2(std::move(msg));
}
break;
case State::kSentSigma1:
switch (static_cast<Protocols::SecureChannel::MsgType>(payloadHeader.GetMessageType()))
{
case Protocols::SecureChannel::MsgType::CASE_Sigma2:
err = HandleSigma2_and_SendSigma3(std::move(msg));
break;
case MsgType::StatusReport:
err = HandleStatusReport(std::move(msg), /* successExpected*/ false);
break;
default:
// Return the default error that was set above
break;
};
break;
case State::kSentSigma1Resume:
switch (static_cast<Protocols::SecureChannel::MsgType>(payloadHeader.GetMessageType()))
{
case Protocols::SecureChannel::MsgType::CASE_Sigma2:
err = HandleSigma2_and_SendSigma3(std::move(msg));
break;
case Protocols::SecureChannel::MsgType::CASE_Sigma2Resume:
err = HandleSigma2Resume(std::move(msg));
break;
case MsgType::StatusReport:
err = HandleStatusReport(std::move(msg), /* successExpected*/ false);
break;
default:
// Return the default error that was set above
break;
};
break;
case State::kSentSigma2:
switch (static_cast<Protocols::SecureChannel::MsgType>(payloadHeader.GetMessageType()))
{
case Protocols::SecureChannel::MsgType::CASE_Sigma3:
err = HandleSigma3a(std::move(msg));
break;
case MsgType::StatusReport:
err = HandleStatusReport(std::move(msg), /* successExpected*/ false);
break;
default:
// Return the default error that was set above
break;
};
break;
case State::kSentSigma3:
case State::kSentSigma2Resume:
if (msgType == Protocols::SecureChannel::MsgType::StatusReport)
{
err = HandleStatusReport(std::move(msg), /* successExpected*/ true);
}
break;
default:
// Return the default error that was set above
break;
};
exit:
if (err == CHIP_ERROR_INVALID_MESSAGE_TYPE)
{
ChipLogError(SecureChannel, "Received message (type %d) cannot be handled in %d state.", to_underlying(msgType),
to_underlying(mState));
}
// Call delegate to indicate session establishment failure.
if (err != CHIP_NO_ERROR)
{
// Discard the exchange so that Clear() doesn't try aborting it. The
// exchange will handle that.
DiscardExchange();
AbortPendingEstablish(err);
}
return err;
}
System::Clock::Timeout CASESession::ComputeSigma1ResponseTimeout(const ReliableMessageProtocolConfig & remoteMrpConfig)
{
return GetRetransmissionTimeout(remoteMrpConfig.mActiveRetransTimeout, remoteMrpConfig.mIdleRetransTimeout,
// Assume peer is idle, since that's what we
// will assume for our initial message.
System::Clock::kZero, remoteMrpConfig.mActiveThresholdTime) +
kExpectedSigma1ProcessingTime;
}
System::Clock::Timeout CASESession::ComputeSigma2ResponseTimeout(const ReliableMessageProtocolConfig & remoteMrpConfig)
{
return GetRetransmissionTimeout(remoteMrpConfig.mActiveRetransTimeout, remoteMrpConfig.mIdleRetransTimeout,
// Assume peer is idle, as a worst-case assumption.
System::Clock::kZero, remoteMrpConfig.mActiveThresholdTime) +
kExpectedHighProcessingTime;
}
bool CASESession::InvokeBackgroundWorkWatchdog()
{
bool watchdogFired = false;
if (mSendSigma3Helper && mSendSigma3Helper->UnableToScheduleAfterWorkCallback())
{
ChipLogError(SecureChannel, "SendSigma3Helper was unable to schedule the AfterWorkCallback");
mSendSigma3Helper->DoAfterWork();
watchdogFired = true;
}
if (mHandleSigma3Helper && mHandleSigma3Helper->UnableToScheduleAfterWorkCallback())
{
ChipLogError(SecureChannel, "HandleSigma3Helper was unable to schedule the AfterWorkCallback");
mHandleSigma3Helper->DoAfterWork();
watchdogFired = true;
}
return watchdogFired;
}
// Helper function to map CASESession::State to SessionEstablishmentStage
SessionEstablishmentStage CASESession::MapCASEStateToSessionEstablishmentStage(State caseState)
{
switch (caseState)
{
case State::kInitialized:
return SessionEstablishmentStage::kNotInKeyExchange;
case State::kSentSigma1:
case State::kSentSigma1Resume:
return SessionEstablishmentStage::kSentSigma1;
case State::kSentSigma2:
case State::kSentSigma2Resume:
return SessionEstablishmentStage::kSentSigma2;
case State::kSendSigma3Pending:
return SessionEstablishmentStage::kReceivedSigma2;
case State::kSentSigma3:
return SessionEstablishmentStage::kSentSigma3;
case State::kHandleSigma3Pending:
return SessionEstablishmentStage::kReceivedSigma3;
// Add more mappings here for other states
default:
return SessionEstablishmentStage::kUnknown; // Default mapping
}
}
} // namespace chip