blob: 1437c0b52af7490a94a4df587a277f7479639fe6 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "protobuf.h"
#include <math.h>
#include <ruby/encoding.h>
// -----------------------------------------------------------------------------
// Ruby <-> native slot management.
// -----------------------------------------------------------------------------
#define DEREF(memory, type) *(type*)(memory)
size_t native_slot_size(upb_fieldtype_t type) {
switch (type) {
case UPB_TYPE_FLOAT: return 4;
case UPB_TYPE_DOUBLE: return 8;
case UPB_TYPE_BOOL: return 1;
case UPB_TYPE_STRING: return sizeof(VALUE);
case UPB_TYPE_BYTES: return sizeof(VALUE);
case UPB_TYPE_MESSAGE: return sizeof(VALUE);
case UPB_TYPE_ENUM: return 4;
case UPB_TYPE_INT32: return 4;
case UPB_TYPE_INT64: return 8;
case UPB_TYPE_UINT32: return 4;
case UPB_TYPE_UINT64: return 8;
default: return 0;
}
}
static VALUE value_from_default(const upb_fielddef *field) {
switch (upb_fielddef_type(field)) {
case UPB_TYPE_FLOAT: return DBL2NUM(upb_fielddef_defaultfloat(field));
case UPB_TYPE_DOUBLE: return DBL2NUM(upb_fielddef_defaultdouble(field));
case UPB_TYPE_BOOL:
return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse;
case UPB_TYPE_MESSAGE: return Qnil;
case UPB_TYPE_ENUM: {
const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field);
int32_t num = upb_fielddef_defaultint32(field);
const char *label = upb_enumdef_iton(enumdef, num);
if (label) {
return ID2SYM(rb_intern(label));
} else {
return INT2NUM(num);
}
}
case UPB_TYPE_INT32: return INT2NUM(upb_fielddef_defaultint32(field));
case UPB_TYPE_INT64: return LL2NUM(upb_fielddef_defaultint64(field));;
case UPB_TYPE_UINT32: return UINT2NUM(upb_fielddef_defaultuint32(field));
case UPB_TYPE_UINT64: return ULL2NUM(upb_fielddef_defaultuint64(field));
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
size_t size;
const char *str = upb_fielddef_defaultstr(field, &size);
return rb_str_new(str, size);
}
default: return Qnil;
}
}
static bool is_ruby_num(VALUE value) {
return (TYPE(value) == T_FLOAT ||
TYPE(value) == T_FIXNUM ||
TYPE(value) == T_BIGNUM);
}
void native_slot_check_int_range_precision(upb_fieldtype_t type, VALUE val) {
if (!is_ruby_num(val)) {
rb_raise(rb_eTypeError, "Expected number type for integral field.");
}
// NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
// bound; we just need to do precision checks (i.e., disallow rounding) and
// check for < 0 on unsigned types.
if (TYPE(val) == T_FLOAT) {
double dbl_val = NUM2DBL(val);
if (floor(dbl_val) != dbl_val) {
rb_raise(rb_eRangeError,
"Non-integral floating point value assigned to integer field.");
}
}
if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
if (NUM2DBL(val) < 0) {
rb_raise(rb_eRangeError,
"Assigning negative value to unsigned integer field.");
}
}
}
VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) {
rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ?
kRubyStringUtf8Encoding : kRubyString8bitEncoding;
VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding);
// Note: this will not duplicate underlying string data unless necessary.
value = rb_str_encode(value, desired_encoding_value, 0, Qnil);
if (type == UPB_TYPE_STRING &&
rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) {
rb_raise(rb_eEncodingError, "String is invalid UTF-8");
}
// Ensure the data remains valid. Since we called #encode a moment ago,
// this does not freeze the string the user assigned.
rb_obj_freeze(value);
return value;
}
void native_slot_set(upb_fieldtype_t type, VALUE type_class,
void* memory, VALUE value) {
native_slot_set_value_and_case(type, type_class, memory, value, NULL, 0);
}
void native_slot_set_value_and_case(upb_fieldtype_t type, VALUE type_class,
void* memory, VALUE value,
uint32_t* case_memory,
uint32_t case_number) {
// Note that in order to atomically change the value in memory and the case
// value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
// all Ruby VM calls are complete. The case is then set at the bottom of this
// function.
switch (type) {
case UPB_TYPE_FLOAT:
if (!is_ruby_num(value)) {
rb_raise(rb_eTypeError, "Expected number type for float field.");
}
DEREF(memory, float) = NUM2DBL(value);
break;
case UPB_TYPE_DOUBLE:
if (!is_ruby_num(value)) {
rb_raise(rb_eTypeError, "Expected number type for double field.");
}
DEREF(memory, double) = NUM2DBL(value);
break;
case UPB_TYPE_BOOL: {
int8_t val = -1;
if (value == Qtrue) {
val = 1;
} else if (value == Qfalse) {
val = 0;
} else {
rb_raise(rb_eTypeError, "Invalid argument for boolean field.");
}
DEREF(memory, int8_t) = val;
break;
}
case UPB_TYPE_STRING:
if (CLASS_OF(value) == rb_cSymbol) {
value = rb_funcall(value, rb_intern("to_s"), 0, NULL);
} else if (CLASS_OF(value) != rb_cString) {
rb_raise(rb_eTypeError, "Invalid argument for string field.");
}
DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
break;
case UPB_TYPE_BYTES: {
if (CLASS_OF(value) != rb_cString) {
rb_raise(rb_eTypeError, "Invalid argument for string field.");
}
DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
break;
}
case UPB_TYPE_MESSAGE: {
if (CLASS_OF(value) == CLASS_OF(Qnil)) {
value = Qnil;
} else if (CLASS_OF(value) != type_class) {
rb_raise(rb_eTypeError,
"Invalid type %s to assign to submessage field.",
rb_class2name(CLASS_OF(value)));
}
DEREF(memory, VALUE) = value;
break;
}
case UPB_TYPE_ENUM: {
int32_t int_val = 0;
if (TYPE(value) == T_STRING) {
value = rb_funcall(value, rb_intern("to_sym"), 0, NULL);
} else if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
rb_raise(rb_eTypeError,
"Expected number or symbol type for enum field.");
}
if (TYPE(value) == T_SYMBOL) {
// Ensure that the given symbol exists in the enum module.
VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
if (lookup == Qnil) {
rb_raise(rb_eRangeError, "Unknown symbol value for enum field.");
} else {
int_val = NUM2INT(lookup);
}
} else {
native_slot_check_int_range_precision(UPB_TYPE_INT32, value);
int_val = NUM2INT(value);
}
DEREF(memory, int32_t) = int_val;
break;
}
case UPB_TYPE_INT32:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT32:
case UPB_TYPE_UINT64:
native_slot_check_int_range_precision(type, value);
switch (type) {
case UPB_TYPE_INT32:
DEREF(memory, int32_t) = NUM2INT(value);
break;
case UPB_TYPE_INT64:
DEREF(memory, int64_t) = NUM2LL(value);
break;
case UPB_TYPE_UINT32:
DEREF(memory, uint32_t) = NUM2UINT(value);
break;
case UPB_TYPE_UINT64:
DEREF(memory, uint64_t) = NUM2ULL(value);
break;
default:
break;
}
break;
default:
break;
}
if (case_memory != NULL) {
*case_memory = case_number;
}
}
VALUE native_slot_get(upb_fieldtype_t type,
VALUE type_class,
const void* memory) {
switch (type) {
case UPB_TYPE_FLOAT:
return DBL2NUM(DEREF(memory, float));
case UPB_TYPE_DOUBLE:
return DBL2NUM(DEREF(memory, double));
case UPB_TYPE_BOOL:
return DEREF(memory, int8_t) ? Qtrue : Qfalse;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
case UPB_TYPE_MESSAGE:
return DEREF(memory, VALUE);
case UPB_TYPE_ENUM: {
int32_t val = DEREF(memory, int32_t);
VALUE symbol = enum_lookup(type_class, INT2NUM(val));
if (symbol == Qnil) {
return INT2NUM(val);
} else {
return symbol;
}
}
case UPB_TYPE_INT32:
return INT2NUM(DEREF(memory, int32_t));
case UPB_TYPE_INT64:
return LL2NUM(DEREF(memory, int64_t));
case UPB_TYPE_UINT32:
return UINT2NUM(DEREF(memory, uint32_t));
case UPB_TYPE_UINT64:
return ULL2NUM(DEREF(memory, uint64_t));
default:
return Qnil;
}
}
void native_slot_init(upb_fieldtype_t type, void* memory) {
switch (type) {
case UPB_TYPE_FLOAT:
DEREF(memory, float) = 0.0;
break;
case UPB_TYPE_DOUBLE:
DEREF(memory, double) = 0.0;
break;
case UPB_TYPE_BOOL:
DEREF(memory, int8_t) = 0;
break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
DEREF(memory, VALUE) = rb_str_new2("");
rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
kRubyString8bitEncoding : kRubyStringUtf8Encoding);
break;
case UPB_TYPE_MESSAGE:
DEREF(memory, VALUE) = Qnil;
break;
case UPB_TYPE_ENUM:
case UPB_TYPE_INT32:
DEREF(memory, int32_t) = 0;
break;
case UPB_TYPE_INT64:
DEREF(memory, int64_t) = 0;
break;
case UPB_TYPE_UINT32:
DEREF(memory, uint32_t) = 0;
break;
case UPB_TYPE_UINT64:
DEREF(memory, uint64_t) = 0;
break;
default:
break;
}
}
void native_slot_mark(upb_fieldtype_t type, void* memory) {
switch (type) {
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
case UPB_TYPE_MESSAGE:
rb_gc_mark(DEREF(memory, VALUE));
break;
default:
break;
}
}
void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
memcpy(to, from, native_slot_size(type));
}
void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) {
switch (type) {
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
VALUE from_val = DEREF(from, VALUE);
DEREF(to, VALUE) = (from_val != Qnil) ?
rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
break;
}
case UPB_TYPE_MESSAGE: {
VALUE from_val = DEREF(from, VALUE);
DEREF(to, VALUE) = (from_val != Qnil) ?
Message_deep_copy(from_val) : Qnil;
break;
}
default:
memcpy(to, from, native_slot_size(type));
}
}
bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2) {
switch (type) {
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
case UPB_TYPE_MESSAGE: {
VALUE val1 = DEREF(mem1, VALUE);
VALUE val2 = DEREF(mem2, VALUE);
VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
return ret == Qtrue;
}
default:
return !memcmp(mem1, mem2, native_slot_size(type));
}
}
// -----------------------------------------------------------------------------
// Map field utilities.
// -----------------------------------------------------------------------------
const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
const upb_msgdef* subdef;
if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
return NULL;
}
subdef = upb_fielddef_msgsubdef(field);
return upb_msgdef_mapentry(subdef) ? subdef : NULL;
}
const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
assert(subdef);
return subdef;
}
bool is_map_field(const upb_fielddef *field) {
return tryget_map_entry_msgdef(field) != NULL;
}
const upb_fielddef* map_field_key(const upb_fielddef* field) {
const upb_msgdef* subdef = map_entry_msgdef(field);
return map_entry_key(subdef);
}
const upb_fielddef* map_field_value(const upb_fielddef* field) {
const upb_msgdef* subdef = map_entry_msgdef(field);
return map_entry_value(subdef);
}
const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
assert(key_field != NULL);
return key_field;
}
const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
assert(value_field != NULL);
return value_field;
}
// -----------------------------------------------------------------------------
// Memory layout management.
// -----------------------------------------------------------------------------
static size_t align_up_to(size_t offset, size_t granularity) {
// Granularity must be a power of two.
return (offset + granularity - 1) & ~(granularity - 1);
}
MessageLayout* create_layout(const upb_msgdef* msgdef) {
MessageLayout* layout = ALLOC(MessageLayout);
int nfields = upb_msgdef_numfields(msgdef);
upb_msg_field_iter it;
upb_msg_oneof_iter oit;
size_t off = 0;
layout->fields = ALLOC_N(MessageField, nfields);
for (upb_msg_field_begin(&it, msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
size_t field_size;
if (upb_fielddef_containingoneof(field)) {
// Oneofs are handled separately below.
continue;
}
// Allocate |field_size| bytes for this field in the layout.
field_size = 0;
if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
field_size = sizeof(VALUE);
} else {
field_size = native_slot_size(upb_fielddef_type(field));
}
// Align current offset up to |size| granularity.
off = align_up_to(off, field_size);
layout->fields[upb_fielddef_index(field)].offset = off;
layout->fields[upb_fielddef_index(field)].case_offset =
MESSAGE_FIELD_NO_CASE;
off += field_size;
}
// Handle oneofs now -- we iterate over oneofs specifically and allocate only
// one slot per oneof.
//
// We assign all value slots first, then pack the 'case' fields at the end,
// since in the common case (modern 64-bit platform) these are 8 bytes and 4
// bytes respectively and we want to avoid alignment overhead.
//
// Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
// space for oneof cases is conceptually as wide as field tag numbers. In
// practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
// members (8 or 16 bits respectively), so conceivably we could assign
// consecutive case numbers and then pick a smaller oneof case slot size, but
// the complexity to implement this indirection is probably not worthwhile.
for (upb_msg_oneof_begin(&oit, msgdef);
!upb_msg_oneof_done(&oit);
upb_msg_oneof_next(&oit)) {
const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
upb_oneof_iter fit;
// Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
// all fields.
size_t field_size = NATIVE_SLOT_MAX_SIZE;
// Align the offset.
off = align_up_to(off, field_size);
// Assign all fields in the oneof this same offset.
for (upb_oneof_begin(&fit, oneof);
!upb_oneof_done(&fit);
upb_oneof_next(&fit)) {
const upb_fielddef* field = upb_oneof_iter_field(&fit);
layout->fields[upb_fielddef_index(field)].offset = off;
}
off += field_size;
}
// Now the case fields.
for (upb_msg_oneof_begin(&oit, msgdef);
!upb_msg_oneof_done(&oit);
upb_msg_oneof_next(&oit)) {
const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
upb_oneof_iter fit;
size_t field_size = sizeof(uint32_t);
// Align the offset.
off = (off + field_size - 1) & ~(field_size - 1);
// Assign all fields in the oneof this same offset.
for (upb_oneof_begin(&fit, oneof);
!upb_oneof_done(&fit);
upb_oneof_next(&fit)) {
const upb_fielddef* field = upb_oneof_iter_field(&fit);
layout->fields[upb_fielddef_index(field)].case_offset = off;
}
off += field_size;
}
layout->size = off;
layout->msgdef = msgdef;
upb_msgdef_ref(layout->msgdef, &layout->msgdef);
return layout;
}
void free_layout(MessageLayout* layout) {
xfree(layout->fields);
upb_msgdef_unref(layout->msgdef, &layout->msgdef);
xfree(layout);
}
VALUE field_type_class(const upb_fielddef* field) {
VALUE type_class = Qnil;
if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
VALUE submsgdesc =
get_def_obj(upb_fielddef_subdef(field));
type_class = Descriptor_msgclass(submsgdesc);
} else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
VALUE subenumdesc =
get_def_obj(upb_fielddef_subdef(field));
type_class = EnumDescriptor_enummodule(subenumdesc);
}
return type_class;
}
static void* slot_memory(MessageLayout* layout,
const void* storage,
const upb_fielddef* field) {
return ((uint8_t *)storage) +
layout->fields[upb_fielddef_index(field)].offset;
}
static uint32_t* slot_oneof_case(MessageLayout* layout,
const void* storage,
const upb_fielddef* field) {
return (uint32_t *)(((uint8_t *)storage) +
layout->fields[upb_fielddef_index(field)].case_offset);
}
VALUE layout_get(MessageLayout* layout,
const void* storage,
const upb_fielddef* field) {
void* memory = slot_memory(layout, storage, field);
uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
if (upb_fielddef_containingoneof(field)) {
if (*oneof_case != upb_fielddef_number(field)) {
return value_from_default(field);
}
return native_slot_get(upb_fielddef_type(field),
field_type_class(field),
memory);
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
return *((VALUE *)memory);
} else {
return native_slot_get(upb_fielddef_type(field),
field_type_class(field),
memory);
}
}
static void check_repeated_field_type(VALUE val, const upb_fielddef* field) {
RepeatedField* self;
assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);
if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
rb_raise(rb_eTypeError, "Expected repeated field array");
}
self = ruby_to_RepeatedField(val);
if (self->field_type != upb_fielddef_type(field)) {
rb_raise(rb_eTypeError, "Repeated field array has wrong element type");
}
if (self->field_type == UPB_TYPE_MESSAGE) {
if (self->field_type_class !=
Descriptor_msgclass(get_def_obj(upb_fielddef_subdef(field)))) {
rb_raise(rb_eTypeError,
"Repeated field array has wrong message class");
}
}
if (self->field_type == UPB_TYPE_ENUM) {
if (self->field_type_class !=
EnumDescriptor_enummodule(get_def_obj(upb_fielddef_subdef(field)))) {
rb_raise(rb_eTypeError,
"Repeated field array has wrong enum class");
}
}
}
static void check_map_field_type(VALUE val, const upb_fielddef* field) {
const upb_fielddef* key_field = map_field_key(field);
const upb_fielddef* value_field = map_field_value(field);
Map* self;
if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
RTYPEDDATA_TYPE(val) != &Map_type) {
rb_raise(rb_eTypeError, "Expected Map instance");
}
self = ruby_to_Map(val);
if (self->key_type != upb_fielddef_type(key_field)) {
rb_raise(rb_eTypeError, "Map key type does not match field's key type");
}
if (self->value_type != upb_fielddef_type(value_field)) {
rb_raise(rb_eTypeError, "Map value type does not match field's value type");
}
if (upb_fielddef_type(value_field) == UPB_TYPE_MESSAGE ||
upb_fielddef_type(value_field) == UPB_TYPE_ENUM) {
if (self->value_type_class !=
get_def_obj(upb_fielddef_subdef(value_field))) {
rb_raise(rb_eTypeError,
"Map value type has wrong message/enum class");
}
}
}
void layout_set(MessageLayout* layout,
void* storage,
const upb_fielddef* field,
VALUE val) {
void* memory = slot_memory(layout, storage, field);
uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
if (upb_fielddef_containingoneof(field)) {
if (val == Qnil) {
// Assigning nil to a oneof field clears the oneof completely.
*oneof_case = ONEOF_CASE_NONE;
memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
} else {
// The transition between field types for a single oneof (union) slot is
// somewhat complex because we need to ensure that a GC triggered at any
// point by a call into the Ruby VM sees a valid state for this field and
// does not either go off into the weeds (following what it thinks is a
// VALUE but is actually a different field type) or miss an object (seeing
// what it thinks is a primitive field but is actually a VALUE for the new
// field type).
//
// In order for the transition to be safe, the oneof case slot must be in
// sync with the value slot whenever the Ruby VM has been called. Thus, we
// use native_slot_set_value_and_case(), which ensures that both the value
// and case number are altered atomically (w.r.t. the Ruby VM).
native_slot_set_value_and_case(
upb_fielddef_type(field), field_type_class(field),
memory, val,
oneof_case, upb_fielddef_number(field));
}
} else if (is_map_field(field)) {
check_map_field_type(val, field);
DEREF(memory, VALUE) = val;
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
check_repeated_field_type(val, field);
DEREF(memory, VALUE) = val;
} else {
native_slot_set(upb_fielddef_type(field), field_type_class(field),
memory, val);
}
}
void layout_init(MessageLayout* layout,
void* storage) {
upb_msg_field_iter it;
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
void* memory = slot_memory(layout, storage, field);
uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
if (upb_fielddef_containingoneof(field)) {
memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
*oneof_case = ONEOF_CASE_NONE;
} else if (is_map_field(field)) {
VALUE map = Qnil;
const upb_fielddef* key_field = map_field_key(field);
const upb_fielddef* value_field = map_field_value(field);
VALUE type_class = field_type_class(value_field);
if (type_class != Qnil) {
VALUE args[3] = {
fieldtype_to_ruby(upb_fielddef_type(key_field)),
fieldtype_to_ruby(upb_fielddef_type(value_field)),
type_class,
};
map = rb_class_new_instance(3, args, cMap);
} else {
VALUE args[2] = {
fieldtype_to_ruby(upb_fielddef_type(key_field)),
fieldtype_to_ruby(upb_fielddef_type(value_field)),
};
map = rb_class_new_instance(2, args, cMap);
}
DEREF(memory, VALUE) = map;
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
VALUE ary = Qnil;
VALUE type_class = field_type_class(field);
if (type_class != Qnil) {
VALUE args[2] = {
fieldtype_to_ruby(upb_fielddef_type(field)),
type_class,
};
ary = rb_class_new_instance(2, args, cRepeatedField);
} else {
VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
ary = rb_class_new_instance(1, args, cRepeatedField);
}
DEREF(memory, VALUE) = ary;
} else {
native_slot_init(upb_fielddef_type(field), memory);
}
}
}
void layout_mark(MessageLayout* layout, void* storage) {
upb_msg_field_iter it;
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
void* memory = slot_memory(layout, storage, field);
uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
if (upb_fielddef_containingoneof(field)) {
if (*oneof_case == upb_fielddef_number(field)) {
native_slot_mark(upb_fielddef_type(field), memory);
}
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
rb_gc_mark(DEREF(memory, VALUE));
} else {
native_slot_mark(upb_fielddef_type(field), memory);
}
}
}
void layout_dup(MessageLayout* layout, void* to, void* from) {
upb_msg_field_iter it;
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
void* to_memory = slot_memory(layout, to, field);
uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
void* from_memory = slot_memory(layout, from, field);
uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
if (upb_fielddef_containingoneof(field)) {
if (*from_oneof_case == upb_fielddef_number(field)) {
*to_oneof_case = *from_oneof_case;
native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
}
} else if (is_map_field(field)) {
DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
} else {
native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
}
}
}
void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
upb_msg_field_iter it;
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
void* to_memory = slot_memory(layout, to, field);
uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
void* from_memory = slot_memory(layout, from, field);
uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
if (upb_fielddef_containingoneof(field)) {
if (*from_oneof_case == upb_fielddef_number(field)) {
*to_oneof_case = *from_oneof_case;
native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
}
} else if (is_map_field(field)) {
DEREF(to_memory, VALUE) =
Map_deep_copy(DEREF(from_memory, VALUE));
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
DEREF(to_memory, VALUE) =
RepeatedField_deep_copy(DEREF(from_memory, VALUE));
} else {
native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
}
}
}
VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
upb_msg_field_iter it;
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
void* msg1_memory = slot_memory(layout, msg1, field);
uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, field);
void* msg2_memory = slot_memory(layout, msg2, field);
uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, field);
if (upb_fielddef_containingoneof(field)) {
if (*msg1_oneof_case != *msg2_oneof_case ||
(*msg1_oneof_case == upb_fielddef_number(field) &&
!native_slot_eq(upb_fielddef_type(field),
msg1_memory,
msg2_memory))) {
return Qfalse;
}
} else if (is_map_field(field)) {
if (!Map_eq(DEREF(msg1_memory, VALUE),
DEREF(msg2_memory, VALUE))) {
return Qfalse;
}
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
DEREF(msg2_memory, VALUE))) {
return Qfalse;
}
} else {
if (!native_slot_eq(upb_fielddef_type(field),
msg1_memory, msg2_memory)) {
return Qfalse;
}
}
}
return Qtrue;
}
VALUE layout_hash(MessageLayout* layout, void* storage) {
upb_msg_field_iter it;
st_index_t h = rb_hash_start(0);
VALUE hash_sym = rb_intern("hash");
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
VALUE field_val = layout_get(layout, storage, field);
h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
}
h = rb_hash_end(h);
return INT2FIX(h);
}
VALUE layout_inspect(MessageLayout* layout, void* storage) {
VALUE str = rb_str_new2("");
upb_msg_field_iter it;
bool first = true;
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
VALUE field_val = layout_get(layout, storage, field);
if (!first) {
str = rb_str_cat2(str, ", ");
} else {
first = false;
}
str = rb_str_cat2(str, upb_fielddef_name(field));
str = rb_str_cat2(str, ": ");
str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
}
return str;
}