| #region Copyright notice and license |
| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file or at |
| // https://developers.google.com/open-source/licenses/bsd |
| #endregion |
| |
| using Google.Protobuf.TestProtos; |
| using Proto2 = Google.Protobuf.TestProtos.Proto2; |
| using NUnit.Framework; |
| using System; |
| using System.Buffers; |
| using System.IO; |
| |
| namespace Google.Protobuf |
| { |
| public class CodedInputStreamTest |
| { |
| /// <summary> |
| /// Helper to construct a byte array from a bunch of bytes. The inputs are |
| /// actually ints so that I can use hex notation and not get stupid errors |
| /// about precision. |
| /// </summary> |
| private static byte[] Bytes(params int[] bytesAsInts) |
| { |
| byte[] bytes = new byte[bytesAsInts.Length]; |
| for (int i = 0; i < bytesAsInts.Length; i++) |
| { |
| bytes[i] = (byte) bytesAsInts[i]; |
| } |
| return bytes; |
| } |
| |
| /// <summary> |
| /// Parses the given bytes using ReadRawVarint32() and ReadRawVarint64() |
| /// </summary> |
| private static void AssertReadVarint(byte[] data, ulong value) |
| { |
| CodedInputStream input = new CodedInputStream(data); |
| Assert.AreEqual((uint) value, input.ReadRawVarint32()); |
| Assert.IsTrue(input.IsAtEnd); |
| |
| input = new CodedInputStream(data); |
| Assert.AreEqual(value, input.ReadRawVarint64()); |
| Assert.IsTrue(input.IsAtEnd); |
| |
| AssertReadFromParseContext(new ReadOnlySequence<byte>(data), (ref ParseContext ctx) => |
| { |
| Assert.AreEqual((uint) value, ctx.ReadUInt32()); |
| }, true); |
| |
| AssertReadFromParseContext(new ReadOnlySequence<byte>(data), (ref ParseContext ctx) => |
| { |
| Assert.AreEqual(value, ctx.ReadUInt64()); |
| }, true); |
| |
| // Try different block sizes. |
| for (int bufferSize = 1; bufferSize <= 16; bufferSize *= 2) |
| { |
| input = new CodedInputStream(new SmallBlockInputStream(data, bufferSize)); |
| Assert.AreEqual((uint) value, input.ReadRawVarint32()); |
| |
| input = new CodedInputStream(new SmallBlockInputStream(data, bufferSize)); |
| Assert.AreEqual(value, input.ReadRawVarint64()); |
| Assert.IsTrue(input.IsAtEnd); |
| |
| AssertReadFromParseContext(ReadOnlySequenceFactory.CreateWithContent(data, bufferSize), (ref ParseContext ctx) => |
| { |
| Assert.AreEqual((uint) value, ctx.ReadUInt32()); |
| }, true); |
| |
| AssertReadFromParseContext(ReadOnlySequenceFactory.CreateWithContent(data, bufferSize), (ref ParseContext ctx) => |
| { |
| Assert.AreEqual(value, ctx.ReadUInt64()); |
| }, true); |
| } |
| |
| // Try reading directly from a MemoryStream. We want to verify that it |
| // doesn't read past the end of the input, so write an extra byte - this |
| // lets us test the position at the end. |
| MemoryStream memoryStream = new MemoryStream(); |
| memoryStream.Write(data, 0, data.Length); |
| memoryStream.WriteByte(0); |
| memoryStream.Position = 0; |
| Assert.AreEqual((uint) value, CodedInputStream.ReadRawVarint32(memoryStream)); |
| Assert.AreEqual(data.Length, memoryStream.Position); |
| } |
| |
| /// <summary> |
| /// Parses the given bytes using ReadRawVarint32() and ReadRawVarint64() and |
| /// expects them to fail with an InvalidProtocolBufferException whose |
| /// description matches the given one. |
| /// </summary> |
| private static void AssertReadVarintFailure(InvalidProtocolBufferException expected, byte[] data) |
| { |
| CodedInputStream input = new CodedInputStream(data); |
| var exception = Assert.Throws<InvalidProtocolBufferException>(() => input.ReadRawVarint32()); |
| Assert.AreEqual(expected.Message, exception.Message); |
| |
| input = new CodedInputStream(data); |
| exception = Assert.Throws<InvalidProtocolBufferException>(() => input.ReadRawVarint64()); |
| Assert.AreEqual(expected.Message, exception.Message); |
| |
| AssertReadFromParseContext(new ReadOnlySequence<byte>(data), (ref ParseContext ctx) => |
| { |
| try |
| { |
| ctx.ReadUInt32(); |
| Assert.Fail(); |
| } |
| catch (InvalidProtocolBufferException ex) |
| { |
| Assert.AreEqual(expected.Message, ex.Message); |
| } |
| }, false); |
| |
| AssertReadFromParseContext(new ReadOnlySequence<byte>(data), (ref ParseContext ctx) => |
| { |
| try |
| { |
| ctx.ReadUInt64(); |
| Assert.Fail(); |
| } |
| catch (InvalidProtocolBufferException ex) |
| { |
| Assert.AreEqual(expected.Message, ex.Message); |
| } |
| }, false); |
| |
| // Make sure we get the same error when reading directly from a Stream. |
| exception = Assert.Throws<InvalidProtocolBufferException>(() => CodedInputStream.ReadRawVarint32(new MemoryStream(data))); |
| Assert.AreEqual(expected.Message, exception.Message); |
| } |
| |
| private delegate void ParseContextAssertAction(ref ParseContext ctx); |
| |
| private static void AssertReadFromParseContext(ReadOnlySequence<byte> input, ParseContextAssertAction assertAction, bool assertIsAtEnd) |
| { |
| // Check as ReadOnlySequence<byte> |
| ParseContext.Initialize(input, out ParseContext parseCtx); |
| assertAction(ref parseCtx); |
| if (assertIsAtEnd) |
| { |
| Assert.IsTrue(SegmentedBufferHelper.IsAtEnd(ref parseCtx.buffer, ref parseCtx.state)); |
| } |
| |
| // Check as ReadOnlySpan<byte> |
| ParseContext.Initialize(input.ToArray().AsSpan(), out ParseContext spanParseContext); |
| assertAction(ref spanParseContext); |
| if (assertIsAtEnd) |
| { |
| Assert.IsTrue(SegmentedBufferHelper.IsAtEnd(ref spanParseContext.buffer, ref spanParseContext.state)); |
| } |
| } |
| |
| [Test] |
| public void ReadVarint() |
| { |
| AssertReadVarint(Bytes(0x00), 0); |
| AssertReadVarint(Bytes(0x01), 1); |
| AssertReadVarint(Bytes(0x7f), 127); |
| // 14882 |
| AssertReadVarint(Bytes(0xa2, 0x74), (0x22 << 0) | (0x74 << 7)); |
| // 2961488830 |
| AssertReadVarint(Bytes(0xbe, 0xf7, 0x92, 0x84, 0x0b), |
| (0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) | |
| (0x0bL << 28)); |
| |
| // 64-bit |
| // 7256456126 |
| AssertReadVarint(Bytes(0xbe, 0xf7, 0x92, 0x84, 0x1b), |
| (0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) | |
| (0x1bL << 28)); |
| // 41256202580718336 |
| AssertReadVarint(Bytes(0x80, 0xe6, 0xeb, 0x9c, 0xc3, 0xc9, 0xa4, 0x49), |
| (0x00 << 0) | (0x66 << 7) | (0x6b << 14) | (0x1c << 21) | |
| (0x43L << 28) | (0x49L << 35) | (0x24L << 42) | (0x49L << 49)); |
| // 11964378330978735131 |
| AssertReadVarint(Bytes(0x9b, 0xa8, 0xf9, 0xc2, 0xbb, 0xd6, 0x80, 0x85, 0xa6, 0x01), |
| (0x1b << 0) | (0x28 << 7) | (0x79 << 14) | (0x42 << 21) | |
| (0x3bUL << 28) | (0x56UL << 35) | (0x00UL << 42) | |
| (0x05UL << 49) | (0x26UL << 56) | (0x01UL << 63)); |
| |
| // Failures |
| AssertReadVarintFailure( |
| InvalidProtocolBufferException.MalformedVarint(), |
| Bytes(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, |
| 0x00)); |
| AssertReadVarintFailure( |
| InvalidProtocolBufferException.TruncatedMessage(), |
| Bytes(0x80)); |
| } |
| |
| /// <summary> |
| /// Parses the given bytes using ReadRawLittleEndian32() and checks |
| /// that the result matches the given value. |
| /// </summary> |
| private static void AssertReadLittleEndian32(byte[] data, uint value) |
| { |
| CodedInputStream input = new CodedInputStream(data); |
| Assert.AreEqual(value, input.ReadRawLittleEndian32()); |
| Assert.IsTrue(input.IsAtEnd); |
| |
| AssertReadFromParseContext(new ReadOnlySequence<byte>(data), (ref ParseContext ctx) => |
| { |
| Assert.AreEqual(value, ctx.ReadFixed32()); |
| }, true); |
| |
| // Try different block sizes. |
| for (int blockSize = 1; blockSize <= 16; blockSize *= 2) |
| { |
| input = new CodedInputStream( |
| new SmallBlockInputStream(data, blockSize)); |
| Assert.AreEqual(value, input.ReadRawLittleEndian32()); |
| Assert.IsTrue(input.IsAtEnd); |
| |
| AssertReadFromParseContext(ReadOnlySequenceFactory.CreateWithContent(data, blockSize), (ref ParseContext ctx) => |
| { |
| Assert.AreEqual(value, ctx.ReadFixed32()); |
| }, true); |
| } |
| } |
| |
| /// <summary> |
| /// Parses the given bytes using ReadRawLittleEndian64() and checks |
| /// that the result matches the given value. |
| /// </summary> |
| private static void AssertReadLittleEndian64(byte[] data, ulong value) |
| { |
| CodedInputStream input = new CodedInputStream(data); |
| Assert.AreEqual(value, input.ReadRawLittleEndian64()); |
| Assert.IsTrue(input.IsAtEnd); |
| |
| AssertReadFromParseContext(new ReadOnlySequence<byte>(data), (ref ParseContext ctx) => |
| { |
| Assert.AreEqual(value, ctx.ReadFixed64()); |
| }, true); |
| |
| // Try different block sizes. |
| for (int blockSize = 1; blockSize <= 16; blockSize *= 2) |
| { |
| input = new CodedInputStream( |
| new SmallBlockInputStream(data, blockSize)); |
| Assert.AreEqual(value, input.ReadRawLittleEndian64()); |
| Assert.IsTrue(input.IsAtEnd); |
| |
| AssertReadFromParseContext(ReadOnlySequenceFactory.CreateWithContent(data, blockSize), (ref ParseContext ctx) => |
| { |
| Assert.AreEqual(value, ctx.ReadFixed64()); |
| }, true); |
| } |
| } |
| |
| [Test] |
| public void ReadLittleEndian() |
| { |
| AssertReadLittleEndian32(Bytes(0x78, 0x56, 0x34, 0x12), 0x12345678); |
| AssertReadLittleEndian32(Bytes(0xf0, 0xde, 0xbc, 0x9a), 0x9abcdef0); |
| |
| AssertReadLittleEndian64(Bytes(0xf0, 0xde, 0xbc, 0x9a, 0x78, 0x56, 0x34, 0x12), |
| 0x123456789abcdef0L); |
| AssertReadLittleEndian64( |
| Bytes(0x78, 0x56, 0x34, 0x12, 0xf0, 0xde, 0xbc, 0x9a), 0x9abcdef012345678UL); |
| } |
| |
| [Test] |
| public void DecodeZigZag32() |
| { |
| Assert.AreEqual(0, ParsingPrimitives.DecodeZigZag32(0)); |
| Assert.AreEqual(-1, ParsingPrimitives.DecodeZigZag32(1)); |
| Assert.AreEqual(1, ParsingPrimitives.DecodeZigZag32(2)); |
| Assert.AreEqual(-2, ParsingPrimitives.DecodeZigZag32(3)); |
| Assert.AreEqual(0x3FFFFFFF, ParsingPrimitives.DecodeZigZag32(0x7FFFFFFE)); |
| Assert.AreEqual(unchecked((int) 0xC0000000), ParsingPrimitives.DecodeZigZag32(0x7FFFFFFF)); |
| Assert.AreEqual(0x7FFFFFFF, ParsingPrimitives.DecodeZigZag32(0xFFFFFFFE)); |
| Assert.AreEqual(unchecked((int) 0x80000000), ParsingPrimitives.DecodeZigZag32(0xFFFFFFFF)); |
| } |
| |
| [Test] |
| public void DecodeZigZag64() |
| { |
| Assert.AreEqual(0, ParsingPrimitives.DecodeZigZag64(0)); |
| Assert.AreEqual(-1, ParsingPrimitives.DecodeZigZag64(1)); |
| Assert.AreEqual(1, ParsingPrimitives.DecodeZigZag64(2)); |
| Assert.AreEqual(-2, ParsingPrimitives.DecodeZigZag64(3)); |
| Assert.AreEqual(0x000000003FFFFFFFL, ParsingPrimitives.DecodeZigZag64(0x000000007FFFFFFEL)); |
| Assert.AreEqual(unchecked((long) 0xFFFFFFFFC0000000L), ParsingPrimitives.DecodeZigZag64(0x000000007FFFFFFFL)); |
| Assert.AreEqual(0x000000007FFFFFFFL, ParsingPrimitives.DecodeZigZag64(0x00000000FFFFFFFEL)); |
| Assert.AreEqual(unchecked((long) 0xFFFFFFFF80000000L), ParsingPrimitives.DecodeZigZag64(0x00000000FFFFFFFFL)); |
| Assert.AreEqual(0x7FFFFFFFFFFFFFFFL, ParsingPrimitives.DecodeZigZag64(0xFFFFFFFFFFFFFFFEL)); |
| Assert.AreEqual(unchecked((long) 0x8000000000000000L), ParsingPrimitives.DecodeZigZag64(0xFFFFFFFFFFFFFFFFL)); |
| } |
| |
| [Test] |
| public void ReadWholeMessage_VaryingBlockSizes() |
| { |
| TestAllTypes message = SampleMessages.CreateFullTestAllTypes(); |
| |
| byte[] rawBytes = message.ToByteArray(); |
| Assert.AreEqual(rawBytes.Length, message.CalculateSize()); |
| TestAllTypes message2 = TestAllTypes.Parser.ParseFrom(rawBytes); |
| Assert.AreEqual(message, message2); |
| |
| // Try different block sizes. |
| for (int blockSize = 1; blockSize < 256; blockSize *= 2) |
| { |
| message2 = TestAllTypes.Parser.ParseFrom(new SmallBlockInputStream(rawBytes, blockSize)); |
| Assert.AreEqual(message, message2); |
| } |
| } |
| |
| [Test] |
| public void ReadWholeMessage_VaryingBlockSizes_FromSequence() |
| { |
| TestAllTypes message = SampleMessages.CreateFullTestAllTypes(); |
| |
| byte[] rawBytes = message.ToByteArray(); |
| Assert.AreEqual(rawBytes.Length, message.CalculateSize()); |
| TestAllTypes message2 = TestAllTypes.Parser.ParseFrom(rawBytes); |
| Assert.AreEqual(message, message2); |
| |
| // Try different block sizes. |
| for (int blockSize = 1; blockSize < 256; blockSize *= 2) |
| { |
| message2 = TestAllTypes.Parser.ParseFrom(ReadOnlySequenceFactory.CreateWithContent(rawBytes, blockSize)); |
| Assert.AreEqual(message, message2); |
| } |
| } |
| |
| [Test] |
| public void ReadInt32Wrapper_VariableBlockSizes() |
| { |
| byte[] rawBytes = new byte[] { 202, 1, 11, 8, 254, 255, 255, 255, 255, 255, 255, 255, 255, 1 }; |
| |
| for (int blockSize = 1; blockSize <= rawBytes.Length; blockSize++) |
| { |
| ReadOnlySequence<byte> data = ReadOnlySequenceFactory.CreateWithContent(rawBytes, blockSize); |
| AssertReadFromParseContext(data, (ref ParseContext ctx) => |
| { |
| ctx.ReadTag(); |
| |
| var value = ParsingPrimitivesWrappers.ReadInt32Wrapper(ref ctx); |
| |
| Assert.AreEqual(-2, value); |
| }, true); |
| } |
| } |
| |
| [Test] |
| public void ReadHugeBlob() |
| { |
| // Allocate and initialize a 1MB blob. |
| byte[] blob = new byte[1 << 20]; |
| for (int i = 0; i < blob.Length; i++) |
| { |
| blob[i] = (byte) i; |
| } |
| |
| // Make a message containing it. |
| var message = new TestAllTypes { SingleBytes = ByteString.CopyFrom(blob) }; |
| |
| // Serialize and parse it. Make sure to parse from an InputStream, not |
| // directly from a ByteString, so that CodedInputStream uses buffered |
| // reading. |
| TestAllTypes message2 = TestAllTypes.Parser.ParseFrom(message.ToByteString()); |
| |
| Assert.AreEqual(message, message2); |
| } |
| |
| [Test] |
| public void ReadMaliciouslyLargeBlob() |
| { |
| MemoryStream ms = new MemoryStream(); |
| CodedOutputStream output = new CodedOutputStream(ms); |
| |
| uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); |
| output.WriteRawVarint32(tag); |
| output.WriteRawVarint32(0x7FFFFFFF); |
| output.WriteRawBytes(new byte[32]); // Pad with a few random bytes. |
| output.Flush(); |
| ms.Position = 0; |
| |
| CodedInputStream input = new CodedInputStream(ms); |
| Assert.AreEqual(tag, input.ReadTag()); |
| |
| Assert.Throws<InvalidProtocolBufferException>(() => input.ReadBytes()); |
| } |
| |
| [Test] |
| public void ReadBlobGreaterThanCurrentLimit() |
| { |
| MemoryStream ms = new MemoryStream(); |
| CodedOutputStream output = new CodedOutputStream(ms); |
| uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); |
| output.WriteRawVarint32(tag); |
| output.WriteRawVarint32(4); |
| output.WriteRawBytes(new byte[4]); // Pad with a few random bytes. |
| output.Flush(); |
| ms.Position = 0; |
| |
| CodedInputStream input = new CodedInputStream(ms); |
| Assert.AreEqual(tag, input.ReadTag()); |
| |
| // Specify limit smaller than data length |
| input.PushLimit(3); |
| Assert.Throws<InvalidProtocolBufferException>(() => input.ReadBytes()); |
| |
| AssertReadFromParseContext(new ReadOnlySequence<byte>(ms.ToArray()), (ref ParseContext ctx) => |
| { |
| Assert.AreEqual(tag, ctx.ReadTag()); |
| SegmentedBufferHelper.PushLimit(ref ctx.state, 3); |
| try |
| { |
| ctx.ReadBytes(); |
| Assert.Fail(); |
| } |
| catch (InvalidProtocolBufferException) {} |
| }, true); |
| } |
| |
| [Test] |
| public void ReadStringGreaterThanCurrentLimit() |
| { |
| MemoryStream ms = new MemoryStream(); |
| CodedOutputStream output = new CodedOutputStream(ms); |
| uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); |
| output.WriteRawVarint32(tag); |
| output.WriteRawVarint32(4); |
| output.WriteRawBytes(new byte[4]); // Pad with a few random bytes. |
| output.Flush(); |
| ms.Position = 0; |
| |
| CodedInputStream input = new CodedInputStream(ms.ToArray()); |
| Assert.AreEqual(tag, input.ReadTag()); |
| |
| // Specify limit smaller than data length |
| input.PushLimit(3); |
| Assert.Throws<InvalidProtocolBufferException>(() => input.ReadString()); |
| |
| AssertReadFromParseContext(new ReadOnlySequence<byte>(ms.ToArray()), (ref ParseContext ctx) => |
| { |
| Assert.AreEqual(tag, ctx.ReadTag()); |
| SegmentedBufferHelper.PushLimit(ref ctx.state, 3); |
| try |
| { |
| ctx.ReadString(); |
| Assert.Fail(); |
| } |
| catch (InvalidProtocolBufferException) { } |
| }, true); |
| } |
| |
| // Representations of a tag for field 0 with various wire types |
| [Test] |
| [TestCase(0)] |
| [TestCase(1)] |
| [TestCase(2)] |
| [TestCase(3)] |
| [TestCase(4)] |
| [TestCase(5)] |
| public void ReadTag_ZeroFieldRejected(byte tag) |
| { |
| CodedInputStream cis = new CodedInputStream(new byte[] { tag }); |
| Assert.Throws<InvalidProtocolBufferException>(() => cis.ReadTag()); |
| } |
| |
| internal static TestRecursiveMessage MakeRecursiveMessage(int depth) |
| { |
| if (depth == 0) |
| { |
| return new TestRecursiveMessage { I = 5 }; |
| } |
| else |
| { |
| return new TestRecursiveMessage { A = MakeRecursiveMessage(depth - 1) }; |
| } |
| } |
| |
| internal static void AssertMessageDepth(TestRecursiveMessage message, int depth) |
| { |
| if (depth == 0) |
| { |
| Assert.IsNull(message.A); |
| Assert.AreEqual(5, message.I); |
| } |
| else |
| { |
| Assert.IsNotNull(message.A); |
| AssertMessageDepth(message.A, depth - 1); |
| } |
| } |
| |
| [Test] |
| public void MaliciousRecursion() |
| { |
| ByteString atRecursiveLimit = MakeRecursiveMessage(CodedInputStream.DefaultRecursionLimit).ToByteString(); |
| ByteString beyondRecursiveLimit = MakeRecursiveMessage(CodedInputStream.DefaultRecursionLimit + 1).ToByteString(); |
| |
| AssertMessageDepth(TestRecursiveMessage.Parser.ParseFrom(atRecursiveLimit), CodedInputStream.DefaultRecursionLimit); |
| |
| Assert.Throws<InvalidProtocolBufferException>(() => TestRecursiveMessage.Parser.ParseFrom(beyondRecursiveLimit)); |
| |
| CodedInputStream input = CodedInputStream.CreateWithLimits(new MemoryStream(atRecursiveLimit.ToByteArray()), 1000000, CodedInputStream.DefaultRecursionLimit - 1); |
| Assert.Throws<InvalidProtocolBufferException>(() => TestRecursiveMessage.Parser.ParseFrom(input)); |
| } |
| |
| private static byte[] MakeMaliciousRecursionUnknownFieldsPayload(int recursionDepth) |
| { |
| // generate recursively nested groups that will be parsed as unknown fields |
| int unknownFieldNumber = 14; // an unused field number |
| MemoryStream ms = new MemoryStream(); |
| CodedOutputStream output = new CodedOutputStream(ms); |
| for (int i = 0; i < recursionDepth; i++) |
| { |
| output.WriteTag(WireFormat.MakeTag(unknownFieldNumber, WireFormat.WireType.StartGroup)); |
| } |
| for (int i = 0; i < recursionDepth; i++) |
| { |
| output.WriteTag(WireFormat.MakeTag(unknownFieldNumber, WireFormat.WireType.EndGroup)); |
| } |
| output.Flush(); |
| return ms.ToArray(); |
| } |
| |
| [Test] |
| public void MaliciousRecursion_UnknownFields() |
| { |
| byte[] payloadAtRecursiveLimit = MakeMaliciousRecursionUnknownFieldsPayload(CodedInputStream.DefaultRecursionLimit); |
| byte[] payloadBeyondRecursiveLimit = MakeMaliciousRecursionUnknownFieldsPayload(CodedInputStream.DefaultRecursionLimit + 1); |
| |
| Assert.DoesNotThrow(() => TestRecursiveMessage.Parser.ParseFrom(payloadAtRecursiveLimit)); |
| Assert.Throws<InvalidProtocolBufferException>(() => TestRecursiveMessage.Parser.ParseFrom(payloadBeyondRecursiveLimit)); |
| } |
| |
| [Test] |
| public void ReadGroup_WrongEndGroupTag() |
| { |
| int groupFieldNumber = Proto2.TestAllTypes.OptionalGroupFieldNumber; |
| |
| // write Proto2.TestAllTypes with "optional_group" set, but use wrong EndGroup closing tag |
| var ms = new MemoryStream(); |
| var output = new CodedOutputStream(ms); |
| output.WriteTag(WireFormat.MakeTag(groupFieldNumber, WireFormat.WireType.StartGroup)); |
| output.WriteGroup(new Proto2.TestAllTypes.Types.OptionalGroup { A = 12345 }); |
| // end group with different field number |
| output.WriteTag(WireFormat.MakeTag(groupFieldNumber + 1, WireFormat.WireType.EndGroup)); |
| output.Flush(); |
| var payload = ms.ToArray(); |
| |
| Assert.Throws<InvalidProtocolBufferException>(() => Proto2.TestAllTypes.Parser.ParseFrom(payload)); |
| } |
| |
| [Test] |
| public void ReadGroup_UnknownFields_WrongEndGroupTag() |
| { |
| var ms = new MemoryStream(); |
| var output = new CodedOutputStream(ms); |
| output.WriteTag(WireFormat.MakeTag(14, WireFormat.WireType.StartGroup)); |
| // end group with different field number |
| output.WriteTag(WireFormat.MakeTag(15, WireFormat.WireType.EndGroup)); |
| output.Flush(); |
| var payload = ms.ToArray(); |
| |
| Assert.Throws<InvalidProtocolBufferException>(() => TestRecursiveMessage.Parser.ParseFrom(payload)); |
| } |
| |
| [Test] |
| public void SizeLimit() |
| { |
| // Have to use a Stream rather than ByteString.CreateCodedInput as SizeLimit doesn't |
| // apply to the latter case. |
| MemoryStream ms = new MemoryStream(SampleMessages.CreateFullTestAllTypes().ToByteArray()); |
| CodedInputStream input = CodedInputStream.CreateWithLimits(ms, 16, 100); |
| Assert.Throws<InvalidProtocolBufferException>(() => TestAllTypes.Parser.ParseFrom(input)); |
| } |
| |
| /// <summary> |
| /// Tests that if we read a string that contains invalid UTF-8, an exception |
| /// is thrown. |
| /// </summary> |
| [Test] |
| public void ReadInvalidUtf8ThrowsInvalidProtocolBufferException() |
| { |
| MemoryStream ms = new MemoryStream(); |
| CodedOutputStream output = new CodedOutputStream(ms); |
| |
| uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); |
| output.WriteRawVarint32(tag); |
| output.WriteRawVarint32(1); |
| output.WriteRawBytes(new byte[] {0x80}); |
| output.Flush(); |
| ms.Position = 0; |
| |
| CodedInputStream input = new CodedInputStream(ms); |
| |
| Assert.AreEqual(tag, input.ReadTag()); |
| Assert.Throws<InvalidProtocolBufferException>(() => input.ReadString()); |
| } |
| |
| [Test] |
| public void ReadNegativeSizedStringThrowsInvalidProtocolBufferException() |
| { |
| MemoryStream ms = new MemoryStream(); |
| CodedOutputStream output = new CodedOutputStream(ms); |
| |
| uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); |
| output.WriteRawVarint32(tag); |
| output.WriteLength(-1); |
| output.Flush(); |
| ms.Position = 0; |
| |
| CodedInputStream input = new CodedInputStream(ms); |
| |
| Assert.AreEqual(tag, input.ReadTag()); |
| Assert.Throws<InvalidProtocolBufferException>(() => input.ReadString()); |
| } |
| |
| [Test] |
| public void ReadNegativeSizedBytesThrowsInvalidProtocolBufferException() |
| { |
| MemoryStream ms = new MemoryStream(); |
| CodedOutputStream output = new CodedOutputStream(ms); |
| |
| uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); |
| output.WriteRawVarint32(tag); |
| output.WriteLength(-1); |
| output.Flush(); |
| ms.Position = 0; |
| |
| var input = new CodedInputStream(ms); |
| |
| Assert.AreEqual(tag, input.ReadTag()); |
| Assert.Throws<InvalidProtocolBufferException>(() => input.ReadBytes()); |
| } |
| |
| /// <summary> |
| /// A stream which limits the number of bytes it reads at a time. |
| /// We use this to make sure that CodedInputStream doesn't screw up when |
| /// reading in small blocks. |
| /// </summary> |
| private sealed class SmallBlockInputStream : MemoryStream |
| { |
| private readonly int blockSize; |
| |
| public SmallBlockInputStream(byte[] data, int blockSize) |
| : base(data) |
| { |
| this.blockSize = blockSize; |
| } |
| |
| public override int Read(byte[] buffer, int offset, int count) |
| { |
| return base.Read(buffer, offset, Math.Min(count, blockSize)); |
| } |
| } |
| |
| [Test] |
| public void TestNegativeEnum() |
| { |
| byte[] bytes = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01 }; |
| CodedInputStream input = new CodedInputStream(bytes); |
| Assert.AreEqual((int)SampleEnum.NegativeValue, input.ReadEnum()); |
| Assert.IsTrue(input.IsAtEnd); |
| } |
| |
| //Issue 71: CodedInputStream.ReadBytes go to slow path unnecessarily |
| [Test] |
| public void TestSlowPathAvoidance() |
| { |
| using var ms = new MemoryStream(); |
| var output = new CodedOutputStream(ms); |
| output.WriteTag(1, WireFormat.WireType.LengthDelimited); |
| output.WriteBytes(ByteString.CopyFrom(new byte[100])); |
| output.WriteTag(2, WireFormat.WireType.LengthDelimited); |
| output.WriteBytes(ByteString.CopyFrom(new byte[100])); |
| output.Flush(); |
| |
| ms.Position = 0; |
| CodedInputStream input = new CodedInputStream(ms, new byte[ms.Length / 2], 0, 0, false); |
| |
| uint tag = input.ReadTag(); |
| Assert.AreEqual(1, WireFormat.GetTagFieldNumber(tag)); |
| Assert.AreEqual(100, input.ReadBytes().Length); |
| |
| tag = input.ReadTag(); |
| Assert.AreEqual(2, WireFormat.GetTagFieldNumber(tag)); |
| Assert.AreEqual(100, input.ReadBytes().Length); |
| } |
| |
| [Test] |
| public void MaximumFieldNumber() |
| { |
| MemoryStream ms = new MemoryStream(); |
| CodedOutputStream output = new CodedOutputStream(ms); |
| |
| int fieldNumber = 0x1FFFFFFF; |
| uint tag = WireFormat.MakeTag(fieldNumber, WireFormat.WireType.LengthDelimited); |
| output.WriteRawVarint32(tag); |
| output.WriteString("field 1"); |
| output.Flush(); |
| ms.Position = 0; |
| |
| CodedInputStream input = new CodedInputStream(ms); |
| |
| Assert.AreEqual(tag, input.ReadTag()); |
| Assert.AreEqual(fieldNumber, WireFormat.GetTagFieldNumber(tag)); |
| } |
| |
| [Test] |
| public void Tag0Throws() |
| { |
| var input = new CodedInputStream(new byte[] { 0 }); |
| Assert.Throws<InvalidProtocolBufferException>(() => input.ReadTag()); |
| } |
| |
| [Test] |
| public void SkipGroup() |
| { |
| // Create an output stream with a group in: |
| // Field 1: string "field 1" |
| // Field 2: group containing: |
| // Field 1: fixed int32 value 100 |
| // Field 2: string "ignore me" |
| // Field 3: nested group containing |
| // Field 1: fixed int64 value 1000 |
| // Field 3: string "field 3" |
| var stream = new MemoryStream(); |
| var output = new CodedOutputStream(stream); |
| output.WriteTag(1, WireFormat.WireType.LengthDelimited); |
| output.WriteString("field 1"); |
| |
| // The outer group... |
| output.WriteTag(2, WireFormat.WireType.StartGroup); |
| output.WriteTag(1, WireFormat.WireType.Fixed32); |
| output.WriteFixed32(100); |
| output.WriteTag(2, WireFormat.WireType.LengthDelimited); |
| output.WriteString("ignore me"); |
| // The nested group... |
| output.WriteTag(3, WireFormat.WireType.StartGroup); |
| output.WriteTag(1, WireFormat.WireType.Fixed64); |
| output.WriteFixed64(1000); |
| // Note: Not sure the field number is relevant for end group... |
| output.WriteTag(3, WireFormat.WireType.EndGroup); |
| |
| // End the outer group |
| output.WriteTag(2, WireFormat.WireType.EndGroup); |
| |
| output.WriteTag(3, WireFormat.WireType.LengthDelimited); |
| output.WriteString("field 3"); |
| output.Flush(); |
| stream.Position = 0; |
| |
| // Now act like a generated client |
| var input = new CodedInputStream(stream); |
| Assert.AreEqual(WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited), input.ReadTag()); |
| Assert.AreEqual("field 1", input.ReadString()); |
| Assert.AreEqual(WireFormat.MakeTag(2, WireFormat.WireType.StartGroup), input.ReadTag()); |
| input.SkipLastField(); // Should consume the whole group, including the nested one. |
| Assert.AreEqual(WireFormat.MakeTag(3, WireFormat.WireType.LengthDelimited), input.ReadTag()); |
| Assert.AreEqual("field 3", input.ReadString()); |
| } |
| |
| [Test] |
| public void SkipGroup_WrongEndGroupTag() |
| { |
| // Create an output stream with: |
| // Field 1: string "field 1" |
| // Start group 2 |
| // Field 3: fixed int32 |
| // End group 4 (should give an error) |
| var stream = new MemoryStream(); |
| var output = new CodedOutputStream(stream); |
| output.WriteTag(1, WireFormat.WireType.LengthDelimited); |
| output.WriteString("field 1"); |
| |
| // The outer group... |
| output.WriteTag(2, WireFormat.WireType.StartGroup); |
| output.WriteTag(3, WireFormat.WireType.Fixed32); |
| output.WriteFixed32(100); |
| output.WriteTag(4, WireFormat.WireType.EndGroup); |
| output.Flush(); |
| stream.Position = 0; |
| |
| // Now act like a generated client |
| var input = new CodedInputStream(stream); |
| Assert.AreEqual(WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited), input.ReadTag()); |
| Assert.AreEqual("field 1", input.ReadString()); |
| Assert.AreEqual(WireFormat.MakeTag(2, WireFormat.WireType.StartGroup), input.ReadTag()); |
| Assert.Throws<InvalidProtocolBufferException>(input.SkipLastField); |
| } |
| |
| [Test] |
| public void RogueEndGroupTag() |
| { |
| // If we have an end-group tag without a leading start-group tag, generated |
| // code will just call SkipLastField... so that should fail. |
| |
| var stream = new MemoryStream(); |
| var output = new CodedOutputStream(stream); |
| output.WriteTag(1, WireFormat.WireType.EndGroup); |
| output.Flush(); |
| stream.Position = 0; |
| |
| var input = new CodedInputStream(stream); |
| Assert.AreEqual(WireFormat.MakeTag(1, WireFormat.WireType.EndGroup), input.ReadTag()); |
| Assert.Throws<InvalidProtocolBufferException>(input.SkipLastField); |
| } |
| |
| [Test] |
| public void EndOfStreamReachedWhileSkippingGroup() |
| { |
| var stream = new MemoryStream(); |
| var output = new CodedOutputStream(stream); |
| output.WriteTag(1, WireFormat.WireType.StartGroup); |
| output.WriteTag(2, WireFormat.WireType.StartGroup); |
| output.WriteTag(2, WireFormat.WireType.EndGroup); |
| |
| output.Flush(); |
| stream.Position = 0; |
| |
| // Now act like a generated client |
| var input = new CodedInputStream(stream); |
| input.ReadTag(); |
| Assert.Throws<InvalidProtocolBufferException>(input.SkipLastField); |
| } |
| |
| [Test] |
| public void RecursionLimitAppliedWhileSkippingGroup() |
| { |
| var stream = new MemoryStream(); |
| var output = new CodedOutputStream(stream); |
| for (int i = 0; i < CodedInputStream.DefaultRecursionLimit + 1; i++) |
| { |
| output.WriteTag(1, WireFormat.WireType.StartGroup); |
| } |
| for (int i = 0; i < CodedInputStream.DefaultRecursionLimit + 1; i++) |
| { |
| output.WriteTag(1, WireFormat.WireType.EndGroup); |
| } |
| output.Flush(); |
| stream.Position = 0; |
| |
| // Now act like a generated client |
| var input = new CodedInputStream(stream); |
| Assert.AreEqual(WireFormat.MakeTag(1, WireFormat.WireType.StartGroup), input.ReadTag()); |
| Assert.Throws<InvalidProtocolBufferException>(input.SkipLastField); |
| } |
| |
| [Test] |
| public void Construction_Invalid() |
| { |
| Assert.Throws<ArgumentNullException>(() => new CodedInputStream((byte[]) null)); |
| Assert.Throws<ArgumentNullException>(() => new CodedInputStream(null, 0, 0)); |
| Assert.Throws<ArgumentNullException>(() => new CodedInputStream((Stream) null)); |
| Assert.Throws<ArgumentOutOfRangeException>(() => new CodedInputStream(new byte[10], 100, 0)); |
| Assert.Throws<ArgumentOutOfRangeException>(() => new CodedInputStream(new byte[10], 5, 10)); |
| } |
| |
| [Test] |
| public void CreateWithLimits_InvalidLimits() |
| { |
| var stream = new MemoryStream(); |
| Assert.Throws<ArgumentOutOfRangeException>(() => CodedInputStream.CreateWithLimits(stream, 0, 1)); |
| Assert.Throws<ArgumentOutOfRangeException>(() => CodedInputStream.CreateWithLimits(stream, 1, 0)); |
| } |
| |
| [Test] |
| public void Dispose_DisposesUnderlyingStream() |
| { |
| var memoryStream = new MemoryStream(); |
| Assert.IsTrue(memoryStream.CanRead); |
| using (var cis = new CodedInputStream(memoryStream)) |
| { |
| } |
| Assert.IsFalse(memoryStream.CanRead); // Disposed |
| } |
| |
| [Test] |
| public void Dispose_WithLeaveOpen() |
| { |
| var memoryStream = new MemoryStream(); |
| Assert.IsTrue(memoryStream.CanRead); |
| using (var cis = new CodedInputStream(memoryStream, true)) |
| { |
| } |
| Assert.IsTrue(memoryStream.CanRead); // We left the stream open |
| } |
| |
| [Test] |
| public void Dispose_FromByteArray() |
| { |
| var stream = new CodedInputStream(new byte[10]); |
| stream.Dispose(); |
| } |
| |
| [Test] |
| public void TestParseMessagesCloseTo2G() |
| { |
| byte[] serializedMessage = GenerateBigSerializedMessage(); |
| // How many of these big messages do we need to take us near our 2GB limit? |
| int count = int.MaxValue / serializedMessage.Length; |
| // Now make a MemoryStream that will fake a near-2GB stream of messages by returning |
| // our big serialized message 'count' times. |
| using var stream = new RepeatingMemoryStream(serializedMessage, count); |
| Assert.DoesNotThrow(() => TestAllTypes.Parser.ParseFrom(stream)); |
| } |
| |
| [Test] |
| public void TestParseMessagesOver2G() |
| { |
| byte[] serializedMessage = GenerateBigSerializedMessage(); |
| // How many of these big messages do we need to take us near our 2GB limit? |
| int count = int.MaxValue / serializedMessage.Length; |
| // Now add one to take us over the 2GB limit |
| count++; |
| // Now make a MemoryStream that will fake a near-2GB stream of messages by returning |
| // our big serialized message 'count' times. |
| using var stream = new RepeatingMemoryStream(serializedMessage, count); |
| Assert.Throws<InvalidProtocolBufferException>(() => TestAllTypes.Parser.ParseFrom(stream), |
| "Protocol message was too large. May be malicious. " + |
| "Use CodedInputStream.SetSizeLimit() to increase the size limit."); |
| } |
| |
| /// <returns>A serialized big message</returns> |
| private static byte[] GenerateBigSerializedMessage() |
| { |
| byte[] value = new byte[16 * 1024 * 1024]; |
| TestAllTypes message = SampleMessages.CreateFullTestAllTypes(); |
| message.SingleBytes = ByteString.CopyFrom(value); |
| return message.ToByteArray(); |
| } |
| |
| /// <summary> |
| /// A MemoryStream that repeats a byte arrays' content a number of times. |
| /// Simulates really large input without consuming loads of memory. Used above |
| /// to test the parsing behavior when the input size exceeds 2GB or close to it. |
| /// </summary> |
| private class RepeatingMemoryStream: MemoryStream |
| { |
| private readonly byte[] bytes; |
| private readonly int maxIterations; |
| private int index = 0; |
| |
| public RepeatingMemoryStream(byte[] bytes, int maxIterations) |
| { |
| this.bytes = bytes; |
| this.maxIterations = maxIterations; |
| } |
| |
| public override int Read(byte[] buffer, int offset, int count) |
| { |
| if (bytes.Length == 0) |
| { |
| return 0; |
| } |
| int numBytesCopiedTotal = 0; |
| while (numBytesCopiedTotal < count && index < maxIterations) |
| { |
| int numBytesToCopy = Math.Min(bytes.Length - (int)Position, count); |
| Array.Copy(bytes, (int)Position, buffer, offset, numBytesToCopy); |
| numBytesCopiedTotal += numBytesToCopy; |
| offset += numBytesToCopy; |
| count -= numBytesCopiedTotal; |
| Position += numBytesToCopy; |
| if (Position >= bytes.Length) |
| { |
| Position = 0; |
| index++; |
| } |
| } |
| return numBytesCopiedTotal; |
| } |
| } |
| } |
| } |