An example showing the use of CHIP on the Silicon Labs EFR32 MG12.
The EFR32 lighting example provides a baseline demonstration of a Light control device, built using CHIP and the Silicon Labs gecko SDK. It can be controlled by a Chip controller over Openthread network..
The EFR32 device can be commissioned over Bluetooth Low Energy where the device and the Chip controller will exchange security information with the Rendez-vous procedure. Thread Network credentials are then provided to the EFR32 device which will then join the network.
The LCD on the Silabs WSTK shows a QR Code containing the needed commissioning information for the BLE connection and starting the Rendez-vous procedure.
The lighting example is intended to serve both as a means to explore the workings of CHIP as well as a template for creating real products based on the Silicon Labs platform.
Download the sdk_support from GitHub and export the path with :
$ export EFR32_SDK_ROOT=<Path to cloned git repo>
Download the Simplicity Commander command line tool, and ensure that commander
is your shell search path. (For Mac OS X, commander
is located inside Commander.app/Contents/MacOS/
.)
Download and install a suitable ARM gcc tool chain: GNU Arm Embedded Toolchain 9-2019-q4-major
Install some additional tools(likely already present for CHIP developers):
# Linux $ sudo apt-get install git libwebkitgtk-1.0-0 ninja-build # Mac OS X $ brew install ninja
Supported hardware:
MG12 boards:
MG21 boards:
Build the example application:
$ cd ~/connectedhomeip/examples/lighting-app/efr32 $ git submodule update --init $ source third_party/connectedhomeip/scripts/activate.sh $ export EFR32_SDK_ROOT=<path-to-silabs-sdk-v2.7> $ export EFR32_BOARD=BRD4161A $ gn gen out/debug --args="efr32_sdk_root=\"${EFR32_SDK_ROOT}\" efr32_board=\"${EFR32_BOARD}\"" $ ninja -C out/debug
To delete generated executable, libraries and object files use:
$ cd ~/connectedhomeip/examples/lighting-app/efr32 $ rm -rf out/
OR use the script
cd ~/connectedhomeip $ export EFR32_SDK_ROOT=<path-to-silabs-sdk-v2.7> $ export EFR32_BOARD=BRD4161A ./scripts/examples/gn_efr32_example.sh examples/lighting-app/efr32/ out/debug/efr32_lighting_app
On the command line:
$ cd ~/connectedhomeip/examples/lighting-app/efr32 $ python3 out/debug/chip-efr32-lighting-example.out.flash.py
Or with the Ozone debugger, just load the .out file.
The example application is built to use the SEGGER Real Time Transfer (RTT) facility for log output. RTT is a feature built-in to the J-Link Interface MCU on the WSTK development board. It allows bi-directional communication with an embedded application without the need for a dedicated UART.
Using the RTT facility requires downloading and installing the SEGGER J-Link Software and Documentation Pack (web site).
Alternatively, SEGGER Ozone J-Link debugger can be used to view RTT logs too after flashing the .out file.
Download the J-Link installer by navigating to the appropriate URL and agreeing to the license agreement.
Install the J-Link software
$ cd ~/Downloads $ sudo dpkg -i JLink_Linux_V*_x86_64.deb
In Linux, grant the logged in user the ability to talk to the development hardware via the linux tty device (/dev/ttyACMx) by adding them to the dialout group.
$ sudo usermod -a -G dialout ${USER}
Once the above is complete, log output can be viewed using the JLinkExe tool in combination with JLinkRTTClient as follows:
Run the JLinkExe tool with arguments to autoconnect to the WSTK board:
For MG12 use:
$ JLinkExe -device EFR32MG12PXXXF1024 -if JTAG -speed 4000 -autoconnect 1
For MG21 use:
$ JLinkExe -device EFR32MG21AXXXF1024 -if SWD -speed 4000 -autoconnect 1
In a second terminal, run the JLinkRTTClient to view logs:
$ JLinkRTTClient
It is assumed here that you already have an OpenThread border router configured and running. If not, see the following guide OpenThread Border Router for more information on how to setup a border router. Take note that the RCP code is available directly through Simplicity Studio 5 under File->New->Project Wizard->Examples->Thread : ot-rcp
User interface : LCD The LCD on Silabs WSTK shows a QR Code. This QR Code is be scanned by the CHIP Tool app For the Rendez-vous procedure over BLE
* On devices that do not have or support the LCD Display like the BRD4166A Thunderboard Sense 2, a URL can be found in the RTT logs. <info > [SVR] Copy/paste the below URL in a browser to see the QR Code: <info > [SVR] https://dhrishi.github.io/connectedhomeip/qrcode.html?data=CH%3AI34NM%20-00%200C9SS0
LED 0 shows the overall state of the device and its connectivity. The following states are possible:
- _Short Flash On (50 ms on/950 ms off)_ ; The device is in the unprovisioned (unpaired) state and is waiting for a commissioning application to connect. - _Rapid Even Flashing_ ; (100 ms on/100 ms off)_ — The device is in the unprovisioned state and a commissioning application is connected through Bluetooth LE. - _Short Flash Off_ ; (950ms on/50ms off)_ — The device is fully provisioned, but does not yet have full Thread network or service connectivity. - _Solid On_ ; The device is fully provisioned and has full Thread network and service connectivity.
LED 1 Simulates the Light The following states are possible:
- _Solid On_ ; Light is on - _Off_ ; Light is off
Push Button 0 - Press and Release : If not commissioned, start thread with default configurations (DEBUG)
- Pressed and hold for 6 s: Initiates the factory reset of the device. Releasing the button within the 6-second window cancels the factory reset procedure. **LEDs** blink in unison when the factory reset procedure is initiated.
Push Button 1 Toggles the light state On/Off
Once the device is provisioned, it will join the Thread network is established, look for the RTT log
[DL] Device Role: CHILD [DL] Partition Id:0x6A7491B7 [DL] \_OnPlatformEvent default: event->Type = 32778 [DL] OpenThread State Changed (Flags: 0x00000001) [DL] Thread Unicast Addresses: [DL] 2001:DB8::E1A2:87F1:7D5D:FECA/64 valid preferred [DL] FDDE:AD00:BEEF::FF:FE00:2402/64 valid preferred rloc [DL] FDDE:AD00:BEEF:0:383F:5E81:A05A:B168/64 valid preferred [DL] FE80::D8F2:592E:C109:CF00/64 valid preferred [DL] LwIP Thread interface addresses updated [DL] FE80::D8F2:592E:C109:CF00 IPv6 link-local address, preferred) [DL] FDDE:AD00:BEEF:0:383F:5E81:A05A:B168 Thread mesh-local address, preferred) [DL] 2001:DB8::E1A2:87F1:7D5D:FECA IPv6 global unicast address, preferred)
Keep The global unicast address; It is to be used to reach the Device with the chip-tool. The device will be promoted to Router shortly after [DL] Device Role: ROUTER
(you can verify that the device is on the thread network with the command router table
using a serial terminal (screen / minicom etc.) on the board running the lighting-app example. You can also get the address list with the command ipaddr again in the serial terminal )
Using chip-tool you can now control the light status with on/off command such as chip-tool onoff on 1
** Currently, chip-tool for Mac or Linux do not yet have the Thread provisioning feature chip-tool bypass <Global ipv6 address of the node> 11097
You can provision the Chip device using Chip tool Android or iOS app or through CLI commands on your OT BR
Depending on your network settings your router might not provide native ipv6 addresses to your devices (Border router / PC). If this is the case, you need to add a static ipv6 addresses on both device and then an ipv6 route to the border router on your PC
# On Border Router : $ sudo ip addr add dev <Network interface> 2002::2/64 # On PC (Linux) : $ sudo ip addr add dev <Network interface> 2002::1/64 # Add Ipv6 route on PC (Linux) $ sudo ip route add <Thread global ipv6 prefix>/64 via 2002::2