blob: 6c457b0fabe281142408f1afffff06fc478a0f91 [file] [log] [blame] [view]
# Matter CC1352 CC2652 Lock Example Application
An example application showing the use of [Matter][matter] on the Texas
Instruments CC13XX_26XX family of Wireless MCUs.
---
- [Matter CC1352 CC2652 Lock Example Application](#matter-cc1352-cc2652-lock-example-application)
- [Introduction](#introduction)
- [Device UI](#device-ui)
- [Building](#building)
- [Preparation](#preparation)
- [Compilation](#compilation)
- [Programming](#programming)
- [Code Composer Studio](#code-composer-studio)
- [UniFlash](#uniflash)
- [Viewing Logging Output](#viewing-logging-output)
- [Running the Example](#running-the-example)
- [Provisioning](#provisioning)
- [Bluetooth LE Advertising](#bluetooth-le-advertising)
- [Bluetooth LE Rendezvous](#bluetooth-le-rendezvous)
- [Matter Remote Commands](#matter-remote-commands)
- [TI Support](#ti-support)
---
## Introduction
![CC1352R1_LAUNCHXL](doc/images/cc1352r1_launchxl.jpg)
The CC13XX_26XX lock example application provides a working demonstration of a
connected door lock device. This uses the open-source Matter implementation and
the Texas Instruments SimpleLink CC13XX and CC26XX software development kit.
This example is enabled to build for CC2652R7 devices.
The lock example is intended to serve both as a means to explore the workings of
Matter, as well as a template for creating real products based on the Texas
Instruments devices.
## Device UI
This example application has a simple User Interface to depict the state of the
door lock and to control the state. The user LEDs on the LaunchPad are set on
when the lock is locked, and are set off when unlocked. The LEDs will flash when
in the transition state between locked and unlocked.
Short presses (less than 1000ms) of the user buttons are used for requesting
lock and unlock of the door lock. The left button (`BTN-1`) is used to request
locking. The right button (`BTN-2`) is used to request unlocking.
Long presses (greater than 1000ms) of the user buttons are used for controlling
BLE advertisements. The left button (`BTN-1`) is used to disable advertisements
if they are enabled. The Right button (`BTN-2`) is used to enable
advertisements.
## Building
### Preparation
Some initial setup is necessary for preparing the build environment. This
section will need to be done when migrating to new versions of the SDK. This
guide assumes that the environment is linux based, and recommends Ubuntu 20.04.
- Download and install [SysConfig][sysconfig] ([recommended
version][sysconfig_recommended]). This can be done simply with the following
commands.
```
$ cd ~
$ wget https://software-dl.ti.com/ccs/esd/sysconfig/sysconfig-1.11.0_2225-setup.run
$ chmod +x sysconfig-1.11.0_2225-setup.run
$ ./sysconfig-1.11.0_2225-setup.run
```
- Run the bootstrap script to setup the build environment.
```
$ cd ~/connectedhomeip
$ source ./scripts/bootstrap.sh
```
### Compilation
It is necessary to activate the environment in every new shell. Then run GN and
Ninja to build the executable.
- Activate the build environment with the repository activate script.
```
$ cd ~/connectedhomeip
$ source ./scripts/activate.sh
```
- Run the build to produce a default executable. By default on Linux both the
TI SimpleLink SDK and Sysconfig are located in a `ti` folder in the user's
home directory, and you must provide the absolute path to them. For example
`/home/username/ti/sysconfig_1.11.0`. On Windows the default directory is
`C:\ti`. Take note of this install path, as it will be used in the next
step.
```
$ cd ~/connectedhomeip/examples/lock-app/cc13x2x7_26x2x7
$ gn gen out/debug --args="ti_sysconfig_root=\"$HOME/ti/sysconfig_1.11.0\""
$ ninja -C out/debug
```
## Programming
Loading the built image onto a LaunchPad is supported through two methods;
Uniflash and Code Composer Studio (CCS). UniFlash can be used to load the image.
Code Composer Studio can be used to load the image and debug the source code.
### Code Composer Studio
Programming with CCS will allow for a full debug environment within the IDE.
This is accomplished by creating a target connection to the XDS110 debugger and
starting a project-less debug session. The CCS IDE will attempt to find the
source files on the local machine based on the debug information embedded within
the ELF. CCS may prompt you to find the source code if the image was built on
another machine or the source code is located in a different location than is
recorded within the ELF.
Download and install [Code Composer Studio][ccs].
First open CCS and create a new workspace.
Create a target connection (sometimes called the CCXML) for your target SoC and
debugger as described in the [Manual Method][ccs_manual_method] section of the
CCS User's Guide.
Next initiate a project-less debug session as described in the [Manual
Launch][ccs_manual_launch] section of the CCS User's Guide.
CCS should switch to the debug view described in the [After
Launch][ccs_after_launch] section of the User's Guide. The SoC core will likely
be disconnected and symbols will not be loaded. Connect to the core as described
in the [Debug View][ccs_debug_view] section of the User's Guide. Once the core
is connected, use the `Load` button on the toolbar to load the ELF image.
Note that the default configuration of the CCXML uses 2-wire cJTAG instead of
the full 4-wire JTAG connection to match the default jumper configuration of the
LaunchPad.
### UniFlash
Uniflash is Texas Instrument's uniform programming tool for embedded processors.
This will allow you to erase, flash, and inspect the SoC without setting up a
debugging environment.
Download and install [UniFlash][uniflash].
First open UniFlash. Debug probes connected to the computer will usually be
displayed under the Detected Devices due to the automatic device detection
feature. If your device does not show up in this view it my be disconnected, or
you may have to create a New Configuration. If you already have a CCXML for your
SoC and debug connection you can use that in the section at the bottom. Once
your device is selected, click the `Start` button within the section to launch
the session.
Select the ELF image to load on the device with the `Browse` button. This file
is placed in the `out/debug` folder by this guide and ends with the `*.out` file
extension.
Finally click the `Load Image` button to load the executable image onto the
device. You should be able to see the log output over the XDS110 User UART.
Note that programming the device through JTAG sets the Halt-in-Boot flag and may
cause issues when performing a software reset. This flag can be reset by
power-cycling the LaunchPad.
## Viewing Logging Output
By default the log output will be sent to the Application/User UART. Open a
terminal emulator to that port to see the output with the following options:
| Parameter | Value |
| ------------ | -------- |
| Speed (baud) | `115200` |
| Data bits | `8` |
| Stop bits | `1` |
| Parity | `None` |
| Flow control | `None` |
## Running the Example
Once a device has been flashed with this example, it can now join and operate in
an existing Thread network. The following sections assume that a Thread network
is already active, and has at least one [OpenThread Border
Router][ot_border_router_setup].
For insight into what other components are needed to run this example, please
refer to our [Matter Getting Started Guide][matter-e2e-faq].
### Provisioning
Interacting with the application begins by enabling BLE advertisements and then
pairing the device into a Thread network.
#### Bluetooth LE Advertising
To provision this example onto a Thread network, the device must be discoverable
over Bluetooth LE. BLE advertising is started by long pressing the right button
(greater than 1000ms), labeled `BTN-2` on the silkscreen. Once the device is
fully provisioned, BLE advertising will stop.
#### Bluetooth LE Rendezvous
Pairing this application with `ble-thread` can be done with any of the enabled
[CHIP Controller](../../../src/controller/README.md) applications. Use the
information printed on the console to aide in pairing the device. The controller
application can also be used to control the example app with the cluster
commands.
## TI Support
For technical support, please consider creating a post on TI's [E2E forum][e2e].
Additionally, we welcome any feedback.
[matter]: https://github.com/project-chip/connectedhomeip
[ccs]: https://www.ti.com/tool/CCSTUDIO
[ccs_after_launch]:
https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_debug-main.html?configuration#after-launch
[ccs_debug_view]:
https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_debug-main.html?configuration#debug-view
[ccs_manual_launch]:
https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_debug-main.html?configuration#manual-launch
[ccs_manual_method]:
https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_debug-main.html?configuration#manual-method
[cc1352r1_launchxl]: https://www.ti.com/tool/LAUNCHXL-CC1352R1
[e2e]: https://e2e.ti.com/support/wireless-connectivity/zigbee-and-thread
[matter-e2e-faq]:
https://e2e.ti.com/support/wireless-connectivity/zigbee-thread-group/zigbee-and-thread/f/zigbee-thread-forum/1082428/faq-cc2652r7-matter----getting-started-guide
[sysconfig]: https://www.ti.com/tool/SYSCONFIG
[sysconfig_recommended]:
https://software-dl.ti.com/ccs/esd/sysconfig/sysconfig-1.11.0_2225-setup.run
[ti_thread_dnd]:
https://www.ti.com/wireless-connectivity/thread/design-development.html
[ot_border_router_setup]: https://openthread.io/guides/border-router/build
[uniflash]: https://www.ti.com/tool/download/UNIFLASH