blob: c3aa3f6085c6dfa66ca3bf291462d65a4e2d0bd1 [file] [log] [blame]
/*
*
* Copyright (c) 2020-2021 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* This file implements a chip-echo-requester, for the
* CHIP Echo Protocol.
*
* The CHIP Echo Protocol implements two simple methods, in the
* style of ICMP ECHO REQUEST and ECHO REPLY, in which a sent
* payload is turned around by the responder and echoed back to
* the originator.
*
*/
#include "common.h"
#include <lib/core/CHIPCore.h>
#include <lib/core/ErrorStr.h>
#include <platform/CHIPDeviceLayer.h>
#include <protocols/echo/Echo.h>
#include <protocols/secure_channel/PASESession.h>
#include <system/SystemPacketBuffer.h>
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
#include <transport/raw/TCP.h>
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
#include <transport/raw/UDP.h>
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#define ECHO_CLIENT_PORT (CHIP_PORT + 1)
namespace {
// Max value for the number of EchoRequests sent.
constexpr size_t kMaxEchoCount = 3;
// The CHIP Echo interval time.
constexpr chip::System::Clock::Timeout gEchoInterval = chip::System::Clock::Seconds16(1);
constexpr chip::FabricIndex gFabricIndex = 0;
// The EchoClient object.
chip::Protocols::Echo::EchoClient gEchoClient;
chip::TransportMgr<chip::Transport::UDP> gUDPManager;
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
// Max value for the number of tcp connect attempts.
constexpr size_t kMaxTCPConnectAttempts = 3;
chip::TransportMgr<chip::Transport::TCP<kMaxTcpActiveConnectionCount, kMaxTcpPendingPackets>> gTCPManager;
chip::Transport::AppTCPConnectionCallbackCtxt gAppTCPConnCbCtxt;
chip::Transport::ActiveTCPConnectionState * gActiveTCPConnState = nullptr;
static void HandleConnectionAttemptComplete(chip::Transport::ActiveTCPConnectionState * conn, CHIP_ERROR conErr);
static void HandleConnectionClosed(chip::Transport::ActiveTCPConnectionState * conn, CHIP_ERROR conErr);
// True, if client is still connecting to the server, false otherwise.
static bool gClientConInProgress = false;
// True, once client connection to server is established.
static bool gClientConEstablished = false;
bool gUseTCP = false;
uint64_t gTCPConnAttemptCount = 0;
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
chip::Inet::IPAddress gDestAddr;
chip::SessionHolder gSession;
// The last time a CHIP Echo was attempted to be sent.
chip::System::Clock::Timestamp gLastEchoTime = chip::System::Clock::kZero;
// The handle to the TCP connection to the peer.
// static chip::Transport::ActiveTCPConnectionState * gCon = nullptr;
// Count of the number of EchoRequests sent.
uint64_t gEchoCount = 0;
// Count of the number of EchoResponses received.
uint64_t gEchoRespCount = 0;
CHIP_ERROR SendEchoRequest();
void EchoTimerHandler(chip::System::Layer * systemLayer, void * appState);
void Shutdown()
{
chip::DeviceLayer::SystemLayer().CancelTimer(EchoTimerHandler, nullptr);
gEchoClient.Shutdown();
ShutdownChip();
}
void EchoTimerHandler(chip::System::Layer * systemLayer, void * appState)
{
if (gEchoRespCount != gEchoCount)
{
printf("No response received\n");
// Set gEchoRespCount to gEchoCount to start next ping if there is any.
gEchoRespCount = gEchoCount;
}
if (gEchoCount < kMaxEchoCount)
{
CHIP_ERROR err = SendEchoRequest();
if (err != CHIP_NO_ERROR)
{
printf("Send request failed: %s\n", chip::ErrorStr(err));
chip::DeviceLayer::PlatformMgr().StopEventLoopTask();
}
}
else
{
chip::DeviceLayer::PlatformMgr().StopEventLoopTask();
}
}
CHIP_ERROR SendEchoRequest()
{
CHIP_ERROR err = CHIP_NO_ERROR;
static const char kRequestFormat[] = "Echo Message %" PRIu64 "\n";
char requestData[(sizeof kRequestFormat) + 20 /* uint64_t decimal digits */];
snprintf(requestData, sizeof requestData, kRequestFormat, gEchoCount);
chip::System::PacketBufferHandle && payloadBuf = chip::MessagePacketBuffer::NewWithData(requestData, strlen(requestData));
if (payloadBuf.IsNull())
{
printf("Unable to allocate packet buffer\n");
return CHIP_ERROR_NO_MEMORY;
}
gLastEchoTime = chip::System::SystemClock().GetMonotonicTimestamp();
err = chip::DeviceLayer::SystemLayer().StartTimer(gEchoInterval, EchoTimerHandler, nullptr);
if (err != CHIP_NO_ERROR)
{
printf("Unable to schedule timer\n");
return CHIP_ERROR_INTERNAL;
}
printf("\nSend echo request message to Node: %" PRIu64 "\n", chip::kTestDeviceNodeId);
err = gEchoClient.SendEchoRequest(std::move(payloadBuf));
if (err == CHIP_NO_ERROR)
{
gEchoCount++;
}
else
{
printf("Send echo request failed, err: %s\n", chip::ErrorStr(err));
chip::DeviceLayer::SystemLayer().CancelTimer(EchoTimerHandler, nullptr);
}
return err;
}
CHIP_ERROR EstablishSecureSession()
{
char peerAddrBuf[chip::Transport::PeerAddress::kMaxToStringSize];
chip::Transport::PeerAddress peerAddr;
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
if (gUseTCP)
{
peerAddr = chip::Transport::PeerAddress::TCP(gDestAddr, CHIP_PORT);
}
else
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
{
peerAddr = chip::Transport::PeerAddress::UDP(gDestAddr, CHIP_PORT, chip::Inet::InterfaceId::Null());
}
peerAddr.ToString(peerAddrBuf);
// Establish secure session to the peer.
CHIP_ERROR err = gSessionManager.InjectPaseSessionWithTestKey(gSession, 1, chip::kTestDeviceNodeId, 1, gFabricIndex, peerAddr,
chip::CryptoContext::SessionRole::kInitiator);
if (err != CHIP_NO_ERROR)
{
printf("Establish secure session failed, err: %s\n", chip::ErrorStr(err));
gLastEchoTime = chip::System::SystemClock().GetMonotonicTimestamp();
}
else
{
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
if (gUseTCP)
{
printf("Associating secure session with connection %p\n", gActiveTCPConnState);
gSession.Get().Value()->AsSecureSession()->SetTCPConnection(gActiveTCPConnState);
}
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
printf("Successfully established secure session with peer at %s\n", peerAddrBuf);
}
return err;
}
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
void CloseConnection()
{
char peerAddrBuf[chip::Transport::PeerAddress::kMaxToStringSize];
chip::Transport::PeerAddress peerAddr = chip::Transport::PeerAddress::TCP(gDestAddr, CHIP_PORT);
gSessionManager.TCPDisconnect(peerAddr);
peerAddr.ToString(peerAddrBuf);
printf("Connection closed to peer at %s\n", peerAddrBuf);
gClientConEstablished = false;
gClientConInProgress = false;
}
void HandleConnectionAttemptComplete(chip::Transport::ActiveTCPConnectionState * conn, CHIP_ERROR err)
{
chip::DeviceLayer::PlatformMgr().StopEventLoopTask();
if (err != CHIP_NO_ERROR || conn != gActiveTCPConnState)
{
printf("Connection FAILED with err: %s\n", chip::ErrorStr(err));
gLastEchoTime = chip::System::SystemClock().GetMonotonicTimestamp();
CloseConnection();
gTCPConnAttemptCount++;
return;
}
err = EstablishSecureSession();
if (err != CHIP_NO_ERROR)
{
printf("Secure session FAILED with err: %s\n", chip::ErrorStr(err));
gLastEchoTime = chip::System::SystemClock().GetMonotonicTimestamp();
CloseConnection();
return;
}
gClientConEstablished = true;
gClientConInProgress = false;
}
void HandleConnectionClosed(chip::Transport::ActiveTCPConnectionState * conn, CHIP_ERROR conErr)
{
CloseConnection();
}
void EstablishTCPConnection()
{
CHIP_ERROR err = CHIP_NO_ERROR;
// Previous connection attempt underway.
if (gClientConInProgress)
{
return;
}
gClientConEstablished = false;
chip::Transport::PeerAddress peerAddr = chip::Transport::PeerAddress::TCP(gDestAddr, CHIP_PORT);
// Connect to the peer
err = gSessionManager.TCPConnect(peerAddr, &gAppTCPConnCbCtxt, &gActiveTCPConnState);
if (err != CHIP_NO_ERROR)
{
printf("Connection FAILED with err: %s\n", chip::ErrorStr(err));
gLastEchoTime = chip::System::SystemClock().GetMonotonicTimestamp();
CloseConnection();
gTCPConnAttemptCount++;
return;
}
gClientConInProgress = true;
}
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
void HandleEchoResponseReceived(chip::Messaging::ExchangeContext * ec, chip::System::PacketBufferHandle && payload)
{
chip::System::Clock::Timestamp respTime = chip::System::SystemClock().GetMonotonicTimestamp();
chip::System::Clock::Timeout transitTime = respTime - gLastEchoTime;
gEchoRespCount++;
printf("Echo Response: %" PRIu64 "/%" PRIu64 "(%.2f%%) len=%" PRIu32 "time=%.3fs\n", gEchoRespCount, gEchoCount,
static_cast<double>(gEchoRespCount) * 100 / static_cast<double>(gEchoCount),
static_cast<uint32_t>(payload->DataLength()),
static_cast<double>(chip::System::Clock::Milliseconds32(transitTime).count()) / 1000);
}
} // namespace
int main(int argc, char * argv[])
{
CHIP_ERROR err = CHIP_NO_ERROR;
if (argc <= 1)
{
printf("Missing Echo Server IP address\n");
ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
}
if (argc > 3)
{
printf("Too many arguments specified!\n");
ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
}
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
if ((argc == 3) && (strcmp(argv[2], "--tcp") == 0))
{
gUseTCP = true;
}
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
if (!chip::Inet::IPAddress::FromString(argv[1], gDestAddr))
{
printf("Invalid Echo Server IP address: %s\n", argv[1]);
ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
}
if (gDestAddr.Type() != chip::Inet::IPAddressType::kIPv6)
{
printf("Echo Server IP address: %s is not of type IPv6\n", argv[1]);
ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
}
InitializeChip();
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
if (gUseTCP)
{
err = gTCPManager.Init(chip::Transport::TcpListenParameters(chip::DeviceLayer::TCPEndPointManager())
.SetAddressType(chip::Inet::IPAddressType::kIPv6)
.SetListenPort(ECHO_CLIENT_PORT));
SuccessOrExit(err);
err = gSessionManager.Init(&chip::DeviceLayer::SystemLayer(), &gTCPManager, &gMessageCounterManager, &gStorage,
&gFabricTable, gSessionKeystore);
SuccessOrExit(err);
gAppTCPConnCbCtxt.appContext = nullptr;
gAppTCPConnCbCtxt.connCompleteCb = HandleConnectionAttemptComplete;
gAppTCPConnCbCtxt.connClosedCb = HandleConnectionClosed;
}
else
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
{
err = gUDPManager.Init(chip::Transport::UdpListenParameters(chip::DeviceLayer::UDPEndPointManager())
.SetAddressType(chip::Inet::IPAddressType::kIPv6)
.SetListenPort(ECHO_CLIENT_PORT));
SuccessOrExit(err);
err = gSessionManager.Init(&chip::DeviceLayer::SystemLayer(), &gUDPManager, &gMessageCounterManager, &gStorage,
&gFabricTable, gSessionKeystore);
SuccessOrExit(err);
}
err = gExchangeManager.Init(&gSessionManager);
SuccessOrExit(err);
err = gMessageCounterManager.Init(&gExchangeManager);
SuccessOrExit(err);
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
if (gUseTCP)
{
while (!gClientConEstablished)
{
// For TCP transport, attempt to establish the connection to the CHIP echo responder.
// On Connection completion, call EstablishSecureSession();
EstablishTCPConnection();
chip::DeviceLayer::PlatformMgr().RunEventLoop();
if (gTCPConnAttemptCount > kMaxTCPConnectAttempts)
{
ExitNow();
}
}
}
else
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
{
// Start the CHIP session to the CHIP echo responder.
err = EstablishSecureSession();
SuccessOrExit(err);
}
err = gEchoClient.Init(&gExchangeManager, gSession.Get().Value());
SuccessOrExit(err);
// Arrange to get a callback whenever an Echo Response is received.
gEchoClient.SetEchoResponseReceived(HandleEchoResponseReceived);
err = chip::DeviceLayer::SystemLayer().StartTimer(chip::System::Clock::kZero, EchoTimerHandler, nullptr);
SuccessOrExit(err);
chip::DeviceLayer::PlatformMgr().RunEventLoop();
gUDPManager.Close();
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
if (gUseTCP)
{
gTCPManager.TCPDisconnect(chip::Transport::PeerAddress::TCP(gDestAddr));
}
gTCPManager.Close();
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
Shutdown();
exit:
if ((err != CHIP_NO_ERROR) || (gEchoRespCount != kMaxEchoCount)
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
|| (gTCPConnAttemptCount > kMaxTCPConnectAttempts)
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
)
{
printf("ChipEchoClient failed: %s\n", chip::ErrorStr(err));
exit(EXIT_FAILURE);
}
return EXIT_SUCCESS;
}