blob: bcbe1f9d905f18d19ca53d359534ce3f8317c04e [file] [log] [blame]
/*
*
* Copyright (c) 2020 Project CHIP Authors
* Copyright (c) 2019 Google LLC.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "PumpManager.h"
#include "AppConfig.h"
#include "AppTask.h"
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(app, CONFIG_CHIP_APP_LOG_LEVEL);
static k_timer sStartTimer;
PumpManager PumpManager::sPump;
void PumpManager::Init()
{
k_timer_init(&sStartTimer, &PumpManager::TimerEventHandler, nullptr);
k_timer_user_data_set(&sStartTimer, this);
mState = kState_StartCompleted;
mAutoStartTimerArmed = false;
mAutoRestart = false;
mAutoStartDuration = 0;
}
void PumpManager::SetCallbacks(Callback_fn_initiated aActionInitiated_CB, Callback_fn_completed aActionCompleted_CB)
{
mActionInitiated_CB = aActionInitiated_CB;
mActionCompleted_CB = aActionCompleted_CB;
}
bool PumpManager::IsActionInProgress()
{
return (mState == kState_StartInitiated);
}
bool PumpManager::IsStopped()
{
return (mState == kState_StopCompleted);
}
void PumpManager::EnableAutoRestart(bool aOn)
{
mAutoRestart = aOn;
}
void PumpManager::SetAutoStartDuration(uint32_t aDurationInSecs)
{
mAutoStartDuration = aDurationInSecs;
}
bool PumpManager::InitiateAction(int32_t aActor, Action_t aAction)
{
bool action_initiated = false;
State_t new_state;
// Initiate Start/Stop Action only when the previous one is complete.
if (mState == kState_StartCompleted && aAction == STOP_ACTION)
{
action_initiated = true;
mCurrentActor = aActor;
new_state = kState_StopInitiated;
}
else if (mState == kState_StopCompleted && aAction == START_ACTION)
{
action_initiated = true;
mCurrentActor = aActor;
new_state = kState_StartInitiated;
}
if (action_initiated)
{
if (mAutoStartTimerArmed && new_state == kState_StartInitiated)
{
// If auto start timer has been armed and someone initiates stop,
// cancel the timer and continue as normal.
mAutoStartTimerArmed = false;
CancelTimer();
}
StartTimer(PUMP_START_PERIOS_MS);
// Since the timer started successfully, update the state and trigger callback
mState = new_state;
if (mActionInitiated_CB)
{
mActionInitiated_CB(aAction, aActor);
}
}
return action_initiated;
}
void PumpManager::StartTimer(uint32_t aTimeoutMs)
{
k_timer_start(&sStartTimer, K_MSEC(aTimeoutMs), K_NO_WAIT);
}
void PumpManager::CancelTimer(void)
{
k_timer_stop(&sStartTimer);
}
void PumpManager::TimerEventHandler(k_timer * timer)
{
PumpManager * pump = static_cast<PumpManager *>(k_timer_user_data_get(timer));
// The timer event handler will be called in the context of the timer task
// once sStartTimer expires. Post an event to apptask queue with the actual handler
// so that the event can be handled in the context of the apptask.
AppEvent event;
event.Type = AppEventType::Timer;
event.TimerEvent.Context = pump;
event.Handler = pump->mAutoStartTimerArmed ? AutoRestartTimerEventHandler : PumpStartTimerEventHandler;
AppTask::Instance().PostEvent(event);
}
void PumpManager::AutoRestartTimerEventHandler(const AppEvent & aEvent)
{
PumpManager * pump = static_cast<PumpManager *>(aEvent.TimerEvent.Context);
int32_t actor = 0;
// Make sure auto start timer is still armed.
if (!pump->mAutoStartTimerArmed)
return;
pump->mAutoStartTimerArmed = false;
LOG_INF("Auto Re-Start has been triggered!");
pump->InitiateAction(actor, START_ACTION);
}
void PumpManager::PumpStartTimerEventHandler(const AppEvent & aEvent)
{
Action_t actionCompleted = INVALID_ACTION;
PumpManager * pump = static_cast<PumpManager *>(aEvent.TimerEvent.Context);
if (pump->mState == kState_StartInitiated)
{
pump->mState = kState_StartCompleted;
actionCompleted = START_ACTION;
}
else if (pump->mState == kState_StopInitiated)
{
pump->mState = kState_StopCompleted;
actionCompleted = STOP_ACTION;
}
if (actionCompleted != INVALID_ACTION)
{
if (pump->mActionCompleted_CB)
{
pump->mActionCompleted_CB(actionCompleted, pump->mCurrentActor);
}
if (pump->mAutoRestart && actionCompleted == START_ACTION)
{
// Start the timer for auto restart
pump->StartTimer(pump->mAutoStartDuration * 1000);
pump->mAutoStartTimerArmed = true;
LOG_INF("Auto Re-start enabled. Will be triggered in %u seconds", pump->mAutoStartDuration);
}
}
}
int16_t PumpManager::GetMaxPressure()
{
// 1.6.1. MaxPressure Attribute
// Range -3276.7 kPa to 3276.7 kPa (steps of 0.1 kPa)
// -3276.8 is invalid value - perhaps 'null'
// Return 2000.0 kPa as Max Pressure
return 20000;
}
uint16_t PumpManager::GetMaxSpeed()
{
// 1.6.2. MaxSpeed Attribute
// Range 0 RPM to 65534 RPM (steps of 1 RPM)
// 65535 is invalid value - perhaps 'null'
// Return 1000 RPM as MaxSpeed
return 1000;
}
uint16_t PumpManager::GetMaxFlow()
{
// 1.6.3. MaxFlow Attribute
// Range 0 m3/h to 6553.4 m3/h (steps of 0.1 m3/h)
// 6553.5 m3/h is invalid value - perhaps 'null'
// Return 200.0 m3/h as MaxFlow
return 2000;
}
int16_t PumpManager::GetMinConstPressure()
{
// 1.6.4. MinConstPressure Attribute
// Range -3276.7 kPa to 3276.7 kPa (steps of 0.1 kPa)
// -3276.8 is invalid value - perhaps 'null'
// Return -100.0 kPa as MinConstPressure
return -1000;
}
int16_t PumpManager::GetMaxConstPressure()
{
// 1.6.5. MaxConstPressure Attribute
// Range -3276.7 kPa to 3276.7 kPa (steps of 0.1 kPa)
// -3276.8 is invalid value - perhaps 'null'
// Return 100.0 kPa as MaxConstPressure
return 1000;
}
int16_t PumpManager::GetMinCompPressure()
{
// 1.6.6. MinCompPressure Attribute
// Range -3276.7 kPa to 3276.7 kPa (steps of 0.1 kPa)
// -3276.8 is invalid value - perhaps 'null'
// Return -20.0 kPa as MinCompPressure
return -200;
}
int16_t PumpManager::GetMaxCompPressure()
{
// 1.6.7. MaxCompPressure Attribute
// Range -3276.7 kPa to 3276.7 kPa (steps of 0.1 kPa)
// -3276.8 is invalid value - perhaps 'null'
// Return 20.0 kPa as MaxCompPressure
return 200;
}
uint16_t PumpManager::GetMinConstSpeed()
{
// 1.6.8. MinConstSpeed Attribute
// Range 0 to 65534 RPM (steps of 1 RPM)
// 65535 RPM is invalid valud - perhaps 'null'
// Return 200 RPM as MinConstSpeed
return 200;
}
uint16_t PumpManager::GetMaxConstSpeed()
{
// 1.6.9. MaxConstSpeed Attribute
// Range 0 to 65534 RPM (steps of 1 RPM)
// 65535 RPM is invalid valud - perhaps 'null'
// Return 2000 RPM as MaxConstSpeed
return 2000;
}
uint16_t PumpManager::GetMinConstFlow()
{
// 1.6.10. MinConstFlow Attribute
// Range 0 m3/h to 6553.4 m3/h (steps of 0.1 m3/h)
// 6553.5 m3/h is invalid value - perhaps 'null'
// Return 12.5 m3/h as MinConstFlow
return 125;
}
uint16_t PumpManager::GetMaxConstFlow()
{
// 1.6.11. MaxConstFlow Attribute
// Range 0 m3/h to 6553.4 m3/h (steps of 0.1 m3/h)
// 6553.5 m3/h is invalid value - perhaps 'null'
// Return 655.7 m3/h as MaxConstFlow
return 6557;
}
int16_t PumpManager::GetMinConstTemp()
{
// 1.6.12. MinConstTemp Attribute
// Range -273.15 C to 327.67 C (steps of 0.01 C)
// All other values are invalid values - perhaps 'null'
// Return 30.00 C as MinConstTemp
return 3000;
}
int16_t PumpManager::GetMaxConstTemp()
{
// 1.6.13. MaxConstTemp Attribute
// Range -273.15 C to 327.67 C (steps of 0.01 C)
// All other values are invalid values - perhaps 'null'
// Return 56.00 C as MaxConstTemp
return 5600;
}